
Real-Time Resource Reservation Protocol for Wireless Mobile Ad Hoc Networks

Tullio Facchinetti
University of Pavia, Italy
tullio.facchinetti@unipv.it

Luis Almeida
University of Aveiro, Portugal

lda@det.ua.pt

Giorgio C. Buttazzo
University of Pavia, Italy

buttazzo@unipv.it

Carlo Marchini
University of Parma, Italy
carlo.marchini@unipr.it

Abstract

Wireless communication technology is spreading quickly
in almost all the information technology areas as a conse-
quence of a gradual enhancement in quality and security of
the communication, together with a decrease in the related
costs. This facilitates the development of relatively low-cost
teams of autonomous (robotic) mobile units that cooperate
to achieve a common goal. Providing real-time communica-
tion among the team units is highly desirable for guarantee-
ing a predictable behavior while operating autonomously in
unstructured environments.

This paper proposes a MAC protocol for wireless com-
munication that supports dynamic resource reservation for
small teams of cooperative robots. The protocol uses a
slotted time-triggered medium access transmission control
that is collision-free, even in the presence of hidden nodes.
The transmissions are scheduled according to the Earliest
Deadline First scheduling policy. An adequate admission
control guarantees the timing constraints of the team com-
munication requirements, including when new nodes dy-
namically join or leave the team. The paper describes the
protocol focusing on the consensus procedure that supports
coherent changes in the global system. Finally, a set of sim-
ulation results are shown that illustrate the effectiveness of
the proposed protocol.

1 Introduction

Teams of autonomous mobile robots may represent an
attractive solution for situations in which the environment
conditions are not suitable for direct human intervention.
Sample application domains include space missions, haz-
ardous environment exploration, demining, surveillance,
and civil protection [6]. In these cases, small teams of
robots are required to operate autonomously in open envi-
ronments for monitoring and exploration purposes. In addi-
tion, they have to cooperate for achieving a common goal.
Communication systems based on wired backbones are not

usually suitable for this kind of applications because it is
often impossible to deploy a wired infrastructure in open or
remote spaces. As a consequence, a full autonomy of the
robotic team can only be achieved through a wireless ad-
hoc network [14].

Achieving real-time communication over wireless net-
works has always been a challenge [12] [2] due, mainly,
to the higher attenuation and higher bit error rates typical
of that medium. The challenge is, however, substantially
larger when the nodes move and establish ad-hoc links as in
wireless mobile ad-hoc networks (MANETs) [7]. It is inter-
esting to notice that these networks differ from sensor net-
works [12] in at least two ways: they are not always large
scale, which means scalability might not be an issue, and
physical constraints are not as stringent, which means that
more powerful processors, radio transceivers and batteries
can generally be used. This latter aspect does not mean,
however, that resource-consciousness is not an issue. It still
is but generally at a lower importance than in sensor net-
works. On the other hand, MANETs differ from industrial
wireless networks [2] because the latter ones are frequently
structured, i.e. based on fixed access points.

A further challenge in MANETs is supporting dynamic
resource reservation as required by nodes that join or leave
the network at run-time, or by changes in the communica-
tion requirements. This is necessary for an efficient use of
the communication bandwidth and for flexibility with re-
spect to the operational environment.

This paper proposes a communication protocol for
MANETs targeted to small teams of mobile autonomous
robots that move in the vicinity of each other. The protocol
supports dynamic resource management with adequate ad-
mission control, thus respecting the communication timing
constraints, even in the presence of communication errors
and hidden nodes. To support dynamic resource manage-
ment the protocol uses a consensus procedure that allows
all nodes to be aware of the changes in resource allocation.
This procedure is the main focus of this paper.

The paper is organized as follows: Section 2 presents a
brief survey of related work and Section 3 introduces the

Administrator
Proceedings of the IEEE Real-Time Systems Symposium (RTSS 2004), Lisbon, Portugal, December 2004.

system model. Then, Section 4 describes the consensus
procedure while Section 5 presents and validates an upper
bound on the time taken by the consensus procedure. Sec-
tion 6 includes simulations results that show the effective-
ness of the protocol even with errors and mobility. Finally,
Section 7 states our conclusions and future work.

2 Related work

Wireless communication technology has recently be-
come pervasive in many application domains, enabled by a
gradual enhancement in quality and security of the commu-
nication, together with a substantial decrease in the related
costs. The resulting wireless networks are normally classi-
fied in two categories: structured, i.e., based on fixed access
points; and ad-hoc. A further classification divides the lat-
ter category into mobile ad-hoc networks (MANETs) and
sensor networks [12].

All categories have been extensively addressed by the re-
search community but only a relatively small subset of the
vast amount of available literature addresses aspects related
with real-time communication. Some fundamental aspects
that constrain the real-time behaviour are the medium ac-
cess control (MAC) protocol, the routing mechanisms and
the mechanisms to handle dynamic communication require-
ments. This paper deals with these aspects in the scope
of MANETs, particularly for small teams of autonomous
mobile robots, i.e., with around 10 units. The approaches
herein proposed can still be used for larger numbers of units
but within an adequate hierarchical framework.

One of the aspects that makes obtaining real-time behav-
ior in MANETs particularly challenging is mobility. In fact,
as nodes move, the links between nodes may break and new
links may be established, leading to a dynamic topology.
To deal with mobility, MANETs typically use specific tech-
niques. For example, in [5], the link duration for different
mobility scenarios is analyzed in order to deduce adaptive
metrics to identify more stable links. Another possible ap-
proach is to manage the network topology by controlling
the positioning of certain or all nodes. This is proposed in
[11], where a set of specific nodes (PILOT nodes) is ori-
ented toward specific places to support the connectivity of
the remaining nodes (general sensor nodes) in order to sus-
tain real-time communication. The issue of real-time com-
munication and mobility is analyzed in [7], where mobility
awareness and prediction are proposed to perform proactive
routing and resource reservation to allow meeting real-time
constraints. However, they do not propose a specific algo-
rithm or method to achieve this.

The option behind our work is also of using a flat proac-
tive routing algorithm for maintaining information about
the current topology as well as for performing changes on
global information as required for resource reservation. But
we propose a specific algorithm based on a variation of
flooding, with each node broadcasting periodically its topol-
ogy estimation together with information for synchroniza-
tion purposes. Then each node merges the received infor-

mation with its own current local view and uses this updated
information in its next synchronization broadcast. One of
the main results of this paper is the determination of an
upper bound on the number of steps, i.e., synchronization
broadcasts, required to assure the propagation of new infor-
mation through all the network. This bound is particularly
relevant for the consensus procedure that supports resource
reservation.

The problem of reaching a consensus has been widely
considered in the literature on distributed systems since it
was firstly introduced in [10]. Dolevet al. [3] proved that
in a system with clock synchronization and time-bounded
communications, such as ours, it is possible to reach a con-
sensus. The consensus procedure proposed in this paper
is optimistic in the sense that, upon a change request, an
instant in time is defined into the future, at which the pro-
cedure should be concluded. At that instant, nodes check
an aggregated positive acknowledgement, which was dis-
seminated through the network after the request, and deter-
mine whether there was an agreement among all nodes. The
change request is executed only in case of consensus. In this
paper, we will use the expressionsconsensus andagreement
interchangeably.

Finally, as far as the MAC protocol is concerned, this pa-
per proposes the use of implicit EDF [1], which was orig-
inally designed for use within static cells of hierarchical
sensor networks. We combine implicit EDF with the re-
ferred consensus procedure to support dynamic communi-
cation requirements and, generally, dynamic resource reser-
vation. A preliminary approach to such combination was
first proposed in [4] but with the restrictive assumption of
absence of hidden nodes, a restriction that is now lifted.

3 System model

System architecture: The global system architecture
considered in this paper consists of a set� of �� mobile
units or nodes,� � ���� � � � � ����, which can commu-
nicate over a radio-based wireless medium. Every unit is
unambiguously identified by a statically-assigned identifier
������ � ���. All the nodes use a single shared radio chan-
nel to exchange messages. The nodes are not location-aware
and the topology is not managed meaning that there is no
topology-oriented control of the nodes movement.

We say that there exists a link��� from node�� to node
�� if �� is able to listen to a transmission from��. Such
a link is represented by the edge�� � �� in the topology
graph. A set of links connecting two nodes� � and�� estab-
lishes a path between them. A path from�� to �� will be
denoted as�� � ���

� � � � � �����
� ���

� �� . Then,
a team (or network)��	� � � is defined as a dynamic sub-
set of��	� nodes from�, ��	� � ���� � � � � ������. If not
explicitly declared, in the following sections we will refer
unambiguously to��	� as� and to��	� as�. A team is
fully connected if for any pair of nodes� �� �� � ��	� there
exists at least a path between them. More restrictively, a
team is fully linked if for any pair of nodes� �� �� � ��	�

there exists a link between them.
In order to maintain topological information of the net-

work at each instant, each node�� uses a topology matrix

�, with � � � elements, which can be considered as the
adjacency matrix for an oriented graph. The generic ele-
ment
�

�� placed in the�-th row and�-th column is a flag
indicating what node�� knows about the link��� . We set

�

�� � � (� �� �) if there exists such a link and
 �
�� � �

(� �� �) otherwise; we set
 �
�� � � for each� by default.

The
� matrix is dynamic since the units are moving, thus
it changes over time as new links are established or broken.
Therefore, we will use
 ��	� to refer to the topology ma-
trix owned by node�� at instant	.

Each node updates its own topology matrix whenever
it receives a message, whenever it does not receive an ex-
pected message, or when it receives a matrix of a neigh-
bour node, which are broadcast periodically. The algorithm
that rules the topology matrix update is fully distributed and
converges to a coherent global view. However, it is not de-
scribed in this paper due to space constraints. Moreover, it
is relatively marginal to the consensus process described in
this paper since it is currently used for detection of crashes
or lost nodes, only, in which case the respective column will
be null. However, the topology matrix will, in future work,
support a variety of functions, e.g. topology management,
routing, spatial reuse of the communication channel and de-
termination of tighter bounds on the duration of the consen-
sus procedure.

Finally, some of the results presented later on are based
on the so-calledlevel of redundancy of a given topol-
ogy, which is defined as the ratio between the actual num-
ber of links of that topology over the maximum number of
links for the same number of nodes. Both terms of the ratio
only count the links beyond the minimum, i.e., those that
are essential to keep the network fully connected. varies
between� and� and gives an indication of the number of
redundant paths that a given topology contains.

Communication model: Communication among nodes
is organized in consecutive slots, which have a constant du-
ration��	
�. The model is periodic, which means that all
message streams served by the communication system are
periodic, that is, made of a potentially infinite sequence of
message instances submitted periodically for transmission.
For the sake of simplicity, the expressionmessage will also
be used to refer to amessage stream, unless stated other-
wise. Message addressing is content-based, making use
of an identifier. Furthermore, the communication follows
a producer-consumer model, according to which produc-
ers broadcast their messages autonomously, with a given
frequency, while consumers retrieve from the network the
messages that are relevant for them.

The generic message�	 generated by node�� is charac-
terized by its identifier�	, a transmission period�	, a rela-
tive deadline�	, an offset�	, and a transmission duration
�	, all (except the identifier) expressed inslots. The Com-
munication Requirements Table (��) holds the proper-

ties of all the messages to be scheduled by the commu-
nication system, so�� � ��	��	� �	� �	� �	� �	�� � �
� � � ���, where� is the number of message streams pro-
duced by all nodes. The total bandwidth requirement is
given by��� �

��

	��
��

�
.

As referred in Section 2, messages are scheduled using
the implicit EDF approach [1]. Each message is transmitted
as a sequence of fixed size packets, each of which is trans-
mitted in a single slot. Implicit EDF considers that message
preemption is possible at the slot boundaries, i.e., between
packets. Since all messages also become ready for trans-
mission synchronously with the slot boundary, then, this
scheduling model is equivalent to preemptive EDF [9].

We say that the traffic model is dynamic since existing
team nodes may request changes in their message streams,
or nodes not in the team may request to join, or even nodes
in the team may request to leave or just crash. In all these
circumstances, the�� must be updated. Since the��
is replicated in all the nodes together with the EDF sched-
uler, a consensus process is required to reach an agreement
among all nodes in the team concerning the�� update,
including hidden nodes. Whenever it is necessary to refer to
each�� replica separately, we will use�� ��	� mean-
ing the replica within node�� at instant	.

To support topology self-checking, synchronization, and
admission control, each node�� periodically broadcasts
a message with its own�� ��	�,
��	�, local clock
value�����	� and other information related with the con-
sensus procedure triggered upon�� change requests.
This is called the system synchronization message�����

and it is broadcasted by all nodes in a round-robin fash-
ion (��� � � � � ����� ��� ��� � � � � ����). We will call step the
transmission of a synchronization message. The ensemble
of all these messages constitutes a periodic message stream
with period�����, called thesynchronization step period,
and duration�����. However, each instance of this mes-
sage stream is transmitted by a different node according to
the round-robin sequence based on the node identifier. Fig-
ure 1 shows an example of schedule of the communication
activity, with 3 nodes sending one message each, plus the
synchronization message. In that case, each message uses
a single slot only, i.e.,������ � ����� � �, and the step
period is 5, i.e.,����� � �.

From a traffic scheduling point of view,����� is like
another periodic message, scheduled together with the re-
maining messages by the implicit EDF scheduler, with pe-
riod �����, deadline����� � �����, offset����� � �
and duration�����. Each node knows when to transmit
its own����� by checking the round-robin list and sends
the����� message once everysynchronization round, with
period��
��� � ������.

The total bandwidth consumed by our communication
system is given by��
� �

��

���
��

�
�

�����

����
and a suffi-

cient and necessary traffic schedulability condition can be
obtained by��
� 	 �. Notice that��
� includes all over-
heads, such as all the control information sent in each slot,

sent by p
1

p
1

p
2

p
3

syncm

1

2

3

i T C

50 10 15 20

sent by p sent by p

0

0

0

20 244 8 12 16

8

8

16 24

24

6 12 18 24

1 2 3 2schedule

sent by psent by p

1 1 3 21 2 213 1 3 1 2 1

2 4 6 10 12 14 18 20 220 16

2 3 1 2

syncT

bandwidth
requirements

sync

4

5

6

8

1

1

1

1

Figure 1. Example showing the ����� mes-
sage broadcast.

as well as any unused space within the slots.
Finally, the clock sent within the synchronization mes-

sage (�����	�) includes both a representation of continu-
ous time (i.e, with microseconds resolution) and an abso-
lute ���	 counter (slot counter). The former is used for
clock synchronization purposes, while the latter is used for
scheduling and consensus purposes. For clarity of presen-
tation, we will use�����	� to refer to the���	 counter, only,
unless explicitly stated otherwise.

Fault model: The radio wireless medium is very error
prone due, for example, to electromagnetic interferences,
signal fading, multiple transmission paths and broadcasting
collisions. Therefore, we assume that a receiving node can
check the integrity of a message detecting the presence of
errors in the broadcast, e.g. using CRC checking. Malicious
faults (byzanthine faults [8]) are not considered in this fault
model, meaning that we assume that the content of a valid
message is reliable and it is not intentionally corrupted by
the sending node.

Since the MAC protocol is time-triggered, it is sensitive
to clock drifts and clock errors. These will result in col-
lisions and are thus considered as another source of com-
munication errors. Moreover, the slot duration does not ac-
count for retransmissions and thus errors will be handled
in a forward error recovery fashion, only. In particular, we
consider that erroneous messages lead to omissions.

The errors affecting data messages will necessarily cause
a degradation of the quality-of-service delivered to the ap-
plication, which must deal with such situations. In this pa-
per we are concerned with errors affecting synchronization
messages, only, because omissions of these messages im-
pact directly on the operation of the communication system.

As briefly explained in section 2, the protocol proposed
in this paper relies on the precision of clock synchroniza-
tion and on the effectiveness of the consensus procedure.
The impact of errors on these mechanisms depends heav-
ily on the level of redundancy of the current topology
as shown further on in section 6. In fact, low values of
correspond to topologies in which there are few or none al-
ternative paths between the two most distant nodes and thus
omissions may impose extra delays in forwarding synchro-
nization messages. On the other hand, high values of cor-

respond to topologies in which there are many parallel paths
between any pair of nodes leading to a high resilience to
omissions of those messages, since they are sent in a flood-
ing fashion.

Finally, we also account for possible crashes or nodes
that lost contact with the team. The recovery mechanism
from such cases makes use of an automatic startup proce-
dure that, however, causes a temporary disruption of the
communication. The currently devised startup procedure
is based on a special node, the team leader, that, upon a
timeout without detecting any on-going communication ac-
tivity starts transmitting its synchronization message, allow-
ing other waiting nodes to join, one by one, building up the
team.

4 Reaching a consensus
Whenever a global decision must be taken by the team,

for example concerning a change in the communication
schedule triggered by a joining request from a new robot
or a request for changes in the bandwidth requirements, it
is important to guarantee that such decision is consistent
for all the members and that it is taken at the same time,
because the schedule is computed independently on each
node. This is achieved by keeping track of the knowledge
the other team units have about the decision to take. Such
a knowledge is stored in a data structure, called theagree-
ment vector �, which is broadcasted by all nodes within the
synchronization message. The agreement vector is an array
of � elements, owned by each member of the team, where
�� denotes the vector owned by node��. The�-th element
��
� of the vector is a binary flag indicating whether node

�� has been notified of the global decision. When marked
(��

� � �), it means that node�� knows that node�� is
aware of the decision. Therefore,� represents an aggre-
gated acknowledge of the global awareness of the decision
to be taken at a defined time in the future.

4.1 The consensus process

In the field of distributed systems there is a substantial
amount of work in consensus processes. These must gen-
erally enforce the following properties [13]: Termination,
Validity and Agreement. Below, we state these properties
in the scope of our consensus model, which presents some
specific features that are different from traditional ones:

1. Termination: The consensus process stops anyway at
a given time	, whether or not the agreement has been
reached. This is explicitly enforced by our protocol by
setting a termination timea priori, when a consensus
process is triggered.

2. Validity: Any consensus process is meaningful in the
sense that it is triggered by the system for the sake
of the system correct operation. This property is en-
forced by our fault model because it does not consider
malicious faults, such as those in which an erroneous
process could be triggered or a node could purposely
jeopardize an on-going process.

by new node
join request

transmitting
node

1

2

3

4

p
1

p
2

p
3

p
4

p
4

p
3

p
1

p
2

p
3

p
1

p
2

p
3

p
4

new24 13

2 431
1
2

4
3

p p p p
p
p
p
p

4 1 2 3

was noticed about the joining process

time

topology matrix

request made by the new node
only the node p listens to the joining1 3node p knows that nodes p and p1 3

Figure 2. Example of the agreement vector update.

3. Agreement: At the process termination time	, two or
more nodes can have different information concerning
the consensus process status and thus, decide differ-
ently. However, such an inconsistency does not jeop-
ardize the consistent operation of the system. This is
enforced by a positive aggregated acknowledge of the
consensus process in all nodes that allows to differen-
tiate those that reached consensus, which will follow
on, from those that did not, which will stop and resyn-
chronize with the former ones. Such an aggregated
acknowledge is based on the agreement vector�.

4.2 Triggering a new process

For a node�� to trigger a consensus process it must:

1. Assign a unique identifier����� to the process. No-
tice that the round-robin circulation of the synchro-
nization message transmission ensures that only one
node can trigger an agreement process at any given
time. Therefore, each process can be uniquely iden-
tified by the clock value at the time it will be triggered,
i.e., ����� � �����	�. Recall that�����	� is the���	
counter value of the slot in which����� is sent.

2. Wait for its turn to broadcast the synchronization mes-
sage�����.

3. If there is another process already running in the sys-
tem, the vector�� owned by�� is not empty. In that
case,�� cannot start a new process, which must be re-
triggered later.

4. Otherwise, or after the termination of the previous pro-
cess, mark the cell��

� in an empty (new) vector.

5. Associate to the consensus process the identifier��� of
the node that issued the request (possibly,� � �). This
is necessary to differentiate between several requests
that can arrive to the same node��, before it can trig-
ger the respective processes (e.g.�� in Figure 3 can
receive requests from����� and�����).

6. Set the agreement time	� equal to the triggering time
�����	� plus an upper bound on the duration of the
consensus process, as derived further on (���������).
The agreement time	� is the time at which all nodes
will simultaneously update the communication system
data, including the�� , matrix
 , vector�, and the
round-robin circulation list.

7. Send the synchronous message����� with the up-
dated agreement information, i.e.����� , ���, �, 	�.

p6

pnew2

p1

p3

p2

p5

p4

pnew1

pnew3

Figure 3. Example of simultaneous starts of
multiple consensus processes.

To enforce data consistency during a consensus process,
it is crucial that� does not change in the middle of the pro-
cess (otherwise, it could invalidate the update instant, for
example). This is achieved by preventing a node from trig-
gering a new consensus process when there is an on-going
one, as stated in the rules above. However, since the pro-
cesses take time to propagate, it is possible that one node
triggers a process without knowing that another process is
already in progress. For example, in Figure 3, node� �
could trigger one consensus process to admit�����, while
�� could trigger another one in the following cycle to admit
�����. As both processes propagate, there must be at least
one node in their paths that receives both consensus pro-
cesses. When this happens, one of the processes is allowed
to progress until completion while the other is dropped and
must be re-issued later.

4.3 Updating the agreement vector

When node�� receives an agreement vector from an-
other node,��, several situations can occur:

1. If node�� is not currently engaged in any consensus
process, i.e.,�� is empty, it performs the following
operations:

(a) ��
� � �

(b) �� � ��
�� (symbol
 denotes the bitwise OR
operator).

2. If node�� is currently engaged in one on-going agree-
ment process, i.e.,�� is not empty, then it must check
whether the received vector corresponds to the same
process or a different one.

(a) If ����� � ����� , then it is the same process and
thus�� updates its vector with the received one:
�� � ��
�� .

(b) If ����� � ����� , the process corresponding to
�� is older than the one in��, thus�� is dis-
carded while�� is kept unchanged.

(c) If ����� � ����� , the process corresponding to
�� is newer than the one in��, thus�� is re-
placed by�� while its previous contents are dis-
carded. Moreover, the self flag is marked, i.e.,
��
� � �.

The bitwise OR operation in rules 1b and 2a captures
the knowledge that node�� has about the nodes that were
already notified of the consensus process, and passes that
knowledge to��.

Rules 1a and 2c refer to situations in which�� is notified
about the consensus process, marking its own flag in the
vector.

In rules 2b and 2c an on-going process is discarded. The
requester of this process will be indirectly informed of this
situation since it will eventually receive an����� message
containing a different consensus process. The requester
must then re-issue the request at a time after the agreement
time of the on-going consensus process.

4.4 Termination of a consensus process

As referred in Section 4.2, the termination instant of any
consensus process	� is set at the time the process is trig-
gered and it is disseminated through all the network. If the
network is fully connected, in the absence of errors, broken
links and crashes or absent nodes, it is possible to prove (see
Section 5) that at time	� the process will becomplete, for
any network topology.

Definition 1 Given a node �� � ��	� and its corresponding
agreement vector ��, the consensus process is said to be
complete when ��� � � �� � � � � � ��

� � �.

The definition above means that all nodes know that a
consensus has successfully been reached by all. Therefore,
the agreement property is respected and the request relative
to the consensus process is executed. However, in reality,
both errors, broken links and even crashes can occur. There-
fore, it is possible that at instant	� the consensus process is
notcomplete and two situations can happen.

First, consider the case in which the consensus process
reached all nodes but some of them have not been notified
of that. This means that some nodes have the� vector fully
marked while others still have a few unmarked flags. In this
case we say the consensus process ispartially complete:

Definition 2 Given a node �� � ��	� and its corresponding
agreement vector ��, the consensus process is said to be
partially complete if �� 	 �� � �� � � � � � ��

� � �.

Notice that this is still a coherent situation, despite some
nodes not knowing it. Therefore, those that reached the con-
sensus, i.e., have a fully marked� vector, execute the re-
quest relative to the consensus process. On the other hand,
those that did not reach consensus, refrain from transmitting
until they receive an����� message. At that time, they up-
date their own�� with the one received in�����, which
is properly updated with the previous consensus process,

1 2 3 4 5

1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5

1 2 3 4 5
a)

p
1

p
2

...
p

5

b) ...

Figure 4. Example of errors in the vector
broadcasting.

and restart transmitting. This is illustrated in Figure 4, case
a). Node�� reaches the consensus and starts the new sched-
ule, while nodes�� and�� stop transmitting to avoid colli-
sions and restart later, after receiving the right�� from
node��. Case b) of Figure 4 illustrates an impossible situ-
ation because, if node�� holds an empty� vector, then the
�-th column of�� and�� must be unmarked and thus no
nodes reach the consensus. This leads to another situation
in which the consensus process isincomplete.

Definition 3 Given a node �� � ��	� and its corresponding
agreement vector ��, the consensus process is said to be
incomplete if ��� �� � �� � � � � � 	 ��

� � �.

This situation may occur when a node crashes or departs
from the team without being notified of the consensus pro-
cess, or even in the presence of too many errors. This causes
all the nodes in the team to stop transmitting leading to a
major communication disruption. To recover from this sit-
uation there is a timeout that limits the maximum time that
a node waits for an����� message, after which the node
initiates a startup procedure using the previous state of the
�� , i.e., without executing the request.

After restart, however, it will not be possible to reach any
other agreement until the crashed or absent node is removed
from the team. This can be carried out by using the topol-
ogy matrix
 described in Section 3. In fact, a crashed or
absent node is reflected in the topology matrix by an empty
column in the respective index. Any node detecting such
empty column within
 , for a given predefined time, trig-
gers the removal process.

Notice that a consensus process to remove such node(s)
is still possible because it will not require their agreement
and the respective consensus process does not take into ac-
count the respective flags in vector�.

4.5 Adding nodes to the team

In the course of team operation, it may happen that a new
node appears and requests to join the team. This action is
triggered by the new node, which is outside the team and
thus not included in the current communication schedule.
Therefore, a special mechanism is required in this case.

An external node that wants to join the team must first
listen to the system, scanning for synchronization messages.
Upon reception of such a message, sent by node��, the first
task to be accomplished is to synchronize its clock using
���� and secondly to examine�� �. By inspecting this

table, the joining node executes an admission control to ver-
ify whether its communication requirements can be met by
the system, given the actual communication load. Upon a
positive admission control, the joining node builds the same
schedule, as all the team nodes, and indicates its presence by
issuing a communication request in a free scheduling slot,
submitting its bandwidth requirements to the team members
that are within its range of transmission. Following this re-
quest, the joining node remains listening, waiting for the
synchronization message that carries its request, which is
used as an acknowledgment that the respective consensus
process has started. If the following����� does not refer to
the issued request, the joining node waits until	� indicated
in that �����. Then, it further waits for a random num-
ber of synchronization cycles to reduce collisions with other
possible joining nodes, and re-issues the request. Possible
request duplicates received by neighbour team nodes may
generate parallel consensus processes, but only the oldest is
kept, as discussed in Section 4.3.

5 Validation of the model
In this section we present several results concerning the

time taken by the consensus process in the absence of er-
rors, message losses and crashes or absent nodes. More-
over, we will consider that the topology remains fixed for
the duration of the consensus process. Then, at the end of
this section we present simulation results that show the per-
formance of the protocol when those assumptions do not
hold. First, we introduce the following definition:

Definition 4 The consensus process is said to have con-
verged if it is completed in a finite number of steps.

Lemma 1 Given two nodes ��� �� � �, if there exists at
least a path from �� to ��, then the information contained
in �� sent by node �� will be received by �� after a finite
number of steps.

Proof. When a node receives a non-empty agreement vec-
tor from another node, it updates its own agreement vector
by marking the flags that are marked in the received vector
(updating rule 1b). In this way, the vector forwarded by that
node will contain at least the marked flags that were already
marked in the received vector. Since every node transmits
once in each synchronization round, then there will be a
node that forwards the contents of�� in each round. Since
there exists a path from�� to ��, such data will be received
by �� and, since the number of nodes in� is finite, then the
information is forwarded from�� to �� in a finite number
of steps.�

Theorem 1 If for each �� � � there exists at least one path
that starts from �� and crosses all the nodes in �, then the
consensus process converges.

Proof. From the existence of a path from�� to all the other
nodes, we know that any marked flag in the agreement vec-
tor ��, broadcast by��, will be received by every generic

node�� � �. Moreover, from Lemma 1, we know that it
will be received by�� in a finite number of steps. When
�� receives such flags of��, it marks them within its own
vector�� (updating rule 1b) and marks its self flag� �

� (up-
dating rule 1a). Similarly, all marked flags of� � will be
received by all the other nodes and also in a finite number
of steps. Since this holds for all� or �, the process can be
completed (in the sense of Definition 1) in a finite number
of steps, which proves the theorem.�

To respect the termination requirement of our consen-
sus model, an estimation of the number of steps needed to
complete a consensus process must be supplied. Theorem
2 gives an upper bound of such number of steps for a given
topology. It can be used only when the network topology is
known. Later in this section we introduce an upper bound
that holds for the most unfavourable topology, referred to
as worst-case topology, and thus it holds equally for any
possible linked topology. We firstly introduce the following
definition:

Definition 5 Given two nodes ��� �� � �, the step distance

����� ��� between �� and �� is defined as

����� ��� �

�
� � if � 	 �,

�� � � if � � �.

The step distance introduced in Definition 5 gives the
number of steps (i.e., synchronization periods,� ����) re-
quired to have�� transmitting the����� message after the
time at which�� transmitted it (round-robin order).

Lemma 2 ��� ��� 	 �� � 	 � � � �� ���
����� ��� �

���� � ��� � �.

Proof. The proof follows directly from Definition 5.�

Lemma 3 ��� � � �� � � � � �
����� ��� 	 � ��

Proof. If � � � then
����� ��� � � 	 �. If � �� � then

����� ��� � � and
����� ��� 	 � �, from Lemma 2.
�

Definition 6 Let �� � ���
� � � � � �����

� ���
�

�� be a path from �� to ��. The following distances are
defined:

�
����� ��� � � ��

����� ��� �
����
���

�����
� �����

��

The distance
�
����� ��� denotes the number of hops
required to transmit a piece of information from�� to ��.
The distance
����� ��� specifies the number of steps re-
quired to have�� transmitting after it received an informa-
tion that was initially sent by��.

Definition 7 Let � be a network with a topology matrix
 .
We say that ����
� is the maximal distance (or �� �!	!�)
in the network between two nodes if and only if ��� � �
�� � � � � �
�
����� ��� 	 ����
�.

1 2 3 4 5 6 7 8 9 10 11 12
0

n=4

n=5

n=6

n=7

n=8

n=9

n=10

n=11

n=13

11
20

n=12

29

41

19

40

5560

71

89

80

109

100

131

120

140

155

160

diameter (d)

of

 s
te

ps

n −n−12
2(n−1)d

Figure 5. The bound as a function of the num-
ber of nodes and of the longest path in the
network.

Theorem 2 Let � be a network with a fixed topology ma-
trix
 . If the communication between the nodes is bidi-
rectional, then the number of steps required to complete a
consensus process is "���
� 	 ��� ������
�.

Proof. Let �� be the node that triggers the consensus
process and let�� be the last node that receives that in-
formation from��. Under this assumption,�� is the last
vector to be updated to a non-null value. It takes no more
than �� ��� for �� to transmit its�� vector after re-
ceiving a vector with the�-th flag marked. This is true
because the worst case is when�� and�� are at the ex-
tremal sides of the longest path in the network, for which
holds
�
����� ��� � �. Moreover, the maximum amount
of steps needed to have a generic node transmitting after
the transmission of a node directly linked to it is� � from
Lemma 3. Note that if�� is not placed at the extremal side
of the longest path, because it is in the middle of such a
path or even at the extremal side of a shorter path, then

�
����� ��� 	 �. When�� receives a vector with the
�-th flag marked, it updates its vector and later transmits it,
in the right synchronization cycle. After that cycle, no more
than����� steps are required to propagate its information
to all the other nodes. In particular, let�� be the last node
that completes its own vector, then
�
����� ��� 	 � for
the same reasons as above. Summing the contributions of
the two-way broadcasts, i.e.,�����������, yields the
following bound"���
� 	 ��� ������
�.

Since�� is the last node receiving the flags informa-
tion from ��, when�� starts to broadcast its updated vec-
tor all the other nodes have already received those flags
from �� and they have already started to broadcast their
updated vectors, too. This assures that the flags broad-
cast by a generic node�� � � are received by all the
other nodes in the network before the flags from�� are
received by��. This results from the assumption that��
is placed at the extremal side of the longest path, yielding
������ � � �
�
����� ��� 	
�
����� ����. �

Definition 8 The worst-case network topology for a given
number of nodes � is the one in which a consensus process
takes the highest number of steps to complete.

Theorem 3 If the communication among the nodes is bidi-
rectional then the worst-case network topology is the one in
which there is a single path �� � ���

� � � � � �����
�

���
� �� where � � �, �������� 	 ����� 	 ���� ��

���, �� � ���� � � and the consensus process is trig-
gered by node ���

� ��. In this case, the number of steps
required to complete a consensus process can be as high as
���� � �� � �.

Proof. The topology depicted in Theorem 3 is a linear
topology including all the nodes of the network. This is the
worst-case topology because it implies the longest possible
path with a given number of nodes (� � � �). Any other
topology would imply the existence of forking nodes, i.e.
nodes connected to more than two nodes. In such circum-
stances, the time to propagate any information from one ex-
treme to the other can only be shorter. This is because, on
one hand� � � �, necessarily, and on the other hand, af-
ter the forking node, the information flows in parallel over
more than one link and thus, faster. If the node that starts
the process is node���

� ��, which lies at one extremal
side of the path, to complete the process the information
must first reach�� � ���

, which completes vector��,
and then return back to�� to allow it to also complete its
vector��. This is the longest path that the information
must cross. In this situation, from Lemma 2 we know that
� steps are needed to cross a one-hop path in both direc-
tions, so��� �� are needed to cross all the paths forward
and backward from�� to ��. The last steps in the pro-
cess, from���� to ��, can be avoided, since the process
completes as soon as���� transmits and�� receives, i.e.
no need to wait for�� to transmit. The lowest number of
steps that can be saved is�, and it can only be achieved if
�� � ���� � �. Summing all the contributions we have
��� �� � � ����. �

Notice that the bound given by Theorem 3 depends only
on � and it establishes the absolute maximum number of
steps that a consensus process may take with any topology
and it is thus very practical. However, when� � �, that
bound is also very pessimistic. Is such circumstances, the
bound given by Theorem 2 is substantially tighter. Never-
theless, using this bound requires knowing� for the current
topology, which can be determined inspecting the
 ma-
trix. Therefore, a better solution can be achieved by defin-
ing a new bound that corresponds to the lowest one, for each
�, between the two ones previously referred. Such an im-
proved bound is illustrated in Figure 5 where, for each�,
the maximum number of steps is presented as a function
of �. As an application example, consider the situation de-
picted in Figure 3. In that case,� � � and thus, apply-
ing Theorem 3, we know that any consensus process for�
robots will terminate at most after���� � � synchroniza-
tion steps. However, for that topology we know that� � �.

0

5

10

15

20

25

3
2

0
9

0 0,2 0,4 0,6 0,8 1

R

st
ep

no move; err=0%

move=2/6; err=0%

n=6
done with
simulation

move=4/6; err=0%

no move; err=10%

no move; err=20%

0

131

20

40

60

80

100

120

140

0 0,2 0,4 0,6 0,8 1

R

st
ep

no move; err=0%

move=4/14; err=0%

m

simulation
done with

n=12

ove=8/14; err=0%

no move; err=10%

no move; err=20%

Figure 6. Simulation results with different
combinations of mobility and errors.

Thus, applying Theorem 2 we deduce a tighter bound given
by ��� ������
� � �� steps.

6 Simulation results

In order to assess the performance of the protocol, in-
cluding when the nodes move and there are omissions of
synchronization messages, we carried out several extensive
simulations. The results concerning the number of steps
actually taken to reach consensus are shown in Figure 6, us-
ing the maximum of at least 100.000 random topologies for
each point. The topologies were generated considering two
major cases, 6 nodes and 12 nodes, and always being fully
connected. In order to classify the generated topologies we
used, the redundancy level of the network, as defined in
Section 3. gives an indication that is similar to the inverse
of �, i.e., the larger, the shorter the maximal distance in
the network, and we used it for the sake of convenience in
the generation of the topologies.

The lower curves show the number of steps in a
favourable scenario, in the absence of errors and with a
steady topology during the consensus process. In both ma-
jor cases (� � � and� � ��), the number of steps actually
reaches the upper bound for the case of � �, as expected,
confirming the bound accuracy. As increases, the number
of required steps to reach a consensus rapidly decreases.

Then, we assessed the protocol under nodes mobil-
ity. The velocity of changes was roughly characterized by
��#! � $%& , meaning that$ links were either broken

or created in the topology matrix, every& steps, during a
consensus process. For� � �, the results with � � and
��� show that there were incomplete or partially complete
processes (marked with a circle in the graph). For� � ��,
such a situation happened for � �, only. For higher val-
ues of, all processes reached consensus within the����
upper bound.

Table 1 presents, in the last two columns, the actual per-
centage of processes that did not complete within the bound
(partially-complete plus incomplete), and those that termi-
nated incomplete, respectively, only for the cases in which
those values were non-zero. The values show that such a
percentage is already low for � �, becoming extremely
low for � ���, and zero for higher values. The column
on ”max n.c.” shows the maximum number of vectors that
did not reach consensus (this equals� when there were in-
complete processes).

We also assessed the protocol behavior under omissions
of the synchronization messages, according to the fault
model described in Section 3. Therefore, for each� un-
der test, we generated two cases: one case with 10% of
random omissions with respect to the total number of syn-
chronization messages in the process, and another case with
20% omissions. The results in terms of number of steps
also show that for smaller there are some incomplete or
partially complete processes, as expected. Table 1 shows
the actual numbers of partially complete (the ”average p.c.”
column) and incomplete processes (the ”average n.c.” col-
umn).

The experiments show the robustness of the proposed
protocol since, even in presence of relatively high mobil-
ity and errors, the consensus process completes within the
���� bound with a very high probability for � �. When it
does not, the probability of terminating incomplete, which
is the situation that generates greater disturbance, is very
low, since most of such processes actually complete, but
partially, only. This is expected because of the flooding na-
ture of the protocol that makes use of all parallel paths in the
topology. Thus, as long as there are some redundant paths,
the resilience of the protocol increases substantially.

Finally, the results also show that increasing the number
of nodes in the network increases its resilience to errors and
mobility. This can be explained by the fact that for higher
number of nodes the unfavourable topologies corresponding
to � � become less and less probable. Also, for the same
, there will be more redundant links if� is larger.

7 Conclusions

In this paper we proposed a new MAC level protocol to
schedule real-time communications in a network of robotic
mobile units over a wireless medium. It is based on the
implicit EDF scheduling algorithm, which is collision-free,
thus allowing high utilization of the medium bandwidth.
The protocol addresses the problem of having a team of
fully-connected, but not fully-linked network units and tol-
erates the presence of hidden nodes, either caused by exces-

n R change err max average average
(%) n.c. p.c. (%) n.c. (%)

6 0 2/6 0 6 0.0739 0.0006
6 0 4/6 0 6 0.1169 0.0028
6 0.2 2/6 0 1 0.0001 0
6 0.2 4/6 0 1 0.0001 0
6 0 0 10 6 21.2620 18.2583
6 0 0 20 6 68.8619 35.6228
6 0.2 0 10 4 0.0769 0
6 0.2 0 20 6 1.5485 0.0003
6 0.4 0 10 1 0.0026 0
6 0.4 0 20 2 0.0034 0
12 0 4/14 0 12 0.0618 0.0020
12 0 8/14 0 12 0.0048 0.0040
12 0 0 10 8 0.3849 0
12 0 0 20 12 1.9560 0.0150

Table 1. Simulations results.

sive link lengths or by the presence of obstacles. The pro-
tocol uses global resource reservation to support dynamic
changes in the global communication requirements under
guaranteed timeliness. These changes may arise from exter-
nal nodes that wish to join the team, from nodes that leave
the team, either voluntarily or inadvertently (crash or move-
ment), or from requests to change the current communica-
tion requirements.

The global resource reservation is based on a specific
consensus process that uses periodic dissemination of state
information. The main contributions of this work are the
adaptation of implicit EDF for a dynamic environment and
the design and analysis of the consensus process, includ-
ing the determination of bounds for the maximum required
number of steps to complete. The paper includes simula-
tion results that show the effectiveness of the protocol even
under transmission errors and nodes mobility.

The protocol is meant for small sets of mobile units, typ-
ically around 10. However, it can be integrated into a hier-
archical scalable routing framework, using this protocol at
the cell or zone level.

A positive characteristic of the proposed solution is that
the period used for broadcasting system state information
can be tuned to balance reactivity of the resource reserva-
tion mechanism and its bandwidth requirements. In fact,
the longer the synchronization period, the longer the time
required to agree on a decision, but the smaller the band-
width required to transmit the system data. This is par-
ticularly relevant given the relatively large amount of sys-
tem data that is exchanged via the synchronization message.
Just as an example, in a scenario with 10 nodes and a��
with 15 entries with 2 bytes parameter resolution, the total
system data including���, � and
 would be around 150
bytes. Using a transmission rate of 1Mbit/s,�����=20ms,
��	
�=770's and a slot payload of 75 bytes would result in
26 slots per synchronization interval, 2 of which would be
used for the system data representing a bandwitdh of 7.7%.
In these circumstances, the reactivity of the resource reser-
vation mechanism would be around 2s.

The framework within which this work developed in-
cludes current and future work to deal with the issues of

clique formation, message routing, topology management
and scalability. Particularly, there is a substantial attention
dedicated to the use of the topology matrix to support rout-
ing of data messages, topology management controlling the
movement of the robots to prevent � � topologies, and
management of channel reutilization to improve bandwidth
efficiency.

References
[1] M. Caccamo, L. Y. Zhang, L. Sha, and G. Buttazzo. An

implicit prioritized access protocol for wireless sensor net-
works. InProceedings of the IEEE Real-Time Systems Sym-
posium, Austin, Texas, December 2002.

[2] J.-D. Decotignie. Wireless fieldbusses – a survey of issues
and solutions. InProc. 15th IFAC World Congress on Auto-
matic Control (IFAC 2002), Barcelona, Spain, July 2002.

[3] D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal
synchronism needed for distributed consensus. 34(1):77–97,
1987.

[4] T. Facchinetti, G. Buttazzo, M. Caccamo, and L. Almeida.
Wireless real-time communication protocol for cooperating
mobile units. InProceedings of the 2nd International Work-
shop on Real-Time LANs in the Internet Age (RTLIA), Porto,
Portugal, July 2003.

[5] M. Gerharz, C. de Waal, M. Frank, and P. Martini. Link
stability in mobile wireless ad hoc networks. InProceedings
of the IEEE Conference on Local Computer Networks (LCN)
2002, Tampa, Florida, November 2002.

[6] R. Grabowsky, L. E. Navarro-Serment, C. J. J. Paredis, and
P. K. Khosla. Heterogeneous teams of modular robots for
mapping and exploration.Autonomous Robots, 8(3):293–
308, June 2000.

[7] B. Hughes and V. Cahill. Achieving real-time guarantees
in mobile ad hoc wireless networks. InProceedings of the
Work-in-Progress session of the 24th IEEE Real-Time Sys-
tems Symposium, pages 37–40, Cancun, Mexico, December
2003.

[8] L. Lamport, R. Shostak, and M. Pease. The Byzantine gen-
erals problem.j-TOPLAS, 4(3):382–401, July 1982.

[9] C. Liu and J. Layland. Scheduling algorithms for multi-
programming in hard real-time environment.Journal of the
ACM, 1(20):46–61, 1973.

[10] M. Pease, R. Shostak, and L. Lamport. Reaching agreements
in the presence of faults.Journal of the ACM, 27(2):228–
234, April 1980.

[11] T. Srinidhi, G. Sridhar, and V. Sridhar. Topology manage-
ment in ad hoc mobile wireless networks. InProceedings of
the Work-in-Progress session of the 24th IEEE Real-Time
Systems Symposium, pages 29–32, Cancun, Mexico, De-
cember 2003.

[12] J. Stankovic, T. Abdelzaher, C. Lu, L. Sha, and J. Hou. Real-
time communication and coordination in embedded sensor
networks. InProceedings of the IEEE, volume 91, pages
1002–1022, July 2003.

[13] J. Turek and D. Shasha. The many faces of consensus in dis-
tributed systems.IEEE Computer, pages 8–17, June 1992.

[14] J. Wu and I. Stojmenovic. Ad-hoc networks.IEEE Com-
puter, 37(2), February 2004.

