
Efficient Reclaiming in
Reservation-Based Real-Time Systems

with Variable Execution Times
Marco Caccamo, Member, IEEE, Giorgio C. Buttazzo, Member, IEEE, and

Deepu C. Thomas, Member, IEEE

Abstract—In this paper, we present a general CPU scheduling methodology for managing overruns in a real-time environment, where

tasks may have different criticality, flexible timing constraints, shared resources, and variable execution times. The proposed method

enhances the Constant Bandwidth Server (CBS) by providing two important extensions. First, it includes an efficient bandwidth sharing

mechanism that reclaims the unused bandwidth to enhance task responsiveness. It is proven that the reclaiming mechanism does not

violate the isolation property of the CBS and can be safely adopted to achieve temporal protection even when resource reservations

are not precisely assigned. Second, the proposed method allows the CBS to work in the presence of shared resources. The

enhancements achieved by the proposed approach turned out to be very effective with respect to classical CPU reservation schemes.

The algorithm complexity is OðlnNÞ, where N is the number of real-time tasks in the system, and its performance has been

experimentally evaluated by extensive simulations.

Index Terms—Overrun management, overload control, resource reclaiming, variable execution times.

�

1 INTRODUCTION

IN most real-time systems, predictability is achieved by
enforcing timing constraints on application tasks whose

feasibility is guaranteed offline by means of proper
schedulability tests based on worst-case execution time
(WCET) estimations. Theoretically, such an approach works
fine if all the tasks have a regular behavior and all WCETs
are precisely estimated. In practical cases, however, a
precise estimation of WCETs is very difficult to achieve
because several low-level mechanisms present in modern
computer architectures (such as interrupts, DMA, pipelin-
ing, caching, and prefetching) introduce a form of non-
deterministic behavior in tasks’ execution whose duration
cannot be predicted in advance.

Even though a precise WCET estimation could be
derived for each task, a worst-case feasibility analysis
would be very inefficient when task execution times have a
high variance. In this case, a classical offline hard guarantee
would waste the system’s computational resources for
preserving the task set feasibility under sporadic peak load
situations, even though the average workload is much
lower. Such a waste of resources (which increases the
overall system’s cost) can be justified for very critical
applications (e.g., military defense systems or safety critical

space missions) in which a single deadline miss may cause
catastrophic consequences. However, it does not represent a
good solution for those applications (the majority) in which
several deadline misses can be tolerated by the system as
long as the average task rates are guaranteed offline.

There are many soft real-time applications in which the
worst-case duration of some tasks is rare but much longer
than the average case. In multimedia systems, for instance,
the time for decoding a video frame in MPEG players can
vary significantly as a function of the data contained in the
previous frames. As another example, consider a visual
tracking system where, in order to increase responsiveness,
the moving target is searched in a small window centered in
a predicted position, rather than in the entire visual field. If
the target is not found in the predicted area, the search has
to be performed in a larger region until, eventually, the
entire visual field is scanned in the worst-case. If the system
is well-designed, the target is found very quickly in the
predicted area most of the times. Thus, the worst-case
situation is very rare, but very expensive in terms of
computational resources (computation time increases quad-
ratically as a function of the number of trials). In this case,
an offline guarantee based on WCETs would drastically
reduce the frequency of the tracking task, causing a severe
performance degradation with respect to a soft guarantee
based on the average execution time. On the other hand,
uncontrolled overruns1 are very dangerous if not properly
handled since they may heavily interfere with the execution
of other tasks which could be more critical. Consider, for
example, the task set given in Table 1, where two tasks, �1
and �2, have a constant execution time, whereas �3 has an
average computation time (Cavg

3 ¼ 3) much lower than its

198 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 2, FEBRUARY 2005

. M. Caccamo is with the Department of Computer Science, University of
Illinois at Urbana-Champaign, 201 N. Goodwin, Urbana, IL 61801.
E-mail: mcaccamo@uiuc.edu.

. G.C. Buttazzo is with the Department of Computer Science, University of
Pavia, Via Ferrata, 1, 27100 Pavia, Italy. E-mail: giorgio@sssup.it.

. D.C. Thomas is with Microsoft Corp., One Microsoft Way, Redmond, WA
98052. E-mail: dethoma@microsoft.com.

Manuscript received 8 Apr. 2004; revised 2 Sept. 2004; accepted 21 Sept.
2004; published online 15 Dec. 2004.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0117-0404.

1. A task is said to overrun when it executes for more than its guaranteed
execution time (see Section 2 for its formal definition).

0018-9340/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society



worst-case value (WCET3 ¼ 10). Here, if the schedulability
analysis is performed using the average computation time
Cavg

3 , the total processor utlization becomes 0.92, meaning
that the system is not overloaded; however, under the
Earliest Deadline First (EDF) algorithm [13], the tasks can
experience long delays during overruns. In particular, as
illustrated in Fig. 1, an overrun of task �3 affects the
behavior of the other tasks, causing interference in their
execution and possibly missing their deadline: The example
resulted in the deadline miss of �2, whose execution time
was correctly predicted. By adding temporal protection,
such an interference is avoided so that only the misbehav-
ing task (if any) is delayed. Similar examples can be easily
found also under fixed priority assignments (e.g., under the
Rate Monotonic algorithm [13]) when overruns occur in the
high priority tasks.

To prevent overrun from introducing unbounded delays
on tasks’ execution, the system could either decide to abort
the current instance of the task experiencing the overrun or
let it continue with a lower priority. The first solution is not
safe because the instance could be in a critical section when
aborted, thus leaving a shared resource with inconsistent
data (very dangerous). The second solution is much more
flexible since the degree of interference caused by the
overrun on the other tasks can be tuned acting on the
priority assigned to the “faulty” task for executing the
remaining computation.

A general technique for limiting the effects of overruns is
based on a resource reservation approach [14], [21], [1],
according to which each task is assigned (offline) a fraction
of the available resources and is handled by a dedicated
server, which prevents the served task from demanding
more than the reserved amount. An efficient method for
achieving resource reservation and temporal protection
under EDF is the Constant Bandwidth Server (CBS) [1], [2],
whose behavior and main properties are briefly recalled in
Appendix A.1. Although such a method is essential for
achieving predictability in the presence of tasks with
variable execution times, the overall system’s performance
becomes quite dependent on a correct resource allocation.
For example, if the CPU bandwidth allocated to a task is
much less than its average requested value, the task may
slow down too much, degrading the system’s performance.
On the other hand, if the allocated bandwidth is much
greater than the actual needs, the system will run with low
efficiency, wasting the available resources. To overcome
this problem, we propose a general scheduling methodol-
ogy for managing overruns in a controlled fashion. In
particular, the proposed technique extends the CBS,
providing the following enhancements:

. It performs efficient reclaiming of the unused
computation times through a global bandwidth
sharing mechanism that allows exploiting early
completions to relax the bandwidth constraints

enforced by isolation. The reclaiming mechanism
preserves the isolation property of the CBS and can
be safely adopted to achieve temporal protection
even when resource reservations are not precisely
assigned.

. It handles tasks with different criticality and flexible
timing constraints to enhance the performance of
those real-time applications which allow a certain
degree of flexibility.

. It provides resource sharing among tasks with
different criticality without compromising the real-
time guarantee of hard tasks.

Although the idea of resource reclaiming and bandwidth

sharing is not new in the literature, as discussed in Section 6

on related work, the peculiarity of our method is to increase

resource utilization while preserving isolation so that not

only soft tasks, but also hard real-time tasks can benefit

from our approach. A preliminary version of this work has

been published in [6], [7]; however, while [6] addresses the

resource reclaiming problem for capacity-based aperiodic

servers without considering resource sharing and [7]

focuses on the resource sharing problem among hard and

soft tasks without considering any reclaiming mechanism,

this work integrates resource reclaiming and resource

sharing in a complete framework. Moreover, a new and

improved reclaiming technique is introduced which out-

performs the one in [6]; finally, extensive experiments

carried out by a real-time scheduling simulator validated all

the results predicted by the theory. It is worth noting that,

comparing our technique with other resource reclaiming

mechanisms which preserve isolation, our method handles

resource constraints among soft and hard tasks, preserving

the real-time guarantee of hard periodic tasks without the

additional cost of reserving extra budget to tasks. Moreover,

unlike other similar approaches, our method was not

developed for enhancing aperiodic responsiveness of soft

tasks, but to efficiently handle overruns in real-time (hard

and soft) tasks, where some form of relaxed guarantee is

required offline.
The rest of the paper is organized as follows: Section 2

introduces some terminology and assumptions used

throughout the paper; Section 3 illustrates the bandwidth

sharing algorithm; Section 4 extends the bandwidth sharing

algorithm to work in the presence of resource constraints;

Section 5 illustrates some experimental results; Section 6

presents the related work; and Section 7 contains our

conclusions and future work.

CACCAMO ET AL.: EFFICIENT RECLAIMING IN RESERVATION-BASED REAL-TIME SYSTEMS WITH VARIABLE EXECUTION TIMES 199

TABLE 1
Task Set Parameters

Fig. 1. Negative effects of uncontrolled overruns.



2 TERMINOLOGY AND ASSUMPTIONS

Throughout the paper, each hard periodic task �i is

considered as a stream of jobs (or task instances) �i;j
(j ¼ 1; 2; . . . ), each characterized by a request time ri;j and a

deadline di;j. In the following, Pi denotes the desired

activation period of the task,WCETi its maximum computa-

tion time, andCavg
i its average computation time. For the sake

of completeness, before formally introducing the notion of

overrun, the concepts of computational demand and bandwidth

utilization are briefly recalled. The computational demand

giðt1; t2Þ of task �i is defined as the total computation time

requested by those jobs �i;j whose arrival times anddeadlines

arewithin ½t1; t2� (that is, t1 � ri;j � di;j � t2). A task �i is said

to have a bandwidth utilization Ui if, in any interval of time

½t1; t2�, its computational demand giðt1; t2Þ never exceeds

ðt2 � t1ÞUi and there exists an interval ½ta; tb� such that

giðta; tbÞ ¼ ðtb � taÞUi. A task �i is said to overrun when there

exists an interval of time ½t1; t2� in which its computational

demand gi exceeds its expected bandwidth Ui multiplied by

the length of the interval. This condition may occur either

because jobs arrive more frequently than expected (activa-

tion overrun) or computation times exceed their expected

value (execution overrun).
In the proposed approach, each task is handled by a

dedicated Constant Bandwidth Server (CBS) [1], which

provides isolation among tasks. In addition, a bandwidth

sharing mechanism allows tasks to reclaim the unused

computations due to early completions. Notice that each

server Si is characterized by a budget ci and by an ordered

pair ðQi; TiÞ, where Qi is the maximum budget and Ti is the

period of the server. The ratio Ui ¼ Qi=Ti is denoted as the

server bandwidth. Due to the isolation mechanism intro-

duced by the multiple server approach, there are no

particular restrictions on the task model that can be handled

by the proposed method. Hence, tasks can be hard, soft,

periodic, or aperiodic. Notice that, while each job of a hard

task is characterized by its deadline di;j, soft tasks do not

have a deadline to honor, but their late completion

gracefully degrades the performance of the system without

causing any damage. Since each task (hard, soft, periodic, or

aperiodic) is scheduled by a dedicated server, the task has

properly assigned a dynamic server deadline used by EDF to

correctly schedule the task set. To ensure the real-time

behavior of the system, the parameters of a server

associated to a hard task are assigned in such a way that

the server deadline is coincident with the task deadline:

Hence, by meeting server deadlines, it is ensured no hard

task misses its own deadline. On the other hand, a soft task

simply inherits its server deadline to enhance its respon-

siveness. Resource constraints can also be taken into

account, as explained in Section 4, using a concurrency

control protocol for mutually exclusive resources. Although

the method is built upon the CBS, it can easily be

generalized to be used with any capacity-based server.

CBS and its main properties are briefly recalled in

Appendix A.1.

3 THE BANDWIDTH SHARING APPROACH

The bandwidth sharing (BASH) mechanism proposed in
this paper works in conjunction with the CBS. To illustrate
the idea behind our approach, we present an example to
show the potential improvements that can be achieved by a
proper exploitation of the unused computation times
coming from early completions. Ideally, we would like to
reserve a given bandwidth to each task to achieve isolation,
but we would also like to reclaim the unused time left by
the other tasks as much as possible, thus a task a chance to
handle its overruns without introducing long delays.

Consider the example shown in Fig. 2, where three tasks
are handled by three servers with budgets Q1 ¼ 1, Q2 ¼ 5,
Q3 ¼ 3, and periods T1 ¼ 4, T2 ¼ 10, T3 ¼ 12, respectively.
At time t ¼ 6, job �2;1 completes earlier with respect to the
allocated budget, whereas job �3;1 requires one extra unit of
time. Fig. 2a illustrates the case in which no reclaiming is
used and tasks are served by the plain CBS algorithm.
Notice that, in spite of the budget saved by �2;1, the third
server is forced to postpone its current deadline when its
budget is exhausted (it happens at time t ¼ 9). As shown in
Fig. 2b, however, we observe that the spare capacity saved
by �2;1 can be used by �3;1 to advance its execution and
prevent the server from postponing its deadline.

The reclaiming mechanism, working with the CBS, uses
a global queue, the BASH queue, of spare capacities ordered
by deadline. Whenever a task completes its execution and
its server budget is greater than zero, the residual capacity
can be used by any active task to advance its execution.
When using a spare capacity, the task can be scheduled
using the current deadline of the server to which the spare
capacity belongs. In this way, each task can use its own
capacity along with the residual capacities derived from
other servers.

Whenever a new task instance is scheduled for execu-
tion, the server tries to use the residual capacities with

200 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 2, FEBRUARY 2005

Fig. 2. (a) Overruns handled by a plain CBS versus (b) overruns handled

by a CBS with the BASH reclaiming mechanism.



deadlines less than or equal to the one assigned to the
served instance; if these capacities are exhausted and the
instance is not completed, the server starts using its own
capacity. Every time a task ends its execution and the server
becomes idle, the residual capacity (if any) is inserted with
its deadline in the global queue of available capacities.
Spare capacities are ordered by deadline and are consumed
according to an EDF policy. This method, although
developed for overrun control, can also be very effective
in different contexts; for example, for improving the
average response times of the served tasks, enhancing the
performance of control applications, or increasing depend-
ability in fault-tolerant real-time systems using recovery
strategies under time redundancy. In such systems, in fact,
an efficient reclaiming mechanism is important to exploit
the unused computation time of backup copies whose
primaries ended successfully.

3.1 The BASH Algorithm

In this section, we formally describe the BASH algorithm,
assuming that each task �i is handled by a dedicated CBS
server Si running on a uniprocessor system. Bandwidth
reclaiming is performed through the use of a global queue,
called the BASH queue, containing all the residual
capacities ordered by deadlines. The BASH algorithm can
be defined as follows:

Algorithm rules

1. Each server Si is characterized by a budget ci and by
an ordered pair ðQi; TiÞ, where Qi is the maximum
budget and Ti is the period of the server. The ratio
Ui ¼ Qi=Ti is denoted as the server bandwidth. At
each instant, a fixed deadline di;k is associated with
the server. At the beginning 8i; di;0 ¼ 0. Finally, a
global variable T idle always maintains the finishing
time of the last idle interval and it is initially set
equal to zero.

2. Each BASH capacity is represented by an ordered
tuple Capqðrq; dq; cq; Uq; TqÞ, where rq is its release
time (in the BASH queue), dq is its absolute deadline,
cq is its budget, Uq and Tq are the utilization and
period of its generating server, respectively.

3. Each task instance �i;j handled by server Si is
assigned a dynamic deadline equal to the current
server deadline di;k.

4. A server Si is said to be active at time t if there are
pending instances. A server is said to be idle at time
t if it is not active.

5. When a task instance �i;j arrives and the server is
idle, the server generates a new deadline
di;k ¼ maxðri;j; di;k�1Þ þ Ti, and ci is recharged to
the maximum value Qi.

6. When a task instance �i;j arrives and the server is
active, the request is enqueued in a queue of
pending jobs according to a given (arbitrary)
discipline.

7. Assuming instance �i;j is scheduled for execution at
time t, the server Si uses the capacity Capq in the
BASH queue (if there is one) with the earliest
deadline dq such that t < dq � di;k; otherwise, its
own capacity ci is used. Supposing a BASH capacity
Capq is used and rq < T idle, the budget cq of Capq is

updated as cq ¼ min½TqUq; ðdq � T idleÞUq� before Capq
is used by server Si; otherwise, the budget cq is used
as it is. Notice that each BASH capacity with
deadline less than or equal to the current time t
has already expired and has to be removed from
BASH queue.

8. Whenever job �i;j executes, the used budget cq or ci is
decreased by the same amount. When cq becomes
equal to zero, Capq is extracted from the BASH
queue and the next capacity in the queue with
deadline less than or equal to di;k can be used.

9. When the server is active and ci becomes equal to
zero, the server budget is recharged at the maximum
value Qi and a new server deadline is generated as
di;k ¼ di;k�1 þ Ti.

10. When a task instance finishes, the next pending
instance, if any, is served using the current budget
and deadline. If there are no pending jobs, the server
becomes idle, the residual budget ci > 0 (if any) is
inserted in the BASH queue as a capacity with
release time equal to the current time, deadline,
bandwidth, and period equal to the server deadline,
server bandwidth, and server period, respectively.
Finally, ci is set equal to zero.

11. Each time the processor becomes idle for an interval
of time �ðt1; t2Þ, the global variable T idle is set equal
to t2 as soon as the idle interval � ends.

3.2 An Example

To better understand the proposed approach, we will
describe a simple example which shows how our reclaim-
ing algorithm works. Consider a task set consisting of two
periodic tasks, �1 and �2, with periods P1 ¼ 4 and P2 ¼ 8,
maximum execution times WCET1 ¼ 4 and WCET2 ¼ 3,
and average execution times Cavg

1 ¼ 3 and Cavg
2 ¼ 2. Each

task is scheduled by a dedicated CBS having a period equal
to the task period and a budget equal to the average
execution time. Hence, a task completing before its average
execution time saves some budget, whereas it experiences
an overrun if it completes after. A possible execution of the
task set is reported in Fig. 3, which also shows the budget of
each server and the residual capacities generated by each
task. At time t ¼ 2, task �1 has an early completion and a
residual capacity equal to one with deadline equal to four
becomes available. After that, �2 consumes the above
residual capacity before starting to use its own capacity;
hence, at time t ¼ 4, a �2 overrun is handled without

CACCAMO ET AL.: EFFICIENT RECLAIMING IN RESERVATION-BASED REAL-TIME SYSTEMS WITH VARIABLE EXECUTION TIMES 201

Fig. 3. Example of global resource reclaiming.



postponing its deadline. Notice that each task tries to use
residual capacities before using its own capacity and that, if
an idle interval occurs (see interval ½19; 20�), T idle is set equal
to its finishing time (T idle ¼ 20) and the budget of next
available BASH capacity is set as

cq ¼ min½TqUq; ðdq � T idleÞUq�
¼ min½8 � 2=8; ð24� 20Þ2=8� ¼ 1:

Hence, the budget of BASH capacity with earliest deadline
has to be recomputed according to rule 7 to handle the
residual capacities correctly. The example above shows that
overruns can be handled efficiently without postponing any
deadline. A classical CBS, instead, would postpone some
deadlines in order to guarantee tasks isolation. Clearly, if all
the tasks consume their allocated budget, no reclaiming can
be done and our approach performs the same as a plain CBS.
However, this situation is very rare, hence our approach
helps in improving the average system’s performance.

The proposed technique performs efficient reclaiming of
unused computation times like the CASH algorithm [6];
however, BASH improves system performance substan-
tially, as shown in Section 5. This performance enhance-
ment is achieved by storing three additional parameters
when characterizing each spare capacity of the BASH
queue. Notice that, by storing the capacity bandwidth Uq

whose value represents the utilization of its generating
server, the spare capacities are better preserved against idle
times. In fact, it avoids having an idle interval of length
�ðt1; t2Þ consume the BASH capacities by the amount
t2 � t1: Fig. 4 shows an example where BASH is compared
to the CASH algorithm to better understand the key idea
and performance gain of BASH. According to the example,
the task set consists of two hard periodic tasks, �1 and �2,
with periods P1 ¼ 4 and P2 ¼ 6, maximum execution times
WCET1 ¼ 1 and WCET2 ¼ 3. In addition, soft aperiodic
activities are handled by a CBS server with maximum
budget Qs ¼ 1 and period Ts ¼ 4. Each hard periodic task is
scheduled by a dedicated CBS having a period equal to the
task period and a budget equal to the maximum execution
time: Hence, a hard task completing before its maximum
execution time saves some budget to advance the execution
of soft aperiodic tasks. At time t ¼ 2, task �2 has an early
completion and a residual capacity with budget equal to

two and deadline equal to six becomes available. An idle
interval occurs within ½2; 4�, whose duration completely
discharges the residual capacity of �2 (see Fig. 4b) if CASH
is used (spare capacities are discharged during idle
intervals). By using BASH instead (see Fig. 4a), job �1;2 can
use �2 residual capacity at time t ¼ 4, whose budget is set as
cq ¼ min½TqUq; ðdq � T idleÞUq� ¼ min½6 � 1=2; ð6� 4Þ1=2� ¼ 1.
As a consequence, an aperiodic job (released at time five
and requesting two units of computation time) can exploit
one unit of extra capacity completing at time t ¼ 7, while
the same job would complete at time t ¼ 10 by using CASH.

As a concluding remark, it is worth noting that the BASH
algorithm allows a capacity to become more resilient
against idle intervals and to be independent of an idle
interval length. In fact, while a long idle interval would
likely discharge all spare capacities according to CASH
rules, the new approach allows the leftover budget of each
BASH capacity to become a function of its absolute deadline
and processor utilization, no matter how long an idle
interval lasts.

3.3 Theoretical Validation for Independent Tasks

In this section, we analyze the schedulability condition for a
hybrid task set consisting of hard periodic and soft
aperiodic tasks. Each task is scheduled using a dedicated
CBS. If each hard periodic task is scheduled by a server2

with maximum budget equal to the task WCET and with
period equal to the task period, it behaves like a standard
hard task scheduled by EDF. The difference is that each task
can gain and use extra capacities and yields its residual
capacity to other tasks. Notice that BASH is able to improve
the average responsiveness of soft tasks by performing
resource reclaiming, but cannot provide a hard guarantee
unless hard tasks have been assigned a server budget
greater than or equal to their WCETs. When assigning the
server parameters for a soft task though, smaller server
utilization diminishes soft task responsiveness while per-
mitting us to guarantee more hard tasks. Moreover, since
BASH improves the average performance of soft tasks by
handling execution overruns, a good trade off consists of
assigning server budget and period according to average
execution time and average interarrival time of the handled
soft task. The runtime exchange performed by BASH,

202 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 2, FEBRUARY 2005

2. This assumption holds throughout the entire paper.

Fig. 4. (a) Example of resource reclaiming with BASH versus (b) example of resource reclaiming with CASH.



however, does not affect schedulability; thus, the task set
can be guaranteed using the classical Liu and Layland
condition:

Xn
i¼1

Qi

Ti
� 1;

where Qi is the maximum server budget and Ti is the server
period. Before proving the schedulability test, a lemma
ensures that all the generated capacities are used before
their own deadlines.

Lemma 1. Given a set � of capacity-based servers along with the

BASH algorithm, each BASH capacity used during the

scheduling is exhausted before its deadline if and only if:

Xn
i¼1

Qi

Ti
� 1; ð1Þ

where Qi is the maximum server budget and Ti is the server

period.

Proof. If. Assume (1) holds and a capacity Cap� is not
exhausted at time t� when the corresponding deadline is
reached. Let ta � 0 be the last instant before t� during
which the CPU is idle (if there is no such time, set ta ¼ 0);
let tb � 0 be the last time before t� at which a capacity
with deadline after t� is discharging (if there is no such
time, set tb ¼ 0). If we take t ¼ maxðta; tbÞ, one of the
following two properties holds:

1. Only capacities released after t with deadline less
than or equal to t� are used during ½t; t��.

2. One or more capacities, whose deadline is less
than or equal to t�, were released before the last
idle interval �ðt1; t2Þ, their budget cq is computed
as cq ¼ min½TqUq; ðdq � T idleÞUq� (see rule 7 of
Section 3.1), and execute within ½t; t��.

Let us consider the following two cases:
CASEA.Assume that propertyoneholds. LetQT ðtx; tyÞ

be the sum of capacities created after tx and with deadline
less than or equal to ty; since a capacitymisses its deadline
at time t�, the following inequality holds:

QT ðt; t�Þ > ðt� � tÞ:

In the interval ½t; t��, we can write that:

ðt� � tÞ < QT ðt; t�Þ �
Xn
i¼1

t� � t

Ti

� �
Qi � ðt� � tÞ

Xn
i¼1

Qi

Ti
;

which is a contradiction.
CASE B. Assume that property twoholds.Hence, there

exists aBASHcapacityCapqðrq; dq; cq; UqÞwith release time
rq � t1 and deadline dq � t�, which is used within the
interval of continuous utilization ½t; t��. Since Capq is used
within ½t; t�� and�ðt1; t2Þ is the last idle interval before the
deadline miss, it follows that Tidle ¼ t2 ¼ t. In fact, none of
the capacities Cap with deadline greater than t� can
execute within interval ½t2; t�� and only capacities with
deadline d < dq can preemptCapq and execute before it; in
addition, Capq cannot execute within the interval of
continuous utilization ½t; t�� if a low priority capacity Cap
(whose absolute deadline is d > t�) executes within ½t2; t��.

It follows that onlyCapq andcapacities createdafter t2with
deadline less than or equal to t� are used during ½t2; t��. Let
QT ðt2; t�Þ be the sum of capacities created after t2 andwith
deadline less than or equal to t�. Since a capacitymisses its
deadline at time t�, the following inequality holds:

QT ðt2; t�Þ þ cq > ðt� � t2Þ;

where cq is the new budget of Capq after the idle interval,

that is, cq ¼ min½TqUq; ðdq � T idleÞUq�. Assuming that

server Sz generated Capq and Uz ¼ Uq, it follows that:

ðt� � t2Þ < QT ðt2; t�Þ þ cq

�
Xn
i6¼z
i¼1

t� � t2
Ti

� �
Qi þ

t� � dq
Tz

� �
Qz þ ðdq � t2ÞUq

� ðt� � t2Þ
Xn
i 6¼z
i¼1

Ui þ ðt� � dqÞUz þ ðdq � t2ÞUq

¼ ðt� � t2Þ
Xn
i¼1

Ui:

Finally, it follows that 1 <
Pn

i¼1 Ui, which is a
contradiction.

Only if. Suppose that
P

i
Qi

Ti
> 1. Then, we show there

exists an interval ½t1; t2� in which QT ðt1; t2Þ > ðt2 � t1Þ.
Assume that all the servers are activated at time 0; then,
for L ¼ lcmðT1; . . . ; TnÞ, we can write that:

QT ð0; LÞ ¼
Xn
i¼1

L

Ti

� �
Qi ¼

Xn
i¼1

L

Ti
Qi ¼ L

Xn
i¼1

Qi

Ti
> L;

hence, the “only if condition” follows. tu
According to the above lemma, each server deadline is

never missed when scheduling the BASH capacities if and
only if the sum of servers’ utilization does not exceed one.
Notice that no statement is made on setting the server
parameters (server maximum budget and period) to meet
hard tasks’ deadlines; the following theorem instead
provides a hard tasks’ schedulability condition under the
assumption that the server parameters of each hard task are
correctly set.

Theorem 2. Let T h be a set of periodic hard tasks, where each task

�i is scheduled by a dedicated server with Qi ¼ WCETi and

Ti ¼ Pi and let T s be a set of soft tasks scheduled by a group of

servers with total utilization Usoft. Then, T h is feasible if and

only if

X
�i2T h

Qi

Ti
þ Usoft � 1: ð2Þ

Proof. The theorem follows immediately from Lemma 1; in
fact, we can notice that each hard task instance has
available at least its own budget equal to the task’s
WCET. Lemma 1 states that each capacity is always
discharged before its deadline, hence it follows that each
hard task instance has to finish by its deadline. tu
It is worth noting that Theorem 2 also holds under a

generic capacity-based server having a periodic behavior
and a limited bandwidth.

CACCAMO ET AL.: EFFICIENT RECLAIMING IN RESERVATION-BASED REAL-TIME SYSTEMS WITH VARIABLE EXECUTION TIMES 203



4 HANDLING RESOURCE CONSTRAINTS

The BASH technique presented in the previous sections
enhances the Constant Bandwidth Server (CBS) with the
ability of managing overruns under the assumption that
soft real-time tasks and hard real-time tasks are indepen-
dent. Unfortunately, in a multiprogrammed system, tasks
are rarely independent, but must often cooperate to provide
the expected service. In a shared memory programming
paradigm, such a cooperation is achieved through shared
resources, which must be used in mutual exclusion to
preserve data consistency during concurrent accesses. In
this section, BASH will be extended to handle resource
sharing among tasks with different criticality without
compromising the real-time guarantee of hard tasks. The
proposed solution is based on extending the BASH
algorithm to maintain the key properties of Baker’s Stack
Resource Policy (SRP) [3] for resource sharing (the SRP
policy and its main properties are briefly recalled in
Appendix A.2).

Enabling resource sharing among hard periodic and soft
aperiodic tasks is not straightforward. In particular, there
are two main challenges in integrating BASH with the SRP:

1. Preemption levels under the SRP were developed
under the assumption that relative deadlines are
fixed, making the resulting preemption levels static
values. Unfortunately, under BASH, server relative
deadlines vary, thus preemption levels become
dynamic.

2. If the CBS exhausts its budget while the served task
is inside a critical section, high priority tasks would
experience long blocking delays due to the budget
replenishment rule.

Both problems will be analyzed in the next sections and
suitable solutions will be provided to properly extend the
BASH algorithm to efficiently support resource sharing.

4.1 Preventing Budget Exhaustion Inside Critical
Sections

When shared resources are accessed in mutual exclusion by
tasks handled by a capacity-based server, problems arise if
the server exhausts its budget when a task is inside a critical
section. In order to prevent long blocking delays due to the
budget replenishment rule, a job which exhausted its
budget could be allowed to continue executing with the
same deadline, using extra budget until it leaves the critical
section. At this time, the budget can be replenished at its
full value and the deadline postponed. The maximum
interference created by the budget overrun mechanism
occurs when the server exhausts its budget immediately
after the job entered its longest critical section. Thus, if � is

the duration of the longest critical section of task � handled
by server S, the bandwidth demanded by the server
becomes Qsþ�

Ts
. This approach inflates the server utilization.

Alternatively, a job can perform a budget check before
entering a critical section at time t. If the current budget cs is
not sufficient to complete the job’s critical section, the
budget is replenished and the server deadline postponed.
The remaining part of the job follows the same procedure
until the job completes. This approach dynamically parti-
tions a job into chunks. Each chunk has execution time such
that the consumed bandwidth is always less than or equal
to the available server bandwidth Us. By construction, a
chunk has the property that it will never suspend inside a
critical section. Notice that both techniques rely on the
knowledge of the worst-case execution time of each critical
section; however, while an overestimation of � causes a
waste of bandwidth if the server utilization is inflated (first
approach), the second technique (by using budget check
and early replenishment) does not have this problem and
simply postpones the server deadline and recharges its
budget. The following example illustrates two different
solutions using the BASH algorithm with the SRP protocol
still maintaining static preemption levels:

Example. The task set consists of an aperiodic job, J1, and
two periodic tasks, �2 and �3, each one handled by a
dedicated CBS. The task set shares two resources, Ra and
Rb. In particular, J1 and �3 share resource Rb, whereas �2
and �3 share resource Ra. The task set parameters are
shown in Table 2, where Ra and Rb represent the worst-
case execution time of critical sections accessing re-
sources Ra and Rb, respectively.

A simple-minded solution could maintain a fixed
relative deadline whenever the budget must be replen-
ished and the deadline postponed. The advantage of
having a fixed relative deadline is to keep the SRP policy
unchanged for handling resource sharing between soft
and hard tasks. In this way, the budget is recharged by
a variable amount according to the formula:
cs ¼ cs þ ðdnews � dolds ÞUs, where dnews is the postponed
server deadline and dolds is the previous server deadline.

A possible solution produced by BASH+SRP is
shown in Fig. 5. Notice that the ceiling of resource Ra

is ceilðRaÞ ¼ 1=12 and the ceiling of Rb is ceilðRbÞ ¼ 1=10.
When job J1 arrives at time t ¼ 2, its first chunk H1;1

receives a deadline d1;1 ¼ a1;1 þ T1 ¼ 12 according to the
BASH algorithm. At that time, �3 is already inside a
critical section on resource Ra, however, H1;1 of job J1 is
able to preempt, having its preemption level
�1 ¼ 1=10 > �s. At time t ¼ 5, J1 tries to access a critical

204 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 2, FEBRUARY 2005

TABLE 2
Parameters of the Task Set

Fig. 5. BASH+SRP with static preemption levels.



section, however, its residual budget is equal to 1 and is
not sufficient to complete the whole critical section. As a
consequence, a new chunk H1;2 is generated with an
arrival time a1;2 ¼ 5 and a deadline d1;2 ¼ a1;2 þ T1 ¼ 15
(the relative deadline is fixed). The budget is replenished
according to the available server bandwidth; hence, it
follows that c1 ¼ c1 þ ðdnew1 � dold1 ÞU1 ¼ 1þ 1:2. Unfortu-
nately, the current budget is not sufficient to complete
the critical section and an extra budget equal to 0.8 is
needed. Hence, we have to inflate the budget, wasting
bandwidth. The remaining part of the job follows the
same procedure until the job completes. This approach
has two main drawbacks: An extra budget still needs to
be reserved and jobs are cut in too many chunks, so
increasing the algorithm overhead. Another simple-
minded solution could suspend a job whenever its
budget is exhausted until the current server deadline.
Only at that time would the job again become eligible
and a new chunk would be ready to execute with the
budget recharged at its maximum value (cs ¼ Qs) and
the deadline postponed by a server period.

The schedule produced using this approach on the
previous example is shown in Fig. 6. When job J1 arrives
at time t ¼ 2, its first chunk H1;1 receives a deadline
d1;1 ¼ a1;1 þ T1 ¼ 12 according to the BASH algorithm.
As previously shown, at time t ¼ 5, J1 tries to access a
critical section; however, its residual budget is equal to
one and is not sufficient to complete the whole critical
section. As a consequence, J1 is temporarily suspended
and a new chunk is released at time t ¼ 12, with deadline
d1;2 ¼ 22 and the budget replenished (c1 ¼ Q1 ¼ 4). This
approach also has a drawback: It increases the response
time of aperiodic tasks.

4.2 Dynamic Preemption Levels

The two methods described in the previous section show
that, although the introduction of budget check can prevent
budget exhaustion inside a critical section without inflating
the server size, fixed relative deadline and static preemp-
tion levels do not permit providing an easy and efficient
solution to the addressed problem.

We now show that using dynamic preemption levels for
aperiodic tasks allows achieving a simpler and more elegant
solution to the problem of sharing resources under
BASH+SRP. According to the new method, whenever there
is a replenishment, the server budget is always recharged
by Qs and the server deadline is postponed by Ts. It follows
that the server is always eligible, but each aperiodic task
gets a dynamic relative deadline.

Since, to maintain the main properties of the SRP,
preemption levels must be inversely proportional to relative
deadlines, we define the preemption level �i;j of a job chunk
Hi;j as �i;j ¼ 1=ðdi;j � ai;jÞ. Notice that �i;j is assigned to each
chunk at runtime and cannot be computed offline. As a
consequence, a job Ji is characterized by a dynamic
preemption level �d

i equal to the preemption level of the
current chunk. To perform an offline guarantee of the task
set, it is necessary to know the maximum preemption level that
can be assigned to each job Ji by its server. From the
deadline assignment rule of the BASH algorithm, it follows
that each chunk has a minimum relative deadline Dmin

i

equal to its server period.
By setting Dmin

i ¼ Ti, we can assign each aperiodic task �i
a maximum preemption level �max

i inversely proportional to
the server period (�max

i ¼ 1=Dmin
i ¼ 1=Ti). In order to use a

uniform notation for all the tasks in the system, we define
the maximum preemption level of a periodic hard task as
the classical preemption level typically used in the original
SRP protocol (�max

i ¼ �i ¼ 1
Di
). The maximum preemption

levels will be used to compute the ceiling of each resource
offline. We note that �d

i � �max
i , in fact, by definition,

8i; j �i;j ¼
1

di;j � ai;j
¼ �di �

1

Dmin
i

¼ 1

Ti
¼ �max

i : ð3Þ

The schedule produced by BASH+SRP under dynamic
preemption levels is shown in Fig. 7. When job J1 arrives at
time t ¼ 2, its first chunk H1;1 receives a deadline d1;1 ¼
a1;1 þ T1 ¼ 12 according to the BASH algorithm. At that
time, �3 is already inside a critical section on resource Ra;
however, H1;1 of job J1 is able to preempt, having a
preemption level �1;1 ¼ 1=10 > �s. At time t ¼ 5, J1 tries to
access a critical section; however, its residual budget is
equal to one and is not sufficient to complete the whole
critical section. As a consequence, the deadline is postponed
and the budget replenished (c1 ¼ c1 þQ1 ¼ 1þ 4). Hence,
the next chunk H1;2 of J1 starts at time a1;2 ¼ 5 with
deadline d1;2 ¼ d1;1 þ T1 ¼ 22 and budget c1 ¼ 5. However,
chunk H1;2 cannot start because its preemption level
�1;2 ¼ 1=17 < �s. It follows that �3 executes until the end
of its critical section. When the system ceiling becomes zero,
J1 is able to preempt �3. We note that the bandwidth
consumed by any chunk is no greater than U1 since,
whenever the budget is refilled by Q1, the absolute deadline
is postponed by T1. The main advantage of the proposed
approach is that it does not require reserving extra budget
for synchronization purposes and does not jeopardize the
response time of aperiodic tasks. However, we need to

CACCAMO ET AL.: EFFICIENT RECLAIMING IN RESERVATION-BASED REAL-TIME SYSTEMS WITH VARIABLE EXECUTION TIMES 205

Fig. 6. BASH+SRP with static preemption levels and job suspension. Fig. 7. BASH+SRP with dynamic preemption levels.



determine the effects that dynamic preemption levels have
on the properties of the SRP protocol.

We first note that, since each chunk is scheduled by a
fixed deadline assigned by the CBS, each chunk inherits the
SRP properties. In particular, each chunk can be blocked for
at most the duration of one critical section by the
preemption test and, once started, it will never be blocked
for resource contention. However, since a soft aperiodic job
may consist of many chunks, it can be blocked more than
once. The behavior of hard tasks remains unchanged,
permitting resource sharing between hard and soft tasks
without jeopardizing the hard tasks’ guarantee. The details
of the proposed technique are described in the next section.

4.3 BASH with Resource Constraints

In this section, we first define the rules governing the BASH
algorithmwith resource constraints, BASH-R, that have been
informally introduced in the previous section.We then prove
its properties. Under the BASH-R, each job Ji starts executing
with the server current budget ci and the server current
deadline di;k. Whenever a chunk Hi;j exhausts its budget at
time �tt, that chunk is terminated and a new chunk Hi;jþ1 is
released at time ai;jþ1 ¼ �tt with an absolute deadline di;jþ1 ¼
di;j þ Ti (where Ti is the period of the server). When the job
chunkHi;j attempts to lock a semaphore, the BASH-R checks
whether there is sufficient budget to complete the critical
section. If not, a replenishment occurs and the execution
performed by the job is labeled as chunk Hi;jþ1, which is
assigned a new deadline di;jþ1 ¼ di;j þ Ti. This procedure
continues until the last chunk completes the job.

To comply with the SRP rules, a chunk Hi;j starts its
execution only if its priority is the highest among the active
tasks and its preemption level �i;j ¼ 1=ðdi;j � ai;jÞ is greater
than the system ceiling. For the SRP protocol to be correct,
every resource Ri is assigned a static3 ceiling ceilðRiÞ (we
assume binary semaphores) equal to the highest maximum
preemption level of the tasks that could be blocked on Ri

when the resource is busy. Hence, ceilðRiÞ can be computed
as follows:

ceilðRiÞ ¼ max
k

�max
k j �k needs Ri

� �
: ð4Þ

It is easy to see that the ceiling of a resource computed by
(4) is greater than or equal to the one computed using the
dynamic preemption level of each task. In fact, as shown by
(3), the maximum preemption level of each aperiodic task
represents an upper bound on its dynamic value.

Finally, in computing the blocking time for a periodic/
aperiodic task, we need to take into account the duration of
the critical section of an aperiodic task without considering
its relative deadline. In fact, the actual relative deadline of a
chunk belonging to an aperiodic task is assigned online and
it is not known in advance. The blocking times can be
computed as a function of the minimum relative deadline of
each aperiodic task, as follows:

Bi ¼ max sj;h j ðTi < TjÞ ^ �max
i � ceilð�j;hÞ

� �
; ð5Þ

where sj;h is the worst-case execution time of the hth critical
section of task �j, �j;h is the resource accessed by the critical

section sj;h, and Ti is the period of the dedicated server. The
Bi parameter computed by (5) is the blocking time
experienced by a hard or soft task. In fact, Ti ¼ Dmin

i for a
soft aperiodic task and Ti ¼ Di for a hard periodic task.

The correctness of our approach will be formally proven
in Section 4.4. We will show that the modifications
introduced in the BASH and SRP algorithms do not change
any property of SRP and permit keeping a static ceiling for
the resources even though the relative deadline of each
chunk is dynamically assigned at runtime by the CBS
server. As shown in the examples illustrated above, an
additional constraint has to be introduced to handle
resource constraints. In particular, the correctness of the
proposed technique relies on the following statement: A
task must never exhaust its budget when it is inside a
critical section. As a consequence, with respect to the
original definition given in Section 3.1, we have to add the
following rule:

. Whenever a served job Ji tries to access a critical
section, if ci < �i (where �i is the duration of the
longest critical section of job Ji), a budget replen-
ishment occurs, that is, ci ¼ ci þQi, and a new
server deadline is generated as di;k ¼ di;k�1 þ Ti.

The above rule has been added to prevent a task from
exhausting its budget when it is using a shared resource.
This is done by performing a budget check before entering a
critical section. If the current budget is not sufficient to
complete a critical section, the budget is replenished and the
deadline postponed. This minor change allows the BASH
algorithm to become compliant with the proposed approach
without modifying its global behavior.

4.3.1 An Example

The following example illustrates the usage of the BASH-R
algorithm in the presence of resource constraints. The task
set consists of an aperiodic job J1, handled by a server with
maximum budget Q1 ¼ 4 and server period T1 ¼ 8 and two
periodic tasks �2, �3, which share two resources Ra and Rb;
in particular, J1 and �2 share resource Rb, while �2 and �3
share resource Ra. The task set parameters are shown in
Table 3, where Ra and Rb represent the worst-case
execution time of critical sections accessing resources Ra

and Rb, respectively.
The schedule produced by BASH-R+SRP is shown in

Fig. 8. When job J1 arrives at time t ¼ 3, its first chunk H1;1

receives a deadline d1;1 ¼ a1;1 þ T1 ¼ 11 according to the
BASH-R algorithm. At that time, �3 is already inside a
critical section on resource Ra; however, H1;1 of job J1 is
able to preempt, having a preemption level �1;1 ¼ 1=8 > �s.
At time t ¼ 6, J1 tries to access a critical section; however,
its residual budget is equal to one and is not sufficient to
complete the whole critical section. As a consequence, the

206 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 2, FEBRUARY 2005

3. In the case of multiunits resources, the ceiling of each resource is
dynamic as it depends on the number of units actually free.

TABLE 3
Parameters of the Task Set



deadline is postponed and the budget replenished. Hence,
the next chunk H1;2 of J1 starts at time a1;2 ¼ 6 with
deadline d1;2 ¼ 19. The chunkH1;2 of J1 cannot start because
its preemption level �1;2 ¼ 1=13 < �s. It follows that �3
executes until the end of its critical section. When the
system ceiling becomes zero, J1 is able to preempt �3. When
J1 frees resource Rb, �2 starts executing. Task �2 has an early
completion at time t ¼ 12, saving one unit of spare capacity.
Such a capacity is used by chunkH1;2 of J1. It follows that J1
can finish its execution, avoiding an additional deadline
postponement. It is worth noting that each chunk can be
blocked for at most the duration of one critical section by
the preemption test and, once it is started, it will never be
blocked for resource contention. In the next section, the SRP
properties are formally proven and the validity of the
guarantee test is analyzed.

4.4 Theoretical Validation for Resource
Constrained Tasks

In this section, we prove that all SRP properties are
preserved for hard periodic tasks and for each chunk of
soft aperiodic tasks. Finally, we provide a sufficient
guarantee test for verifying the schedulability of hybrid
task sets consisting of hard and soft tasks. Since a
preemption level is always inversely proportional to the
relative deadline of each chunk, the following properties
can be derived in a straightforward fashion:

Property 1. A chunk Hi;h is not allowed to preempt a chunk Hj;k,
unless �i;h > �j;k.

Property 2. If the preemption level of a chunk Hi;j is greater than
the current system ceiling, then there are sufficient resources
available to meet the requirement of Hi;j and the requirement
of every chunk that can preempt Hi;j.

Property 3. If no chunk Hi;j is permitted to start until �i;j > �s,
then no chunk can be blocked after it starts.

Property 4. Under the BASH-R+SRP policy, a chunk Hi;j can be
blocked for at most the duration of one critical section.

Property 5. The BASH-R+SRP prevents deadlocks.

The proofs of properties listed above are similar to those of
original Baker’s paper [3]. The following lemma shows how
hard periodic tasks maintain their behavior unchanged:

Lemma 3. Under BASH-R+SRP, each job of a hard periodic task
can be blocked at most once.

Proof. The schedule of hard periodic tasks produced by
EDF is the same as the one produced by handling each

hard periodic task by a dedicated server with a
maximum budget equal to the task WCET and server
period equal to the task period; it follows that each hard
task can never be cut into multiple chunks. Hence, using
Property 4, it follows that each instance of a hard
periodic task can be blocked for at most the duration of
one critical section. tu

The following theorem provides a simple sufficient
condition to guarantee the feasibility of hard tasks when
they share resources with soft tasks under the BASH-R+SRP
algorithm.

Theorem 4. Let � be a task set composed of n hard periodic tasks
and m soft aperiodic tasks, each one (soft and hard) scheduled
by a dedicated server. Suppose tasks are ordered by decreasing
maximum preemption level (so that �max

i � �max
j only if

i < j), then the hard tasks are schedulable by BASH-R+SRP if

8i; 1 � i � nþm
Xi

j¼1

Qj

Tj
þBi

Ti
� 1; ð6Þ

whereQj is themaximumbudget of the dedicated server,Tj is the
server period, and Bi is the maximum blocking time of task �i.

Proof. Suppose (6) is satisfied for each �i. Notice that
aperiodic tasks get dynamic relative deadlines due to the
deadline assignment rule of the BASH-R algorithm;
hence, it follows that each task chunk has a relative
deadline greater than or equal to its server period.
Therefore, we have to analyze two cases:

Case A. Task �i has a relative deadline Di ¼ Ti. Using
Baker’s guarantee test (see (12) in Appendix A.2), it
follows that the task set � is schedulable if

8i; 1 � i � nþm
Xi�1

j¼1

Qj

Dj
þQi

Ti
þBnew

i

Ti
� 1; ð7Þ

where Dj (Dj � Tj) is the relative deadline of task �j and

Bnew
i is the blocking time �i might experience when each

�j has a relative deadline equal toDj. Notice that a task �j
can block as well as preempt �i, varying its relative

deadline Dj; however, �j cannot block and preempt �i
simultaneously. In fact, if the current instance of �j
preempts �i, its absolute deadline must be before �i’s

deadline; hence, the same instance of �j cannot also block

�i; otherwise, it should have its deadline after �i’s

deadline. From the considerations above, the worst-case

scenario happens when �i experiences the maximum

number of preemptions: It occurs by shortening, as much

as possible, the relative deadline of each task �j, that is,

setting Dj ¼ Tj. In addition, even though Bi might be

less than Bnew
i , �j’s interference due to preemption is

always greater than or equal to its blocking effect, that is,Pi�1
j¼1ðQj=Tj �Qj=DjÞ � ðBnew

i �BiÞ=Ti. Hence, it follows

that:

8i; 1 � i � nþm

Xi�1

j¼1

Qj

Dj
þQi

Ti
þBnew

i

Ti
�

Xi�1

j¼1

Qj

Tj
þQi

Ti
þBi

Ti
:

CACCAMO ET AL.: EFFICIENT RECLAIMING IN RESERVATION-BASED REAL-TIME SYSTEMS WITH VARIABLE EXECUTION TIMES 207

Fig. 8. Schedule produced by BASH-R+SRP.



Finally,

Xi�1

j¼1

Qj

Tj
þQi

Ti
þBi

Ti
� 1:

Notice that the last inequality holds for the theorem
hypothesis; hence, (7) is satisfied and the task set is
schedulable.

Case B. Task �i has a relative deadline Di > Ti. As in
Case A, the task set � is schedulable if

8i; 1 � i � nþm
Xi�1

j¼1

Qj

Dj
þ Qi

Di
þBnew

i

Di
� 1: ð8Þ

From the considerations above, it follows that the worst-

case scenario also occurs when 8j; Dj ¼ Tj:

8i; 1 � i � nþm
Xi�1

j¼1

Qj

Dj
þ Qi

Di
þBnew

i

Di

�
Xi�1

j¼1

Qj

Tj
þ Qi

Di
þBnew

i

Di
:

Notice that tasks are sorted in decreasing order of
maximum preemption levels and each task �j has the
relative deadline set as Dj ¼ Tj, except task �i, whose
relative deadline is Di > Ti. Since �i has an unknown
relative deadline whose value changes dynamically, (8)
has to be checked for each Di, where Di is greater than
Ti. Hence, from (11) (see Appendix A.2) we derive that
the blocking time Bnew

i of task �i is a function of the actual
relative deadline Di as follows:

Ti � Di < Tiþ1 ) Bnew
i ¼ Bi;

Tiþ1 � Di < Tiþ2 ) Bnew
i ¼ Biþ1;

:
Tnþm�1 � Di < Tnþm ) Bnew

i ¼ Bnþm�1;
Tnþm � Di ) Bnew

i ¼ Bnþm ¼ 0:

It is worth noting that the terms Bi;Biþ1; . . . ; Bnþm are
the blocking times computed by (5) and are experienced
by hard or soft tasks if the relative deadline of each task
is set equal to the period of its dedicated server. Finally, a
k � i will exist such that:

Tk � Di < Tkþ1 ) Bnew
i ¼ Bk;

so, it follows that:

Xi�1

j¼1

Qj

Tj
þ Qi

Di
þBnew

i

Di
¼

Xi�1

j¼1

Qj

Tj
þ Qi

Di
þBk

Di

�
Xi�1

j¼1

Qj

Tj
þQi

Ti
þBk

Tk
�

Xi�1

j¼1

Qj

Tj
þ
Xk
h¼i

Qh

Th
þBk

Tk
;

the last inequality holds because k must be greater than

or equal to i and Di � Tk � Ti. Finally:

Xi�1

j¼1

Qj

Tj
þ
Xk
h¼i

Qh

Th
þBk

Tk
¼

Xk
j¼1

Qj

Tj
þBk

Tk
� 1:

The above inequality holds for the theorem hypoth-
esis; hence, (8) is satisfied and the task set is
schedulable. tu

5 PERFORMANCE EVALUATION

The BASH algorithm has been implemented in the real-time
simulator RTSIM [16] to measure the performance gain
introduced by the bandwidth sharing mechanism and to
verify the results predicted by the theory. In particular,
several complex task set scenarios were generated to
analyze the BASH behavior. In this section, we present
the experimental results of the simulations that have been
conducted: In particular, BASH has been compared with the
CASH [6] and GRUB [12] algorithms. The seven experi-
ments described in this section can be grouped into three
sets. The first set shows the performance of the algorithms
as a function of the ratio

� ¼ Cavg
i

WCETi
; ð9Þ

where Cavg
i is the average computation time, and WCETi is

the worst-case execution time of periodic task �i. The second
set of experiments compares the performance against
varying aperiodic server utilization Us, for a constant value
of �. Finally, the third set of experiments illustrates the
performance of the algorithms in terms of overhead, that is,
it shows how BASH’s algorithmic overhead compares with
GRUB for varying aperiodic load. The performance of the
algorithms was measured by computing the average
aperiodic response time as a function of � and Us. In
particular, the response time has been normalized with
respect to the average computation time. Thus, a value of 5
on the y-axis actually means an average response time five
times longer than the task computation time; a value of 1
corresponds to the minimum achievable response time.

Each point in the plots has been computed over 50 runs,
each having a duration of 100,000 units of time. A 98 percent
confidence interval is plotted to show the simulations’
accuracy. The hard periodic task set consists of 10 tasks;
moreover, the execution times of aperiodic requests were
chosen to be uniformly distributed in a predefined interval
to impose a specific aperiodic load according to Us. Finally,
aperiodic interarrival times were generated according to an
exponential distribution.

5.1 First Set of Experiments

The first set of experiments includes three simulations
which show the performance of the algorithms as a function
of �, for varying values of aperiodic server utilization Us.
Periods of hard tasks were chosen to be uniformly
distributed in the interval ½100; 200�, while their computa-
tion times were randomly generated such that their total
utilization equaled 1� Us. Computation times, interarrival
times of the aperiodic tasks, and aperiodic server para-
meters for each simulation are shown in Table 4. The value
of Us is increased from the first to the third simulation to
study the performance impact of aperiodic server utiliza-
tion on aperiodic task response times.

Fig. 9 shows the results of the first experiment by setting
Us ¼ 0:2. It is worth noting that BASH outperforms CASH
by a wide margin, while it exhibits a near equivalent

208 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 2, FEBRUARY 2005



performance to GRUB for values of � in the range ½0:2; 0:65�.
Notice that GRUB has a lower aperiodic response time than
BASH for the range ½0:65; 0:90�; however, the difference is
marginal at best and BASH outperforms GRUB for higher
values of �. This indicates that BASH is the best algorithm
in heavily loaded systems where the average execution time
is very close to the worst-case value.

Fig. 10 refers to the second experiment in which the
aperiodic server utilization is Us ¼ 0:33. As expected, BASH
outperforms CASH for all values of �; however, the margin
of difference is lower when compared to the first experi-
ment. BASH and GRUB are nearly equivalent in aperiodic
response times for values of � in the range ½0:2; 0:65�. For the
range ½0:65; 0:90�, the difference is more notable than it was
in the first experiment; however, BASH continues to
outperform GRUB for higher values of �.

The results of the third experiment are shown in Fig. 11
and assume Us ¼ 0:5. It is important to highlight that, again,
BASH continues to outperform CASH for all values of �,
but the performance difference has been considerably
narrowed down from the first experiment to the third.

According to the first set of experiments, three distinct
zones can be identified in terms of achieved performance:
1) � � 0:6, where the aperiodic response of BASH and
GRUB are the same; 2) 0:6 < � � 0:9, where GRUB per-
forms better than BASH; 3) � > 0:9, where BASH performs
better than GRUB. Such behaviors are due to some intrinsic
differences between GRUB and BASH algorithms; in fact,
by setting � � 0:6, the aperiodic response times of both
GRUB and BASH are similar since the average periodic load
is relatively low and the system is not heavily loaded. In
medium load conditions (0:6 < � � 0:9), GRUB offers better
performance because it is able to fully reclaim the

bandwidth of any inactive server as soon as the current
time exceeds its virtual time. Finally, when the system
becomes heavily loaded and the average computation time
of periodic tasks is close to WCET (� > 0:9), BASH
outperforms GRUB because it can immediately exploit a
spare capacity as soon as a periodic task completes, while
GRUB has to wait until the current time (system time)
reaches the server virtual time: This phenomenon becomes
dominant when � > 0:9 because the virtual time increment
is proportional to the task execution time.

5.2 Second Set of Experiments

To test the sensitivity of the algorithms with respect to the
aperiodic server utilization, three simulations have been
performed for Us ranging between ½0:10; 0:50� with � values
0.85, 0.70, and 0.50. CASH aperiodic response time is used
to baseline the aperiodic response time of the other two
algorithms. Periodic tasks have periods in the range
½200; 800� and computation times are randomly generated
subject to the constraint that total periodic utilization
remains constant and equal to 1� Us. Aperiodic tasks
follow an exponential distribution for the interarrival times
with an average value equal to 40. Notice that, to avoid
wide variation of aperiodic response times across different
values of Us, we increase the computation demand of the
aperiodic tasks as Us grows. The aperiodic server has
capacity Qs ¼ Us � Ts, where Ts ¼ 20; the results of these
experiments are shown in Figs. 12, 13, and 14. Notice that
aperiodic response time increases with an increase in Us:
This seems counterintuitive at first, but we increase the
aperiodic load to match the increase in aperiodic utilization
on the x-axis.

As the reader can see from the three graphs, BASH
outperforms CASH again by a significant margin. According

CACCAMO ET AL.: EFFICIENT RECLAIMING IN RESERVATION-BASED REAL-TIME SYSTEMS WITH VARIABLE EXECUTION TIMES 209

TABLE 4
Simulation Parameters for the First Set of Experiments

4 AIT represents the Average Interarrival Time of aperiodic tasks.

Fig. 9. Performance results of simulation 1. Fig. 10. Performance results of simulation 2.



to these three experiments, it is worth noting that BASH
and GRUB have very similar behavior for low Us values
(range ½0:1; 0:2�). Finally, this second set of experiments
reinforces the conclusions of the first set of experiments. In
particular, GRUB outperforms BASH if the average execu-
tion time of periodic hard tasks becomes small. In fact, if Us

increases on the x-axis of these experiments, the execution
time of hard periodic tasks decreases in order to keep the
system fully loaded but not overloaded: It follows that
GRUB outperforms BASH as Us increases. As a final
remark, notice that BASH has better performance when
the execution time of periodic tasks becomes longer since
the resource reclaiming capability of GRUB is delayed.

5.3 Third Set of Experiments

The third experiment illustrates the algorithmic overhead of
BASH and GRUB in terms of processor cycles. The
experiments were performed on a Pentium IV 2.8 MHz
computer. The cycles were measured using the Pentium
benchmarking instruction RDTSC, which returns the
number of clock cycles since the CPU was powered up or
reset. The use of this 64-bit on processor register allowed us
to minimize experimental errors, as evident in the plot with
98 percent confidence interval.

When considering BASH, we measured the number of
processor cycles for all accesses to the BASH queue as its
overhead, while GRUB overhead was measured as the total
number of cycles executed for each state transition (possible

states are: inactive, activeContending, activeNonContending).
Notice that the Y-axis shows the sum of processor cycles
spent by GRUB and CASH to update their data structures
during the entire experiment. Each point has been com-
puted as the average over 50 runs and the graph is plotted
as a function of the aperiodic load: The X-axis shows the
number of aperiodic task instantiations occurring in a
certain window of time (100 units).

Fig. 15 illustrates the results of experiment 7, where Us ¼
0:2 and � ¼ 0:95. The experiment shows that, for all values
of aperiodic loads, GRUB has close to two-three times the
overhead of BASH. The experiment was repeated for �
ranging between 0.50-0.95 and Us ranging between 0.5-0.90:
Since the results were almost identical to the one of Fig. 15,
we decided to include only one graph for this set of
experiments. As a concluding remark, it is important to
highlight that BASH queue can be implemented as a Heap-
based priority queue [10] whose insert and extract operations
take OðlnNÞ time, where N is the number of real-time tasks
in the system; while looking up the capacity with earliest
deadline takes only Oð1Þ.

6 RELATED WORK

Different approaches have been proposed in the literature
to deal with overruns and variable execution times. In [20],
the authors provide an upper bound of completion times of

210 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 2, FEBRUARY 2005

Fig. 11. Performance results of simulation 3.

Fig. 12. Performance results of simultion 4.

Fig. 13. Performance results of simulation 5.

Fig. 14. Performance results of simulation 6.



jobs chains with variable execution times and arbitrary
release times. In [15], a guarantee is computed for tasks
whose jobs are characterized by variable computation times
and interarrival times, occurring with a cyclical pattern. In
[14], a capacity reservation technique is used to bound the
computational demand of tasks with variable computation
times in a fixed priority environment. According to this
approach, a fraction of the CPU bandwidth is reserved to
each task to achieve temporal isolation. Although such a
solution prevents unbounded interference, overruns are not
handled efficiently. In fact, whenever a job consumes the
reserved budget, its remaining portion is scheduled in the
background, thus prolonging its completion for an un-
predictable amount of time. In [21], the authors present a
Transform-Task Method (TTM) according to which a task is
split into two pieces, where the second piece (i.e., the
exceeding computation time causing the overrun) is
handled as a job served by a Sporadic Server [19]. Using
this approach, a probabilistic guarantee is performed on
tasks whose execution times have known distribution. In
[9], the authors propose two approaches for handling
overruns. The first approach, called the Overrun Server
Method (OSM), extends the TTM method to combine a
general baseline algorithm for scheduling normal periodic
tasks with a generic aperiodic server for handling overruns.
Although, this method performs better than handling
overruns in background, it cannot ensure that the remain-
ing portion of a task instance is always executed before the
next one. The second approach, called the Isolation Server
Method (ISM), can achieve isolation among tasks, but it
cannot provide a priori guarantee.

A more efficient technique, namely, the Constant Band-
width Server (CBS), is proposed in [1] under a dynamic
priority environment. As in [14], a fraction of the CPU
bandwidth is reserved to each task, but tasks are scheduled
by EDF using a suitable deadline, computed as a function of
the reserved bandwidth and the actual requests. If a task
requires executing more than expected, its deadline is
postponed and its budget replenished. This method allows
us to achieve isolation among tasks and overruns are
handled efficiently based on their actual deadline. As
mentioned in the introduction, although isolation mechan-
isms are essential for increasing system’s reliability in the
presence of tasks with variable execution times, the correct

behavior of the system strongly depends on a correct
reservation policy. Recently, this problem has been
addressed by a number of authors who proposed new
techniques to reduce such a negative aspect of isolation.

In [11], the authors proposed the Bandwidth Sharing
Server (BSS) to handle several multithread applications on a
single processor by allowing threads belonging to the same
application to reclaim the spare time due to early comple-
tions. Although the algorithm provides isolation among
applications, no isolation is guaranteed among tasks
belonging to the same application. A multiapplication
environment is also treated in [8], where a two-level
scheduling architecture is used to handle each application
by a dedicated server. This approach is able to isolate the
effect of overloads at the application level, rather than at the
task level, but does not provide a global reclaiming
mechanism to efficiently exploit the reserved bandwidths.

In [5], the authors proposed a methodology for improv-
ing the performance of hard control applications using a
resource reservation approach combined with a suitable
offline analysis, based on the Seto et al. algorithm [17]. A
less pessimistic analysis and a local reclaiming mechanism
are used to increase the average task rates, while a proper
overrun control mechanism is adopted to guarantee each
task a minimum rate. However, since the reclaiming is local
to each task (i.e., no capacity sharing is allowed), the
improvement achieved over the Seto et al. algorithm is not
so significant. In [6], [7], the authors address the problem of
resource reclaiming and resource sharing separately and in
an independent manner; compared to them, this work
integrates resource reclaiming and resource sharing in a
complete framework. Moreover, a new and improved
reclaiming technique is introduced which outperforms the
one in [6]. In [12], the authors proposed an elegant
technique for scheduling a set of real-time tasks on a single
processor so that each task runs as it is executing on a
slower dedicated processor. The method achieves isolation
and allows reclaiming most of the spare time unused by
tasks. A critical parameter of this approach is the time
granularity used in the algorithm; in fact, a small quantum
reduces the scheduling error, but increases the overhead
due to context switches. In [4], the authors propose a
capacity sharing protocol for enhancing soft aperiodic
responsiveness in a fixed priority environment, where each

CACCAMO ET AL.: EFFICIENT RECLAIMING IN RESERVATION-BASED REAL-TIME SYSTEMS WITH VARIABLE EXECUTION TIMES 211

Fig. 15. Performance results of simulation 7.



soft task is handled by a dedicated server. Although the
basic idea of capacity sharing is the same as the one
proposed in our paper, the main difference from our BASH
algorithm is that, in [4], each server can “steal” capacity
from the other servers to advance the execution of the
served task, thus losing isolation among the served tasks (a
low priority server could receive less bandwidth than
requested). In our case, instead, a capacity is given only
after a job is completed and a new replenishment is always
performed (with a suitable deadline) when a new job
arrives. These rules allow the algorithm to preserve the
isolation property. Moreover, with respect to the capacity
sharing protocol, the BASH algorithm is used to solve a
different problem (overrun control) in a different context
(dynamic deadline scheduling with resource reservation).

7 CONCLUSIONS

In this paper, we presented a bandwidth sharing (BASH)
mechanism which allows us to achieve temporal protection
on tasks’ execution while performing efficient reclaimation
of the unused computation times. The algorithm is able to
handle tasks with soft, hard, as well as flexible, timing
constraints.

The BASH algorithm has been implemented in the
RTSIM simulator in order to evaluate its performance and
validate our theoretical results. The experiments show the
effectiveness of the reclaiming mechanism in enhancing the
system performance under different workload conditions.
Specific experiments on the reclaiming mechanism showed
that the overhead introduced by the algorithm is signifi-
cantly lower than other reclaiming techniques; moreover,
BASH is easily implemented, allowing its use in real
applications. Finally, the algorithm complexity resulted to
be OðlnNÞ, where N is the number of real-time tasks in the
system. As future work, we plan to apply this technique for
handling fault-tolerant applications where each task is
composed of a primary and a backup copy.

APPENDIX A

A.1 The CBS Algorithm

A CBS is characterized by an ordered pair ðQs; TsÞ, where
Qs is the maximum budget and Ts is the period of the
server. The ratio Us ¼ Qs=Ts is denoted as the server
bandwidth. At each instant, a fixed deadline ds;k and a
budget cs are associated with the server. Every time a new
job �i;j has to be served, it is assigned a dynamic deadline
di;j equal to the current server deadline ds;k. The current
budget cs represents the amount of computation time
schedulable by the CBS using the current server deadline.
Whenever a served job executes, the budget cs is decreased
by the same amount and, every time cs ¼ 0, the server
budget is recharged to the maximum value Qs and a new
server deadline is generated as ds;kþ1 ¼ ds;k þ Ts.

Fig. 16 illustrates an example in which a task �1, with
maximum computation time WCET1 ¼ 2 and period
P1 ¼ 5, is scheduled by EDF together with another task,
�2, served by a CBS having a budget Qs ¼ 3 and a period
Ts ¼ 6. Initially, cs ¼ 0 and ds;0 ¼ 0. When job �2;1 (requiring
five units of computation) arrives at time t ¼ 3, cs is charged
at the value Qs ¼ 3 and the job is assigned a deadline

ds;1 ¼ tþ Ts ¼ 9. At time t ¼ 6, the budget is exhausted, so

cs is replenished and a new deadline ds;2 ¼ ds;1 þ Ts ¼ 15 is

generated by the server and assigned to job �2;1.
In [1], it is proven that, in any interval of time of length L,

a CBS with bandwidth Us will never demand more than

UsL, independently from the actual task requests. Such a

property allows us to use a bandwidth reservation strategy

to allocate a fraction of the CPU time to soft tasks whose

computation time cannot be easily bounded. The most

important consequence of this result is that such tasks can

be scheduled together with hard tasks without affecting the

a priori guarantee, even in the case in which soft requests

exceed the expected load.

A.2 The Stack Resource Policy

The Stack Resource Policy (SRP) is a concurrency control
protocol proposed by Baker [3] to bound the priority
inversion phenomenon in static as well as dynamic priority
systems.

Under the EDF scheduling algorithm, each task �i is
assigned a dynamic priority pi inversely proportional to its
absolute deadline di and a static preemption level �i such that
the following property holds:

Property 6. Task �i is not allowed to preempt task �j unless

�i > �j.

Under EDF, Property 6 is verified if periodic task �i is
assigned the following preemption level:

�i ¼
1

Di
;

where Di is its relative deadline. In addition, every resource

Rk is assigned a static4 ceiling defined as

ceilðRkÞ ¼ max
i

f�i j �i needs Rkg: ð10Þ

Finally, a dynamic system ceiling is defined as

�sðtÞ ¼ max½fceilðRkÞ j Rk is currently busyg [ f0g�:

Then, the SRP scheduling rule states that

a task is not allowed to start executing until its priority is the
highest among the active tasks and its preemption level is
greater than the system ceiling.

212 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 2, FEBRUARY 2005

4. In the case of multiunits resources, the ceiling of each resource is
dynamic as it depends on the number of units actually free.

Fig. 16. Example of a CBS server.



The SRP ensures that, once a task is started, it will never
block until completion; it can only be preempted by higher
priority tasks.

This protocol has several interesting properties. For
example, it applies to both static and dynamic scheduling
algorithms, prevents deadlocks, bounds the maximum
blocking times of tasks, reduces the number of context
switches, can be easily extended to multiunit resources,
allows tasks to share stack-based resources, and its
implementation is straightforward.

Under the SRP there is no need to implement waiting
queues. In fact, a task never blocks its execution: It simply
cannot start executing if its preemption level is not high
enough. As a consequence, the blocking time Bi considered
in the schedulability analysis refers to the time for which
task �i is kept in the ready queue by the preemption test.
Although the task never blocks, Bi is considered a
“blocking time” because it is caused by tasks having lower
preemption levels.

The maximum blocking time for a task �i is bounded by
the duration of the longest critical section among those that
can block �i. Assuming relative deadlines equal to periods,
the maximum blocking time for each task �i can be
computed as the longest critical section among those with
a ceiling greater than or equal to the preemption level of �i:

Bi ¼ maxfsjh j ðDi < DjÞ ^ �i � ceilð�jhÞg; ð11Þ

where sjh is the worst-case execution time of the hth critical
section of task �j, Dj is its relative deadline, and �jh is the
resource accessed by the critical section sjh. Given these
definitions, the feasibility of a task set with resource
constraints (when only periodic and sporadic tasks are
considered) can be tested by the following sufficient
condition [3]:

8i; 1 � i � n
Xi

k¼1

Ck

Tk
þBi

Ti
� 1; ð12Þ

which assumes that all the tasks are sorted by decreasing
preemption levels so that �i � �j only if i < j.

ACKNOWLEDGMENTS

This work is supported in part by US National Science
Foundation (NSF) grant CCR-0237884, and in part by NSF
grant CCR-0325716.

REFERENCES

[1] L. Abeni and G. Buttazzo, “Integrating Multimedia Applications
in Hard Real-Time Systems,” Proc. IEEE Real-Time Systems Symp.,
Dec. 1998.

[2] L. Abeni and G. Buttazzo, “Resource Reservations in Dynamic
Real-Time Systems,” Real-Time Systems, vol. 27, no. 2, pp. 123-165,
2004.

[3] T.P. Baker, “Stack-Based Scheduling of Real-Time Processes,”
J. Real-Time Systems, vol. 3, no. 1, pp. 67-100, 1991.

[4] G. Bernat and A. Burns, “Multiple Servers and Capacity Sharing
for Implementing Flexible Scheduling,” Real-Time Systems, vol. 22,
nos. 1-2, pp. 49-75, Jan.-Mar. 2002.

[5] M. Caccamo, G. Buttazzo, and L. Sha, “Elastic Feedback Control,”
Proc. IEEE 12th Euromicro Conf. Real-Time Systems, June 2000.

[6] M. Caccamo, G. Buttazzo, and L. Sha, “Capacity Sharing for
Overrun Control,” Proc. IEEE Real-Time Systems Symp., Dec. 2000.

[7] M. Caccamo and L. Sha, “Aperiodic Servers with Resource
Constraints,” Proc. IEEE Real-Time Systems Symp., Dec. 2001.

[8] Z. Deng and J.W.S. Liu, “Scheduling Real-Time Applications in an
Open Environment,” Proc. IEEE Real-Time Systems Symp., Dec.
1997.

[9] M.K. Gardner and J.W.S. Liu, “Performance of Algorithms for
Scheduling Real-Time Systems with Overrun and Overload,”
IEEE Proc. 11th Euromicro Conf. Real-Time Systems, June 1999.

[10] D.E. Knuth, The Art of Computer Programming. Addison-Wesley,
1998.

[11] G. Lipari and G. Buttazzo, “Scheduling Real-Time Multi-Task
Applications in an Open System,” Proc. IEEE 11th Euromicro Conf.
Real-Time Systems, pp. 234-241, June 1999.

[12] G. Lipari and S. Baruah, “Greedy Reclaimation of Unused
Bandwidth in Constant-Bandwidth Servers,” IEEE Proc. 12th
Euromicro Conf. Real-Time Systems, June 2000.

[13] C.L. Liu and J.W. Layland, “Scheduling Algorithms for Multi-
programming in a Hard Real-Time Environment,” J. ACM, vol. 20,
no. 1, pp. 40-61, 1973.

[14] C.W. Mercer, S. Savage, and H. Tokuda, “Processor Capacity
Reserves for Multimedia Operating Systems,” Proc. IEEE Intl Conf.
Multimedia Computing and Systems, May 1994.

[15] A.K. Mok and D. Chen, “A Multiframe Model for Real-Time
Tasks,” Proc. IEEE Real-Time System Symp., Dec. 1996.

[16] Real-Time System SIMulator (RTSIM), http://rtsim.sssup.it, 2004.
[17] D. Seto, J.P. Lehoczky, L. Sha, and K.G. Shin, “On Task

Schedulability in Real-Time Control Systems,” Proc. IEEE Real-
Time Systems Symp., Dec. 1996.

[18] K.G. Shin, C.M. Krishna, and Y.-H. Lee, “A Unified Method for
Evaluating Real-Time Computer Controllers and Its Application,”
IEEE Trans. Automatic Control, pp. 357-365, Apr. 1985.

[19] B. Sprunt, L. Sha, and J.P. Lehoczky, “Aperiodic Scheduling for
Hard Real-Time System,” J. Real-Time Systems, vol. 1, pp. 27-60,
1989.

[20] J. Sun and J.W.S. Liu, “Bounding Completion Times of Jobs with
Arbitrary Release Times and Variable Execution Times,” Proc.
IEEE Real-Time System Symp., Dec. 1996.

[21] T.-S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L.-C. Wu, and
J.W.-S. Liu, “Probabilistic Performance Guarantee for Real-Time
Tasks with Varying Computation Times,” Proc. IEEE Real-Time
Technology and Applications Symp., Jan. 1995.

Marco Caccamo graduated in computer engi-
neering from the University of Pisa in 1997 and
received the PhD degree in computer engineer-
ing from the Scuola Superiore S. Anna in 2002.
He is an assistant professor in the Department of
Computer Science at the University of Illinois at
Urbana-Champaign. His research interests in-
clude real-time operating systems, real-time
scheduling and resource management, wireless
sensor networks, and quality of service control in

next generation digital infrastructures. He is recipient of a US National
Science Foundation CAREER Award (2003) and a member of the IEEE.

Giorgio C. Buttazzo graduated in electronic
engineering from the University of Pisa in 1985,
received the master’s degree in computer
science from the University of Pennsylvania in
1987, and the PhD degree in computer en-
gineering from the Scuola Superiore S. Anna of
Pisa in 1991. He is an associate professor of
computer engineering at the University of Pavia,
Italy. His main research interests include real-
time operating systems, dynamic scheduling

algorithms, quality of service control, multimedia systems, advanced
robotics applications, and neural networks. He is a member of the IEEE.

Deepu C. Thomas received the MS degree in
computer science from the University of Illinois
at Urbana-Champaign in 2004. He is a design
engineer with the Core Operating System
Divison of Microsoft Corporation. He previously
worked with SANYO Semiconductors R&D in
the area of real-time embedded systems and his
main research interests include real-time com-
puting and operating systems. He is a member
of the IEEE.

CACCAMO ET AL.: EFFICIENT RECLAIMING IN RESERVATION-BASED REAL-TIME SYSTEMS WITH VARIABLE EXECUTION TIMES 213


