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Abstract. The high computational complexity required for performing an exact schedulability analysis of fixed
priority systems has led the research community to investigate new feasibility tests which are less complex than
exact tests, but still provide a reasonable performance in terms of acceptance ratio. The performance of a test is
typically evaluated by generating a huge number of synthetic task sets and then computing the fraction of those that
pass the test with respect to the total number of feasible ones. The resulting ratio, however, depends on the metrics
used for evaluating the performance and on the method for generating random task parameters. In particular, an
important factor that affects the overall result of the simulation is the probability density function of the random
variables used to generate the task set parameters.

In this paper we discuss and compare three different metrics that can be used for evaluating the performance of
schedulability tests. Then, we investigate how the random generation procedure can bias the simulation results of
some specific scheduling algorithm. Finally, we present an efficient method for generating task sets with uniform
distribution in a given space, and show how some intuitive solutions typically used for task set generation can bias
the simulation results.
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1. Introduction

Fixed priority scheduling is the most used approach for implementing real-time applications.
When the system consists mostly of periodic activities, tasks are usually scheduled by
the Rate Monotonic (RM) algorithm, which assigns priorities proportionally to the task
activation rates (Liu and Layland, 1973). Although other scheduling algorithms, like Earliest
Deadline First (EDF) (Liu and Layland, 1973) and Least Laxity First (LLF) (Mok, 1983),
have been proved to be more effective than RM in exploiting the available computational
resources, RM is still the most used algorithm in industrial systems, mainly for its efficient
implementation, simplicity, and intuitive meaning. In particular, the superior behavior of
EDF over RM has been shown under different circumstances (Buttazzo, 2003), including
overload conditions, number of preemptions, jitter, and aperiodic service. Nevertheless,
the simpler implementation of RM on current commercial operating systems, along with a
number of misconceptions on the two algorithms, seem to be the major causes that prevent
the use of dynamic priority schemes in practical applications.

∗This work has been partially supported by the European Union, under contract IST-004527, and by the Italian
Ministry of University Research (MIUR), under contract 2003094275.
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The exact schedulability analysis of fixed priority systems, however, requires high com-
putational complexity, even in the simple case in which task relative deadlines are equal to
periods (Joseph and Pandya, 1986; Lehoczky et al., 1995; Audsley et al., 1993). Methods
for speeding up the analysis of task sets have been recently proposed (Manabe and Aoyagi,
1995; Sjödin and Hansson, 1998; Bini and Buttazzo, 2004b), but the complexity of the
approach remains pseudo-polynomial in the worst case. This problem becomes especially
relevant for those real-time applications that require an on-line admission control and run
on small microprocessors with low processing power.

This fact has led the research community to investigate new feasibility tests that are less
complex than exact tests, but still provide a reasonable performance in terms of acceptance
ratio. For example, Bini and Buttazzo proposed a sufficient guarantee test, the Hyperbolic
Bound (Bini et al., 2003), that has the same O(n) complexity of the classical utilization
bound proposed by Liu and Layland (1973), but better performance. To increase schedula-
bility, Han and Tyan (1997) suggested to modify the task set with smaller, but harmonic,
periods using an algorithm of a O(n2 log n) complexity. Other sufficient feasibility tests
have been proposed in Burchard et al. (1995) and Lauzac et al. (2003), where additional
information on period relations is used to improve schedulability within a polynomial time
complexity.

A tunable test, called the Hyperplane δ-Exact Test, has recently been proposed (Bini and
Buttazzo, 2004b) to balance performance versus complexity using a single parameter. If
δ = 1, the test is exact and hence it has a pseudo-polynomial complexity; if δ < 1 the test
becomes only sufficient and its complexity and performance decrease with δ.

When dealing with approximate tests, the problem of evaluating their performance with
respect to the exact case becomes an important issue. The effectiveness of a guarantee test
for a real-time scheduling algorithm is measured by computing the number of accepted task
sets with respect to the total number of feasible ones. Such a ratio can be referred to as the
acceptance ratio. The higher the ratio, the better the test. When the ratio is equal to one,
then the guarantee test results to be necessary and sufficient for the schedulability of the
task set.

Computing the acceptance ratio using a rigorous approach is not always possible, except
for very simple cases. In all the other cases, the performance of a guarantee test has to be
evaluated through extensive simulations, where a huge number of synthetic task sets need
to be generated using random parameters. Using this approach, both the evaluation metrics
and the way task parameters are generated significantly affect the overall performance of
the test. This potential biasing factor may lead to wrong design choices if the hypotheses
used in the simulation phase differ from the actual working conditions. Unfortunately, to
our best knowledge, no much work has been done in the literature to help understanding
these problematic issues.

First, Lehoczky et al. (1989) introduced the breakdown utilization as a means for mea-
suring the performance of the Rate Monotonic scheduling algorithm. Then, other au-
thors (Park et al., 1995; Chen et al., 2003; Lee et al., 2004) provided methods for com-
puting the utilization upper bound, which can indirectly measure the effectiveness of RM.
In a previous work, Bini and Buttazzo (2004a) showed the limitations of the former ap-
proaches, also proposing a standard metric for evaluating the performance of schedulability
tests.
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In this paper we introduce a more general framework where the three approaches are
discussed and compared through theoretical results and experimental evidence. The depen-
dency between simulation results and task generation routines is discussed, showing how
some intuitive solutions used for generating synthetic task sets can bias the results of the
simulation. A key contribution of this work is an efficient method for generating task sets
with uniform distribution in the space of utilizations.

The rest of the paper is organized as follows. Section 2 introduces the metrics commonly
used in the literature for evaluating the performance of feasibility tests, and presents a new
evaluation criterion that better describes the properties of a test. Section 3 presents an effi-
cient method for generating random task set parameters which does not bias the simulation
results. Section 4 compares the introduced metrics and illustrates some experimental results
carried out by simulation. Finally, Section 5 states our conclusions.

1.1. Notation and Assumptions

The notation used throughout the paper is reported in Table 1. To make a consistent com-
parison among the feasibility tests discussed in this work, the basic assumptions made on
the task set are the same as those typically considered in the real-time literature where
the original tests have been proposed. That is, each periodic task τi consists of an infinite
sequence of jobs τi,k (k = 1, 2, . . . ), where the first job τi,1 is released at time ri,1 = �i

(the task phase) and the generic kth job τi,k is released at time ri,k = �i + (k − 1) Ti . The
worst-case scenario occurs for simultaneous task activations (i.e., �i = 0, i = 1, . . . , n).
Relative deadlines are smaller than or equal to periods (Di ≤ Ti ). Tasks are independent
(that is, they do not have resource constraints, nor precedence relations) and are fully pre-
emptive. Context switch time is neglected. Notice that, although such a simple task model
can be fruitfully enriched to capture more realistic situations, the objective of this paper in
not to derive a new feasibility test, but to clarify some issues related to the performance of
existing tests, most of which have been derived under the simplifying assumptions reported
above.

For this reason these simplistic assumptions do not restrict the applicability of the results,
but provide a more general framework which allows comparing different results found for
different application models.

Table 1. Notation.

Notation Meaning

τi = (Ci , Ti , Di ) The i th periodic task
Ci Computation time of task τi

Ti Period of task τi

Di Relative deadline of task τi

Ui = Ci /Ti Utilization of task τi

� = {τ1, . . . , τn} A set of n periodic tasks
U = ∑n

1 Ui Utilization of the task set
A, B, X = {�1, . . . , �p} A group of task sets (domain)
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Figure 1. Task set schedulable by EDF, but not by RM.

2. Metrics

It is well known that the RM scheduling algorithm cannot schedule all the feasible task sets.
For example, the task set shown in Figure 1 has a total utilization of 1, thus it is schedulable
by EDF, but not by RM.

The problem of measuring the difference, in terms of schedulability, between these two
algorithms has often attracted the interest of the real-time research community. Hence, a
number of methods have been proposed to evaluate the performance of a feasibility test for
RM. The most common approaches available in the real-time literature are based on the
definition of the following concepts:

– Breakdown utilization (Lehoczky et al., 1989);

– Utilization upper bound (Park et al., 1995; Chen et al., 2003; Lee et al., 2004).

Unfortunately, both techniques present some drawback that will be analyzed in detail in
Sections 2.1 and 2.2. To overcome these problems, a new performance evaluation criterion,
the Optimality Degree (OD), will be introduced in Section 2.3.

2.1. Breakdown Utilization

The concept of breakdown utilization was first introduced by Lehoczky et al. (1989) in
their seminal work aimed at providing exact characterization and average case behavior of
the RM scheduling algorithm.

Definition 1 (Section 3 in Lehoczky et al., 1989). A task set is generated randomly, and
the computation times are scaled to the point at which a deadline is first missed. The
corresponding task set utilization is the breakdown utilization U ∗

n .

In such a scaling operation, computation times are increased if the randomly generated
task set is schedulable, whereas they are decreased if the tasks set is not schedulable. This
scaling stops at the boundary which separates the RM-schedulable and RM-unschedulable
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Figure 2. Interpretation of the breakdown utilization.

task sets. Hence, all task sets with the same period configuration that can be obtained by
scaling the computation times have the same breakdown utilization, because they all hit the
boundary in the same point. We denote these task sets as a group of Ci -aligned task sets.
This concept is illustrated in Figure 2.

For example, if we assume the computation times to be uniformly distributed in [0, Ti ]
(i.e., the Ui uniform in [0, 1]), the number of task sets belonging to the same Ci -aligned
group is proportional to the length of the O B segment in Figure 2.

Note that a group of Ci -aligned task sets contains more sets when the Ui are similar to
each other, because in this case the segment O B is longer. The utilization disparity in a set
of tasks can be expressed through the following parameter, called the U-difference:

δ = maxi {Ui } − mini {Ui }
∑n

i=1 Ui
. (1)

If δ = 0, all the task utilization factors are the same, whereas δ = 1 denotes the maximum
degree of difference.

We first notice that all the task sets belonging to the same Ci -aligned group have the
same value of δ, since positive scaling factors may be brought outside the min, max and sum
operators in Equation (1), and then simplified. We then show some relationship between a
Ci -aligned group and its value of U-difference δ.

As it can be argued from Figure 2, when a group of Ci -aligned task sets is characterized
by a small value of δ, the segment O B is longer (that is, the number of task sets in the
hypercube (U1, . . . , Un) ∈ [0, 1]n belonging to the same group is larger).

In the case of two tasks, the relationship between δ and |O B| can be explicitly derived.
Without any loss of generality, we assume U1 ≤ U2. Since δ does not vary within the same
Ci -aligned group, the relation can be computed by fixing any point on the O B segment.
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Thus, to simplify the computation, we select the set with U2 = 1. For this group we have
U1 = |AB| (please refer to Figure 2 to visualize the segment AB). Hence:

δ = maxi {Ui } − mini {Ui }
∑n

i=1 Ui
= U2 − U1

U2 + U1
= 1 − |AB|

1 + |AB|
|AB| = 1 − δ

1 + δ

then:

|O B| =
√

1 + |AB|2 =
√

2(1 + δ2)

1 + δ
. (2)

Note that if δ = 1, then |O B| = 1, whereas if δ = 0, then |O B| = √
2.

In the general case of n tasks, the relationship between δ and |O B| cannot be explicitly
found. However, we can provide an intuition in order to understand it. The longest O B
segment is equal to the diagonal of a unitary n-dimensional cube, whose length is

√∑n
1 12 =√∑n

1 1 = √
n, which grows with n. The result illustrated above can be summarized in the

following observation.

Remark 1. When uniformly generating the utilizations (U1, . . . , Un) in [0, 1]n , a group
of Ci -aligned task sets contains more sets if it has a smaller value of U-difference δ. This
phenomenon becomes more considerable (by a factor

√
n) as the number of tasks grows.

These geometrical considerations are very relevant when evaluating the performance of
the scheduling algorithm. In fact, among all task sets with the same total utilization, RM
is more effective on those sets characterized by tasks with very different utilization (i.e.,
δ → 1). The intuition behind this statement is also supported by the following facts:

– Liu and Layland proved in 1973 that the worst-case configuration of the utilization
factors occurs when they are all equal to each other;

– using the Hyperbolic Bound (Bini et al., 2003), which guarantees feasibility if
∏n

i=1(1+
Ui ) ≤ 2, it has been shown that the schedulability under RM is enhanced when tasks
have very different utilizations Ui .

Hence, we can state that:

Remark 2 . For a given total utilization factor U , the feasibility of a task set under the RM
scheduling algorithm improves when task utilizations have a large difference, that is when
δ is close to 1.

To further support this remark we have run a simulation experiment in which we gen-
erated 106 task sets consisting of n = 8 tasks, whose periods are uniformly distributed in
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Figure 3. The breakdown utilization as a function of δ.

[1, 1000]. Computation times are generated so that the set has a specific value of δ. We
then considered the breakdown utilization U ∗

n (δ) as a random variable. For every value of δ,
Figure 3 illustrates the results of the simulation, reporting (from top to bottom) max{U ∗

n (δ)},
E[U ∗

n (δ)] + σU ∗
n (δ), E[U ∗

n (δ)], E[U ∗
n (δ)] − σU ∗

n (δ) and min{U ∗
n (δ)}.1 Notice that all values of

min{U ∗
n (δ)} are always above the Liu and Layland utilization bound, which, for n = 8, is

0.7241. As predicted by Remark 2, the breakdown utilization increases as δ grows.
Summarizing the observations discussed above, we can conclude that when task sets are

randomly generated so that task utilizations have a uniform distribution in the hypercube
(U1, . . . , Un) ∈ [0, 1]n , the number of sets with a low value of δ will be dominant. Hence the
average breakdown utilization will be biased by those task sets with a small U-difference δ,
for which RM is more critical. Moreover such a biasing increases as n grows (see Remark 1).
Hence, we can state the following remark.

Remark 3. The use of breakdown utilization as a metric for evaluating the performance
of the schedulability algorithms, penalizes RM more than EDF.

The formal proof of the last observation is out of the scope of this paper. However, the
intuitive justification we provided so far is confirmed in Section 4 by additional experimental
results (see Figure 13).

In order to characterize the average case behavior of the RM scheduling algorithm,
Lehoczky et al. treated task periods and execution times as random variables, and then
studied the asymptotic behavior of the breakdown utilization. Their result is expressed by
the following theorem.

Theorem 1 (from Section 4 in Lehoczky et al., 1989). Given task periods uniformly
generated in the interval [1, B], B ≥ 1, then for n → ∞ the breakdown utilization U ∗

n
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converges to the following values:

– if B = 1:

U ∗
n = 1 (3)

– if 1 < B ≤ 2:

U ∗
n → loge B

B − 1
(4)

– if B ≥ 2:

U ∗
n → loge B

B
�B	 + ∑�B	−1

i=2
1
i

(5)

and the rate of convergence is O(
√

n).

Then, the authors derive a probabilistic schedulability bound for characterizing the aver-
age case behavior of RM.

Remark 4 (Example 2 in Lehoczky et al., 1989). For randomly generated task sets con-
sisting of a large number of tasks (i.e. n → ∞) whose periods are drawn in a uniform
distribution (i.e. hyp. of Th. 1 hold) with largest period ratio ranging from 50 to 100 (i.e.
50 ≤ B ≤ 100), 88% is a good approximation to threshold of the schedulability (i.e. the
breakdown utilization) for the rate monotonic algorithm.

The major problem in using this results is that it is based on specific hypotheses about
periods and computation times distributions. Such hypotheses are needed to cut some de-
grees of freedom on task set parameters and provide a “single-value” result, but they may
not hold for a specific real-time application.

In the next sections, we will overcome this limitation by making the metrics dependent
on a specific task set domain.

2.2. Utilization Upper Bound

The utilization upper bound Uub is a well known parameter, used by many authors (Liu
and Layland, 1973; Park et al., 1995; Chen et al., 2003; Lee et al., 2004) to provide a
schedulability test for the RM algorithm. Following the approach proposed by Chen et al.
(2003), the utilization upper bound is defined as a function of a given domain D of task sets.

Definition 2. The utilization upper bound Uub(D) is the maximum utilization such that if a
task set is in the domain D and satisfies

∑
Ui ≤ Uub then the task set is schedulable. More

formally:

Uub(D) = max

{

Ub :

(

� ∈ D ∧
∑

τi ∈�

Ui ≤ Ub

)

⇒ � is schedulable

}

. (6)
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From the definition above it follows that:

D1 ⊆ D2 ⇒ Uub(D1) ≥ Uub(D2). (7)

Using this definition, the previous Liu and Layland utilization bound can be expressed
as a particular case of Uub. Let Tn be the domain of all sets of n tasks. Then we can write
that:

Uub(Tn) = n( n
√

2 − 1) (8)

which is also referred to as utilization least upper bound, because Tn is the largest possible
domain, and hence Uub(Tn) = Ulub is the lowest possible utilization upper bound (see
Eq. (7)).

The typical choice for the domain of the task sets is given by fixing task periods and
deadlines. So the domain Mn(T1, . . . , Tn, D1, . . . , Dn), also simply denoted by Mn , is the
domain consisting of all task sets having periods T1, . . . , Tn and deadlines D1, . . . , Dn (so
only the computation times C1, . . . , Cn are varying).

For such a domain, the following result has been found (Chen et al., 2003) when Di = Ti

and Tn
T1

≤ 2:

Uub

(

Mn ∩ Tn

T1
≤ 2 ∩ Di = Ti

)

= 2
n−1∏

i=1

1

ri
+

n−1∑

i=1

ri − n (9)

where ri = Ti+1

Ti
for i = 1, . . . , n − 1.

When n = 2 and r = T2
T1

, it was proved (Chen et al., 2003) that:

Uub(M2 ∩ Di = Ti ) = 1 − (r − �r	)(�r� − r )

r
. (10)

When no restrictions apply on periods and deadlines, the utilization upper bound Uub(Mn),
shortly denoted by Uub from now and on, can be found by solving n linear programming
problems (Park et al., 1995; Lee et al., 2004). The i th optimization problem (for i from 1
to n) comes from the schedulability constraint of the task τi . It is formulated as follows:

min
(C1,... ,Ci )

i∑

j=1

C j

Tj

subject to






Ci +
i−1∑

j=1

⌈ t

Tj

⌉
C j ≤ t ∀t ∈ Pi−1(Di )

C j ≥ 0 ∀ j = 1, . . . , i

(11)

where the reduced set of schedulability points Pi−1(Di ), found in Manabe and Aoyagi
(1995) and Bini and Buttazzo (2004b), is used instead of the largest one firstly introduced
in Lehoczky et al. (1989). If we label the solution of the i th problem (11) as U (i)

ub , the
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utilization upper bound is given by:

Uub = min
i=1,... ,n

U (i)
ub (12)

Once the utilization upper bound Uub is found, the guarantee test for RM can simply be
performed as follows:

n∑

i=1

Ui ≤ Uub. (13)

The utilization bound defined above is tight, meaning that for every value U > Uub there
exists a task set, having utilization U , which is not schedulable by RM. However, a common
misconception is to believe that the test provided by Eq. (13) is a necessary and sufficient
condition for the RM schedulability, meaning that “all the task sets having total utilization
U > Uub are not schedulable”. Unfortunately, this is not true and the RM schedulability is
far more complex.

In fact, the following lemma holds:

Lemma 1. Given a utilization upper bound Uub < 1, there always exists a task set having
total utilization U > Uub which is schedulable by RM.

For the sake of simplicity, the proof will be shown for Di = Ti , but the lemma holds
when 0 < Di < Ti as well.

Proof: Trivially, every task set having Un = 1 and U1 = · · · = Un−1 = 0 proves the
lemma, because it is indeed RM-schedulable and its utilization is 1. However, one might
object that, since n − 1 utilizations are equal to 0, this set is equivalent to a task set of
a single task, for which Uub = 1, so invalidating the hypothesis for applying the lemma.
Seeking an example with a non-trivial task set requires a little extra effort. Lehoczky et al.
(1989) showed that a task set is schedulable if:

∀i = 1, . . . , n Ui +
i−1∑

j=1

⌈
Ti

Tj

⌉
Tj

Ti
U j ≤ 1. (14)

Let us consider a task set having U1 = U2 = · · · = Un−1 = ε and consequently Un =
U − (n − 1)ε. By imposing the sufficient condition (14) for the first n − 1 tasks we obtain:

∀i = 1, . . . , n − 1 ε +
i−1∑

j=1

⌈
Ti

Tj

⌉
Tj

Ti
ε ≤ 1

∀i = 1, . . . , n − 1 ε ≤ 1

1 + ∑i−1
j=1

⌈ Ti
Tj

⌉ Tj

Ti
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and then:

ε ≤ min
i=1,... ,n−1

1

1 + ∑i−1
j=1

⌈ Ti
Tj

⌉ Tj

Ti

. (15)

So every choice of ε satisfying Eq. (15) is capable of scheduling the first n − 1 tasks. To
schedule the τn as well, we need that:

U − (n − 1)ε +
n∑

j=1

⌈
Ti

Tj

⌉
Tj

Ti
ε ≤ 1

then:

ε ≤ 1 − U
∑n

j=1

⌈ Ti
Tj

⌉ Tj

Ti
− (n − 1)

. (16)

So, to have both Eqs. (15) and (16) true, we select ε such that:

0 < ε ≤ min

{

min
i=1,... ,n−1

1

1 + ∑i−1
j=1

⌈ Ti
Tj

⌉ Tj

Ti

,
1 − U

∑n−1
j=1

⌈ Ti
Tj

⌉ Tj

Ti
− (n − 1)

}

. (17)

This choice is always possible because the right side of Eq. (17) is strictly positive, due to
the fact that U < 1. Hence the lemma follows.

The previous lemma showes that the condition (13) is not necessary.
Nevertheless, Uub is very helpful to understand the goodness of a given period configu-

ration, because it tends to the EDF utilization bound (which is 1) as RM tends to schedule
all the feasible task sets.

In the next section we introduce a new metric that keeps the good properties of the
utilization upper bound Uub, still able to provide a measure of all the schedulable task sets.

2.3. OD: Optimality Degree

As stated before, the reason for proposing a new metric is to provide a measure of the real
number of task sets which are schedulable by a given scheduling algorithm. As for the
definition of the utilization upper bound, the concept of Optimality Degree (OD) is defined
as a function of a given domain D. This a very important property because, if some task set
specification is known from the design phase (e.g., some periods are fixed, or constrained
in an interval), it is possible to evaluate the performance of the test on that specific class of
task sets, by expressing the known information by means of the domain D.
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Definition 3. The Optimality Degree ODA (D) of an algorithm A on the domain of task
sets D is:

ODA (D) = |schedA(D)|
|schedOpt(D)| (18)

where

schedA(D) = {� ∈ D : � is schedulable by A}, (19)

and Opt is any optimal scheduling algorithm.

From this definition it follows that:

– 0 ≤ ODA (D) ≤ 1, for any scheduling algorithm A and for any domain D;

– for any optimal algorithm Opt, ODOpt (D) = 1 for all domains D.

Definition 3 is very general and can be applied to every scheduling algorithm. In this
section we will focus on ODRM (D) and we will consider EDF as a reference for optimality,
since our goal is to measure the difference between RM and EDF in terms of schedulable
task sets. In fact, by using the definition of Tn , as the domain of all possible sets of n
tasks (see Section 2.2), we can measure the goodness of the RM algorithm by evaluating
ODRM (Tn).

However, the domain Tn is hard to be characterized, since the concept of “all the possible
task sets” is too fuzzy. As a consequence, ODRM (Tn) can only be computed by simulation,
assuming the task set parameters as random variables with some probability density function
(p.d.f.). In order to make the ODRM (Tn) metric less fuzzy and to find some meaningful
result, we need to reduce the degrees of freedom of domain Tn .

An important classification of the task sets is based on its utilization U . Hence, we could
be interested in knowing how many task sets are schedulable among those belonging to a
domain D with a given utilization U .

Notice that by using the utilization upper bound we can only say that a task set is
schedulable if U ≤ Uub(D), but there is still uncertainty among those with U > Uub(D).
Instead by using the Optimality Degree the number of schedulable task sets can be measured
by:

ODRM (D, U ) = ODRM

(

D ∩
n∑

i=1

Ui = U

)

(20)

The relation between ODRM (D, U ) and Uub(D) is expressed more formally in the fol-
lowing Theorem.
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Theorem 2. Given a domain of task sets D, the following relationships hold:

ODRM (D, U ) = 1 ∀U ∈ [0, Uub(D)] (21)

0 < ODRM (D, U ) < 1 ∀U ∈ (Uub(D), 1) (22)

Proof: From Definition 2 it follows that all the task sets having utilization U ≤ Uub(D)
are schedulable by RM, thus Eq. (21) holds.

From Definition 2, since Uub(D) is the maximum utilization bound there must be some
task set in D which is not schedulable, hence:

ODRM (D, U ) < 1.

From Lemma 1 it follows that for every value of utilization U < 1 it is always possible
to build a task set which is schedulable by RM. Hence:

ODRM (D, U ) > 0

which proves the theorem.

It is worth observing that ODRM (D, U ) does not suffer the weakness of Uub(D), because
it is capable of measuring the number of schedulable task sets even when the total utilization
exceeds Uub(D).

To derive a numeric value from ODRM (D, U ), we need to model the utilization as a
random variable with a p.d.f. fU (u) and then compute the expectation of ODRM (D, U ).

Definition 4. We define the Numerical Optimality Degree (abbreviated by NOD) as the
expectation of ODRM (D, U ), which is:

NODRM (D) = E[ODRM (D, U )] =
∫ 1

0
ODRM (D, u) fU (u)du. (23)

As for the average 88% bound derived by Lehoczky et al., in order to achieve a numerical
result we have to pay the price of modelling a system quantity (the utilization U ) by a
random variable. If we assume the utilization uniform in [0, 1] Eq. (23) becomes:

NODRM (D) =
∫ 1

0
ODRM (D, u) du (24)

which finalizes our search. In fact, this value well represents the fraction of the feasible task
sets which are schedulable by RM in the following hypotheses:

– the task sets belong to D;

– the utilization of the task sets is a uniform random variable in [0, 1].
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Moreover, as expected, we have that:

∫ 1

0
ODRM (D, u) du =

∫ Uub(D)

0
ODRM (D, u) du +

∫ 1

Uub(D)
ODRM (D, u) du =

∫ Uub(D)

0
1 du +

∫ 1

Uub(D)
ODRM (D, u) du = Uub(D) +

∫ 1

Uub(D)
ODRM (D, u) du

and then:

∫ 1

0
ODRM (D, u) du ≥ Uub(D) (25)

which shows that NOD is less pessimistic than Uub.

3. Synthetic Task Set Generation

The typical way to measure the performance of a guarantee test is to randomly generate
a huge number of synthetic task sets and then verify which percentage of feasible sets
pass the test. However, the way task parameters are generated may significantly affect the
result and bias the judgement about the schedulability tests. In this section we analyze some
common techniques often used to randomly generate task set parameters and we highlight
their positive and negative aspects.

3.1. Generating Periods

Under fixed priority scheduling, task periods significantly affect the schedulability of a task
set. For example, it is well known that, when

∀i = 1, . . . , n − 1 Ti evenly divides Ti+1

and relative deadlines are equal to periods, then any task set with total utilization less than
or equal to 1 can be feasibly scheduled by RM (Kuo and Mok, 1991), independently of the
computation times.

Whereas task execution times can have great variations, due to the effect of several low-
level architecture mechanisms or to the complex structure of a task, task periods are more
deterministic, since are defined by the user and then enforced by the operating system. As
a consequence, the assumption of treating task periods as random variables with uniform
distribution in a given interval may not reflect the characteristics of real applications and
could be inappropriate for evaluating a schedulability test. For example, using a uniform
p.d.f., possible harmonic relations existing among the periods cannot be replicated.

On the other hand, at an early stage of evaluating a guarantee test without any a priori
knowledge about the environment where it is going to be used, assuming some probability
density for the period is something we cannot avoid.
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3.2. Computation Times Generation

Once task periods have been selected, running a guarantee test in the whole space of task
set configurations requires computation times to be generated with a given distribution. In
the absence of specific knowledge of application task, a common approach is to assume
the computation time Ci uniform in [0, Ti ]. Notice that, since computation times Ci and
utilizations Ui differ by a scaling factor of Ti , this is equivalent of assuming each Ui to be
uniform in [0, 1].

Considering the dependency of some schedulability test from the total processor utiliza-
tion, a desirable feature of the generation algorithm is the ability to create synthetic task sets
with a given utilization factor Ū . Hence, individual task utilizations Ui should be generated
with a uniform distribution in [0, Ū ], subject to the constraint

∑
Ui = Ū . Implementing

such an algorithm, however, hides some pitfalls. In the next paragraphs we will describe
some “common sense” algorithms, discuss their problems, and then propose a new efficient
method.

3.3. The UScaling Algorithm

A first intuitive approach, referred to as the UScaling algorithm, is to generate the Ui ’s in
[0, Ū ] and then scale them by a factor Ū∑n

1 Ui
, so that the total processor utilization is exactly

Ū . The UScaling algorithm has an O(n) complexity and, using Matlab syntax,2 can be
coded as shown in Figure 4.

Unfortunately, the algorithm illustrated above incurs in the same problem discussed in
Section 2.1 for the scaling of Ci -aligned task sets, whose effect was to bias the breakdown
utilization. Here, the consequence of the scaling operation is that task sets having similar
Ui ’s (those with δ close to 0) are generated with higher probability.

Figure 5 illustrates the values of 5000 utilization tuples, generated by the UScaling al-
gorithm with n = 3 and Ū = 1. As expected, the generated values are more dense around
the point where all the Ui are equal to Ū/n. As argued in Remark 2, these task sets are
penalized by RM, hence generating the utilizations by the UScaling algorithm is pessimistic
for RM.

3.4. The UFitting Algorithm

A second algorithm for generating task sets with a given utilization Ū consists in making
U1 uniform in [0, Ū ], U2 uniform in [0, Ū − U1], U3 uniform in [0, Ū − U1 − U2], and so

function vectU = UScaling(n, U)
vectU = rand(1,n);
vectU = vectU.∗U ./sum(vectU);

Figure 4. Matlab code for the UScaling algorithm.
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Figure 5. Result of the UScaling algorithm.

function vectU = UFitting(n, U)
upLimit = U ;
for i=1:n−1,

vectU(i) = rand∗upLimit;
upLimit = upLimit−vectU(i);

end
vectU(n) = upLimit;

Figure 6. Matlab code for the UFitting algorithm.

on, until Un is deterministically set to the value Un = Ū − ∑n−1
i=1 Ui . This method, referred

to as UFitting, is described by the code illustrated in Figure 6.
The UFitting algorithm has an O(n) complexity, but it has the major disadvantage of being

asymmetrical, meaning that the U1 has a different distribution than U2, and so forth.
Moreover, as depicted in Figure 7, the achieved distribution is again not uniform, and

task sets having different values of Ui ’s (those with δ close to 1) are generated with higher
probability. Hence, for the same reasons stated in Remark 2, generating the utilizations by
the UFitting algorithm favors RM with respect to EDF.

3.5. The UUniform Algorithm

The problems previously encountered can be solved through the method depicted in Figure 8,
referred to as the UUniform algorithm.
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Figure 7. Result of the UFitting algorithm.

function vectU = UUniform(n, U)
while 1

vectU = U .∗rand(1,n−1);
if sum(vectU) <= U % boundary condition

break
end

end
vectU(n) = U−sum(vectU);

Figure 8. Matlab code for the UUniform algorithm.

As depicted in Figure 9, the UUniform algorithm generates task utilizations with uniform
distribution.

The problem with this algorithm, however, is that it has to run until the boundary condition
is verified once (see the code of UUniform). As proved by Bini et al. (2003) the probability
of such an event is 1/(n − 1)!, hence the average number of iterations needed to generate
a single tuple is (n − 1)!, which makes the algorithm unpractical.

3.6. The UUniFast Algorithm

To efficiently generate task sets with uniform distribution and with O(n) complexity, we
introduce a new algorithm, referred to as the UUniFast algorithm. It is built on the consider-
ation that the p.d.f. of the sum of independent random variables is given by the convolution
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Figure 9. Result of the UUniform algorithm.

of their p.d.f.’s. Given that the i random variables are uniformly distributed in [0, 1] (so
their p.d.f.’s are 1 in [0, 1] and 0 everywhere else) the convolution is a piecewise polynomy
of the (i − 1)th degree. In our fortunate case, the sum of the variables must be less than or
equal to a value b ≤ 1, thus the p.d.f. of the sum of the uniform variables, constrained to
be less than or equal to b, is:

fi (u) =





1

b
ui−1 if u ∈ [0, b]

0 otherwise
(26)

Hence, the cumulative distribution function (c.d.f.) is:

Fi (u) =






0 if u ≤ 0
(

u

b

)i

if 0 < u ≤ b

1 if u > b

(27)

Using this c.d.f.’s, the UUniFast algorithm first generates a value of the sum of n − 1
variables. Then it sets the first utilization equal to the difference between Ū and the just
generated value. So it keeps generating the random variable “sum of i uniform variables” and
computing the single utilization Ui as the difference with the previous sum. The algorithm
can be precisely described by the code reported in Figure 10.

As we can see from the code, the complexity of the UUniFast algorithm is O(n) and
the generated utilization tuples are characterized by a uniform distribution (the result is the
same as that illustrated in Figure 9).
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function vectU = UUniFast(n, U)
sumU = U ;

for i=1:n−1,
nextSumU = sumU.∗randˆ(1/(n−i));
vectU(i) = sumU − nextSumU;
sumU = nextSumU;

end
vectU(n) = USum;

Figure 10. Matlab code for the UUniFast algorithm.

function vectU = UUniSort(n, U)
v = [0, rand(1,n−1), U ];
sumU = sort(v);
vectU = sumU(2:n+1)−sumU(1:n);

Figure 11. Matlab code for the UUniSort algorithm.

3.7. The UUniSort Algorithm

A more elegant version of the algorithm for achieving a uniform distribution is to generate
n −1 uniform values in [0, Ū ], add 0 and Ū to the vector, sort it, and then set the utilizations
equal to the difference of two adjacent values (Marzario, 2004). This algorithm, referred to
as UUniSort, is coded as shown in Figure 11.

Note that the UUniSort algorithm, although more elegant than UUniFast, has an
O(n log(n)) complexity.

3.8. Comparing The Algorithms

Figures 5 and 7 qualitatively show the uneven distribution of the generated task sets in
the utilization space for the UScaling and the UFitting algorithm, respectively. A quantita-
tive measure of the resulting distribution can be provided by computing the U-difference
parameter defined in Eq. (1).

Figure 12 shows the probability density function of the U-difference, when n = 8 and
2 · 105 random task sets are generated.

As expected, the utilizations generated by the UScaling algorithm are characterized by
values of U-difference close to zero, meaning that the utilization values tend to be similar
to each other. On the other hand, the utilizations generated by the UFitting algorithm differ
much more, as proved by the long tail of the related U-difference density function.

4. Metrics Comparison

In this section we present a set of simulation experiments aimed at comparing the three
metrics discussed in the paper. Although the numerical results provided here are not intended
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Figure 12. Value of δ for different generation methods.

to be an absolute measure of the RM schedulability, the objective of this work is to show
that RM is capable of scheduling many more task sets than commonly believed.

Comparing the three metrics is not trivial, because they have different definitions and
require different simulations. More specifically, while the utilization upper bound Uub de-
pends only on periods and deadlines, both the breakdown utilization U ∗ and the optimality
degree OD also depend on the computation times (i.e., on the utilizations). Hence, the algo-
rithm selected for the random generation of the computation times/utilizations may affect
the results.

Two groups of experiments are presented: the first group is intended to check the influence
of the random parameters generation routines on the considered metrics; the second group
is aimed at testing how period relations affect the metrics.

4.1. Effects of the Generation Algorithm

The first two experiments show the influence of the generation algorithm on the metrics.
We remind that Uub does not depend on the computation times of the tasks set. For this
reason, this subsection only compares the breakdown utilization U ∗

n with the Optimality
Degree ODRM (D, U ). The simulation was carried out by fixing the periods and deadlines,
and then generating the computation times. Note that this choice is not restrictive, because
the distribution of U ∗

n and ODRM (D, U ) scales with Uub. Task periods were set to the values
shown in Table 2.

In Table 2 all the U (i)
ub are reported. The computation times where the optimal solution of

the problem in Eq. (11) occurs is reported as well. As you can notice, the schedulability of
the task τi is not influenced in any way by all the lower priority tasks. This fact is represented
in the table by the symbol “-”. For the specific period selection, Uub is given by the minimum
among the numbers in the fourth column, which is 9

10 = 0.9.
Considering the Definition 1, we expect the breakdown utilization to be always greater

than the Uub. This fact is confirmed by the simulation results reported in Figure 13. In this
experiment, 2 · 105 tuples have been generated for each method described in Section 3. The
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Table 2. Task set parameters.

where U (i)
ub occurs

i Ti Di U (i)
ub C1 C2 C3 C4 C5 C6

1 3 3 1 3 − − − − −
2 8 8 11

12 = 0.9167 2 2 − − − −
3 20 20 9

10 = 0.9 0 4 8 − − −
4 42 42 201

210 = 0.9571 1 0 2 22 − −
5 120 120 201

210 = 0.9571 0 0 0 36 12 −
6 300 300 9

10 = 0.9 0 0 0 0 60 120
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Figure 13. c.d.f. of U∗ for different algorithms.

plots in the figure clearly show the biasing factor introduced by the different generation
algorithms. In fact, the breakdown utilization has a larger c.d.f. when tasks are generated
with the UScaling algorithm, meaning that RM is penalized. The opposite effect occurs when
tasks are generated with UFitting, which favors RM more than under the uniform distribution
produced by UUniFast. As synthetic values for the c.d.f.’s we can use the expectation of the
three breakdown utilization random variables obtained by the three different methods, that
is

E[U ∗|UScaling] = 0.9296,

E[U ∗|UUniFast] = 0.9372,

E[U ∗|UFitting] = 0.9545.

However, as extensively discussed in Section 2.1, the breakdown utilization is not a fair
metric for evaluating the difference between RM and EDF in terms of schedulability. For
this purpose, the Optimality Degree (OD) has been introduced in Section 2.3. Figure 14
reports the OD values as a function of the total utilization and for different generation
methods.
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Figure 14. OD for different algorithms.

In this experiment, 3·105 task sets are generated, 5000 for each value of the utilization.
The insight we derive is consistent with the previous experiment: the UScaling algorithm
penalizes RM more than UUniFast, whereas UFitting favors RM by generating easier task
sets.

Assuming the total utilization is uniform in [0, 1], the NOD parameter (see Definition 4
and Eq. (24)) is computed for the three methods:

NOD|UScaling = 0.9679

NOD|UUniFast = 0.9739

NOD|UFitting = 0.9837

showing a much better behavior of RM than expected with the breakdown utilization. The
result of the experiments are summarized in Table 3.

The metric we consider more reliable is NOD|UUniFast, because it is related to the real
percentage of feasible task sets and it refers to task sets uniformly distributed in the utilization
space. As a consequence, in the next simulations, the UUniFast algorithm is adopted for
generating the utilizations Ui .

Table 3. Schedulability results for RM.

Metric Value

Uub(Mn) 0.9
E[ U∗|UScaling] 0.9296
E[ U∗|UUniFast] 0.9372
E[ U∗|UFitting] 0.9545
NOD|UScaling 0.9679
NOD|UUniFast 0.9739
NOD|UFitting 0.9837
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4.2. Effects of the Task Set Parameters

In the two experiments described in this section task periods are uniformly generated in
[1, B] and then utilizations are generated by the algorithm UUniFast. The objective of
the experiments is to compare the metrics E[Uub], E[U ∗] and E[NOD]. For the sake of
simplicity, we will omit the expectation operator E[·].

The objective of the first experiment is to study the dependency of the metrics on the
number n of tasks. To do that, we set B = 100 and generated a total number of 2 · 104 task
sets. As expected, all the metrics report a decrease in the schedulability under RM and they
are ordered in a way similar to the first experiment.

The second experiment of this section aims at considering the dependency of the metrics
on the task periods. To do so, we set n = 4 and let B vary in the interval [1, 104]. We
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Figure 16. Metrics as a function of periods.
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generated 5 · 104 task sets. The result is reported in Figure 16. When B = 1 the periods are
all the same value. The value of 1 is then what we expected.

In addition, all the three metrics seems to have a minimum for B = 2. This fact is also
confirmed by the asymptotical study of the breakdown utilization (reported in Theorem 1)
and by many different proofs in the real-time literature (Liu and Layland, 1973; Burchard
et al., 1995; Chen et al., 2003; Bini et al., 2003) which show this phenomenon.

5. Conclusions

The motivation for writing this paper has been to analyze in great detail how the methodology
used for evaluating the performance of fixed priority scheduling algorithms affects the
results. In particular, we have considered two metrics commonly used in the literature and
showed that both the breakdown utilization and the utilization upper bound can be unfair
in judging the performance of the Rate/Deadline Monotonic scheduling algorithms. We
also illustrated that significant biasing factors can be introduced by the routines used for
generating random task sets.

The main result achieved from this study is that current metrics intrinsically evaluate
the behavior of RM in pessimistic scenarios, which are more critical for fixed priority
assignments than for dynamic systems. The use of unbiased metrics, such as the Optimality
Degree, shows that the penalty payed in terms of schedulability by adopting fixed priority
scheduling is less than commonly believed.

Notes

1. E[X ] denotes the expectation of the random variable X , and σX denotes its standard deviation.
2. We remind that in Matlab arrays can be assigned using the same syntax used for variables.
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