
Why Real-Time Computing?

Giorgio Buttazzo
Scuola Superiore Sant’Anna, Italy

Email: buttazzo@sssup.it

Abstract

Today’s control systems are implemented in software and
often require the concurrent execution of periodic and ape-
riodic activities interacting through a set of shared memory
buffers storing global data. Most of the times, controllers
are designed assuming an ideal and predictable behavior of
the execution environment; in other cases, a constant delay
is only considered in the loop to take computer interferences
into account. Unfortunately, reality is more complex, and
the operating system may introduce unpleasant surprises in
control applications.

This paper presents the potential problems that may
arise in a computer controlled system with real-time char-
acteristics and proposes a set of methods for ensuring pre-
dictability and guaranteeing that the system behaves as pre-
dicted in the design.

1 Introduction

Most of today’s control systems are implemented in soft-
ware and often require the concurrent execution of several
periodic and aperiodic activities interacting through a set
of shared resources (typically consisting of memory buffers
storing global data). In a modular design, each sensory ac-
quisition activity is normally associated with a periodic task
that gets data from the sensory board and puts them into a
shared memory buffer. Control activities are also imple-
mented as periodic tasks that read data from buffers, com-
pute the output values of the control variables and put the
results in other buffers, used by device drivers to actually
drive the actuators. In some cases, especially when the sys-
tem is based on a hierarchial architecture, control and ac-
quisition activities are required to run at different rates.

Figure 1 illustrates a typical control application consist-
ing of six tasks: boxes represent shared resources and disks
represent tasks (acquisition, processing, control, and out-
put tasks are denoted by A, C, P, and O, respectively). Each
layer of this control hierarchy effectively decomposes an in-
put task into simpler subtasks executed at lower levels. The

top-level input command is the goal, which is successively
decomposed into subgoals, or subtasks, at each hierarchical
level, until at the lowest level, output signals drive the actua-
tors. Sensory data enter this hierarchy at the bottom and are
filtered through a series of sensory-processing and pattern-
recognition modules arranged in a hierarchical structure.
Each module processes the incoming sensory information,
applying filtering techniques, extracting features, comput-
ing parameters, and recognizing patterns.

buffer buffer

buffer buffer

buffer

buffer

buffer

A

C

C

O

P

P

ActuatorsSensors

GoalMonitoring

Figure 1. A hierarchical control system.

Sensory information that is relevant to control is ex-
tracted and sent as feedback to the control unit at the same
level; the remaining partially processed data is then passed
to the next higher level for further processing. As a re-
sult, feedback enters this hierarchy at every level. At the
lowest level, the feedback is almost unprocessed and hence
is fast-acting with very short delays, while at higher levels
feedback passes through more and more stages and hence
is more sophisticated but slower. To correctly implement
such a hierarchical control structure and execute all tasks in
a predictable fashion, several issues have to be taken into
account:

Proceedings of the 2006 ANIPLA
International Congress on

Methodologies for Emerging 
Technologies in Automation (ANIPLA)

W111#ANIPLA©2006



1. First of all, the operating system should provide a
proper support for periodic tasks execution and include
an internal mechanism to automatically activate a task
at the beginning of each period.

2. The scheduling algorithm should maximize the proces-
sor utilization and enable the user to analyze the sys-
tem behavior to verify the schedulability of the task set
(that is, to check whether each task is able to complete
within its deadline).

3. The kernel should also detect possible deadline misses
due to execution overruns, to allow the application to
react with proper recovery actions.

4. When tasks cooperate through mutually exclusive re-
sources protected by classical semaphores, the system
is prone to priority inversion phenomena [21], which
can cause unbounded delays on tasks execution due
to complex blocking interferences. To prevent such
a problem, the kernel should provide suitable concur-
rency control protocols to correctly access shared re-
sources.

5. Non blocking communication mechanisms are also
essential for exchanging information among periodic
tasks running at different rates. In fact, a blocking fac-
tor could cause a fast task to slow down, synchroniz-
ing with the rate of the slower task. This problem can
be solved by using special asynchronous buffers with
override semantics and non-consumable messages.

6. When control applications perform intensive I/O oper-
ations, interrupt handling routines can create high and
unpredictable interference on control activities, caus-
ing extra delays and jitter that could even jeopardize
system stability. To limit the interference of interrupt
drivers, suitable aperiodic service mechanisms need to
be adopted in the kernel to protect the execution of crit-
ical tasks.

Unfortunately, these problems are often ignored and dig-
ital controllers are normally designed by neglecting the
characteristics of the machine running the application, so
implicitly assuming an ideal and predictable behavior of
the execution environment. For simple control systems run-
ning on a computer with abundant resources, such a design
practice does not cause any problem in the control system.
However, when the application has a high degree of con-
currency or it runs on an embedded platform with limited
resources, the consequences become visible and may sig-
nificantly degrade system performance. For some critical
conditions, the non-ideal behavior of the execution environ-
ment can even cause the instability of the controlled system
[7]. For example, an unpredictable delay introduced in a

task controlling an inverted pendulum could cause the pole
to cross the critical angle and fall down.

The objective of this paper is to illustrate the possible
problems that can be introduced in a control application
by the operating system and present a set of solutions that
can be easily adopted to make the control system more pre-
dictable.

The rest of the paper is organized as follows: Section
2 describes the mechanisms that a real-time kernel should
provide for supporting period tasks execution; Section 3
presents the scheduling algorithms that can be used to han-
dle periodic tasks and the analysis that can be performed
to guarantee the feasibility of the application; Section 4 il-
lustrates some problems caused by mutual exclusion and
some solutions to overcome them; Section 5 presents an
asynchronous communication mechanism for sharing data
among periodic tasks with different rates; Section 6 de-
scribes problems and solutions caused by interrupts; and,
finally, Section 7 states our conclusions.

2 Supporting periodic tasks

Periodic activities represent the major computational
load in a real-time control system. For example activities
such as actuator control, signal acquisition, filtering, sen-
sory data processing, action planning, and monitoring, need
to be executed with a frequency derived from the applica-
tion requirements.

A periodic task is modeled as an infinite sequence of in-
stances, or jobs, that cyclically execute the same code on
different data. Each task�� is characterized by a worst-
case execution time��, a period��, and a relative dead-
line ��. The ��� job of task� is denoted as����, (where
� � �� �� � � �). Assuming that all the tasks are simultane-
ously activated at time	 � �, the release time
��� of job ����
(that is, the time at which the task becomes ready for execu-
tion for the��� time) is given by
��� � �������. Then, the
job executes for a time���� � �� and must complete its ex-
ecution by an absolute deadline equal to� ��� � 
��� ���.
The finishing time of a job���� is denoted as
��� and the
worst-case response time of a task is defined as the max-
imum finishing time relative to the release time, that is,
�� � �	


�
�
��� � 
����.

To correctly support periodic task execution and relieve
the user from defining its own timers, a real-time operating
system should have the following features:

1. First of all, it should include a programming interface
for creating periodic tasks, allowing the user to specify
the typical periodic task parameters (that is, the com-
putation time��, the period��, and the relative dead-
line��).



/*——————————————————————–*/
task id = taskcreate(body, extime, period, deadline);
taskactivate(taskid);

/*——————————————————————–*/
task control()
�
�local variables�

while (TRUE)�
�get sensor data from the input buffer�;
�process sensory data�
�put results in the output buffer�
taskendcycle();

�
�

/*——————————————————————–*/

Figure 2. Typical operating system calls for
periodic tasks.

2. Then, it should enforce periodicity by a kernel mech-
anism for automatically activating a task at the begin-
ning of each period.

3. Finally, it should perform a runtime check to verify
that each job executes for no more than its worst-case
execution time�� and completes no later than its ab-
solute deadline����. An overrun exception should be
generated if���� � ��, and a deadline miss exception
if 
��� � ����.

Figure 2 illustrates typical system calls used for creating
and activating a periodic task. A sample periodic control
task is also shown.

Thetask endcycle() system call is needed to no-
tify the kernel that the job finished its cycle and needs to be
suspended until the beginning of the next period. All sus-
pended jobs have to be enqueued in an IDLE queue, ordered
by release times. The kernel is responsible for checking the
system clock to wake up all the jobs that reached the be-
ginning of their next period. Figure 3 illustrates the typical
state transition diagram for a periodic task.

Notice that, in order to check for execution overruns, the
kernel must have a precise time accounting mechanism to
keep track of the actual job execution. Unfortunately, only
very few operating systems (e.g., Shark [22]) include such
a feature.

3 Task scheduling

The test to verify the schedulability of the task set
heavily depends on the scheduling algorithm and on the

BLOCKED

READY

IDLE

RUNNING
task_activate

wake_up

system timer

dispatching
task_kill

signal wait

preemption

task_endcycle

Figure 3. Task state diagram for a periodic
task.

task model. In 1973, Liu and Layland [17] analyzed two
scheduling algorithms for handling periodic tasks: Rate-
Monotonic (RM), which assigns each task a fixed prior-
ity directly proportional to its activation rate, and Earliest
Deadline First (EDF), which assigns tasks a dynamic prior-
ity inversely proportional to the current absolute deadline,
so the task with the highest priority is the one with the ear-
liest absolute deadline. Given a set of� periodic tasks with
relative deadlines equal to periods (�� � ��), Liu and Lay-
land were able to relate the feasibility of the task set with
the processor utilization, defined as� �

��
���

��

��
. They

proved that, if tasks do not block on synchronous opera-
tions,

� A set of� periodic real-time tasks is schedulable by
RM if � � ����	� � ��.

� A set of� periodic real-time tasks is schedulable by
EDF if and only if� � �.

Note that the RM bound provides only a sufficient condition
for guaranteeing the schedulability, hence a task set could
be schedulable by RM even for higher utilizations less than
or equal to 1. Clearly, no algorithm can schedule a task set
if � � �. The RM bound decreases with� and tends to the
following limit value:

���
���

����	� � �� � �
 � � �����

In spite of its lower utilization bound, the RM algorithm is
widely used in real-time applications, manly for its simplic-
ity. In fact, being a static scheduling algorithm, it can easily
be implemented on top of commercial operating systems,
using a set of fixed priority levels, whereas EDF requires
an explicit kernel support for managing absolute deadlines.
However, EDF is superior to RM under several aspects
and allows the application to fully exploit the available re-
sources, reaching up to 100% of the available processing
time. Dertouzos [9] showed that EDF is optimal among all
on line algorithms, meaning that if a task set is not schedu-
lable by EDF, then no algorithm can ever produce a feasible



schedule for that task set. When the utilization is less than
one, the residual fraction of time can be efficiently used to
handle aperiodic requests activated by external events. In
addition, compared with RM, EDF generates a lower num-
ber of preemptions, thus causing less runtime overhead due
to context switches. A detailed comparison between RM
and EDF can be found in [6].

A more precise schedulability test for RM can be per-
formed using the Hyperbolic Bound [4], according to which
a periodic task set is schedulable by RM if

��
���

�
��

��
� �

�
� �� (1)

The schedulability analysis for tasks with relative deadlines
less than or equal to periods can also be performed, but it
is more complex for both algorithms. The Deadline Mono-
tonic (DM) algorithm, proposed by Leung and Whitehead
[16], extends RM to handle tasks with relative deadlines less
than or equal to periods. According to DM, at each instant
the processor is assigned to the task with the shortest rela-
tive deadline. A necessary and sufficient test to verify the
schedulability of a periodic task set was independently pro-
posed several authors [2, 13, 15]. It consists in computing
the worst-case response time�� of each task and verifying
whether it is less than or equal to its relative deadline. The
worst-case response time is derived by summing its compu-
tation time and the interference caused by tasks with higher
priority:

�� � �� �
�

���
���

�
��

��

�
��� (2)

where����� denotes the set of tasks having priority higher
than task� and��� denotes the ceiling of a rational number,
i.e., the smaller integer greater than or equal to�. The equa-
tion above can be solved by an iterative approach, starting
with����� � �� and terminating when����� � �������.
If ����� � �� for some task, then the task set cannot be
feasibly scheduled by DM. Under EDF, the schedulability
analysis for periodic task sets with deadlines less than pe-
riods is based on theProcessor Demand Criterion [3]. Ac-
cording to this method, a task set is schedulable by EDF
if and only if, � � � and, for every interval of length
� � � the overall computational demand is no greater than
the available processing time, that is, if and only if

	� � �

��
���

�
�� �� ���

��

	
�� � �� (3)

Note that this test can only be checked for values of� equal
to those deadlines no larger than a given bound���
 �
������� ��, where� is the task hyperperiod (that is, the

���
���
���
���

normal execution

critical section

t2

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

τ 2

τ 1

τ 3

blocked

t0 t1 t3 t4 t6t5 t7

Figure 4. Example of priority inversion.

least common multiple of the periods) and�� is given by

�� �

��
���

��� ������
��� ����

� (4)

4 Shared resource protocols

When tasks interact through shared memory buffers,
the use of classical synchronization mechanisms, such as
semaphores or monitors, can cause a phenomenon known
as priority inversion [21]. It refers to the case in which a
high priority task is blocked by a low priority task for an
unbounded interval of time. Such a situation can create se-
rious problems in critical control systems, since it can jeop-
ardize system stability. For example, consider three tasks,
��, �� and��, having decreasing priority (�� is the task with
the highest priority), and assume that�� and�� share a data
structure protected by a binary semaphore�. As shown in
Figure 4, suppose that at time	� task�� enters its critical
section and that, at time	�, it is preempted by��.

At time 	�, when�� tries to access the shared resource,
it is blocked on semaphore� and we would expect that it
is blocked for an interval no longer than the time needed by
�� to complete its critical section. Unfortunately, however,
the maximum blocking time for�� can be much larger. In
fact, if a medium priority task (like��) preempts�� before
it can release the resource, the blocking interval of�� is pro-
longed for the entire execution of��! The problem could be
solved by simply disabling preemption inside critical sec-
tions. This solution, however, is appropriate only for very
short critical sections, because it could introduce unneces-
sary delays in high priority tasks, even though they do not
share resources. A more efficient solution is to regulate the
access to shared resources through the use of specific con-
currency control protocols [19], designed to limit the prior-
ity inversion phenomenon.



���
���
���
���

normal execution

critical section

t2 t7t5 t6

���
���
���

���
���
���

�����
�����
�����

�����
�����
�����

����
����
����

����
����
����

τ 2

τ 1

τ 3

t0 t1 t3 t4

push−through blocking

direct blocking

Figure 5. Schedule produced under Priority
Inheritance.

4.1 Priority Inheritance Protocol

An elegant solution to the priority inversion phenomenon
caused by mutual exclusion is offered by the Priority Inher-
itance Protocol (PIP) [21]. Here, the problem is solved by
dynamically modifying the priorities of tasks that cause a
blocking condition. In particular, when a task�� blocks on
a shared resource, it transmits its priority to the task�� that
is holding the resource. In this way,�� will execute its criti-
cal section with the priority of task��. In general,�� inher-
its the highest priority among the tasks it blocks. Moreover,
priority inheritance is transitive, thus if task�� blocks��,
which in turn blocks��, then�� will inherit the priority of
�� through��.

Figure 5 illustrates how the schedule shown in Figure 4
is changed when resources are accessed using the Priority
Inheritance Protocol. At time	�, when�� blocks on the
semaphore (direct blocking),�� inherits the maximum pri-
ority among the tasks blocked on that resource, thus it con-
tinues the execution of its critical section at the priority of
��. Under these conditions, at time	�, task�� is not able
to preempt��, hence it blocks until the resource is released
(push-through blocking).

In other words, although�� has a nominal priority greater
than��, it cannot interfere during the critical section, be-
cause�� inherited the priority of��. At time 	�, �� exits
its critical section, releases the semaphore and recovers its
nominal priority. As a consequence,�� can proceed until its
completion, which occurs at time		. Only then,�� can start
executing.

The Priority Inheritance Protocol has the following prop-
erty [21]: Given a task� , if � is the number of lower priority
tasks sharing a resource with a task with priority higher than
or equal to� and� is the number of semaphores that could
block � , then� can be blocked for at most the duration of
������ �� critical sections.

Although the Priority Inheritance Protocol limits the pri-

ority inversion phenomenon, the maximum blocking time
for high priority tasks can still be significant, due to possi-
ble chained blocking conditions. Moreover, deadlock can
occur if semaphores are not properly used in nested critical
sections.

4.2 Priority Ceiling Protocol

The Priority Ceiling Protocol [21] provides a better so-
lution for the priority inversion phenomenon, also avoiding
chained blocking and deadlock conditions. The basic idea
behind this protocol is to ensure that, whenever a task� en-
ters a critical section, its priority is the highest among those
that can be inherited from all the lower priority tasks that are
currently suspended in a critical section. If this condition is
not satisfied,� is blocked and the task that is blocking�
inherits� ’s priority. This idea is implemented by assigning
each semaphore apriority ceiling equal to the highest pri-
ority of the tasks using that semaphore. Then, a task� is al-
lowed to enter a critical section only if its priority is strictly
greater than all priority ceilings of the semaphores locked
by the other tasks. As for the Priority Inheritance Protocol,
the inheritance mechanism is transitive. The Priority Ceil-
ing Protocol, besides avoiding chained blocking and dead-
locks, has the property that each task can be blocked for at
most the duration of a single critical section.

4.3 Schedulability Analysis

The importance of the protocols for accessing shared re-
sources in a real-time system derives from the fact that they
can bound the maximum blocking time experienced by a
task. This is essential for analyzing the schedulability of a
set of real-time tasks interacting through shared buffers or
any other non-preemptable resource, e.g., a communication
port or bus. To verify the schedulability of task� � using
the processor utilization approach, we need to consider the
utilization factor of task��, the interference caused by the
higher priority tasks and the blocking time caused by lower
priority tasks. If�� is the maximum blocking time that can
be experienced by task��, then the sum of the utilization
factors due to these three causes cannot exceed the least up-
per bound of the scheduling algorithm, that is:

	�� � � � � ��
�

���
���

��

��
�
��

��
� ����	� � ��� (5)

where����� denotes the set of tasks with priority higher
than��. The same test is valid for both the protocols de-
scribed above, the only difference being the amount of
blocking that each task may experience.



5 Asynchronous communication buffers

This section describes how blocking on shared resources
can be avoided through the use of Cyclical Asynchronous
Buffers [5], or CABs, a kind of wait free mechanism which
allows tasks to exchange data without forcing a blocking
synchronization.

In a CAB, read and write operations can be performed si-
multaneously without causing any blocking. Hence, a task
can write a new message in a CAB while another task is
reading the previous message. Mutual exclusion between
reader and writer is avoided by means of memory dupli-
cation. In other words, if a task�� wants to write a new
message into a CAB while a task�� is reading the current
message, a new buffer is created, so that�� can write its
message without interfering with��. As �� finishes writ-
ing, its message becomes the most recent one in the CAB.
To avoid blocking, the number of buffers that a CAB must
handle has to be equal to the number of tasks that use the
CAB plus one.

CABs were purposely designed for the cooperation
among periodic activities running at different rates, such as
control loops and sensory acquisition tasks. This approach
was first proposed by Clark [8] for implementing a robotic
application based on hierarchical servo-loops, and it is used
in the SHARK kernel [11] as a basic communication sup-
port among periodic hard tasks.

In general, a CAB provides a one-to-many communica-
tion channel, which at any instant contains the latest mes-
sage or data inserted in it. A message is not consumed by a
receiving process, but is maintained into the CAB structure
until a new message is overwritten. As a consequence, once
the first message has been put in a CAB, a task can never
be blocked during a receive operation. Similarly, since a
new message overwrites the old one, a sender can never be
blocked.

Notice that, using such a semantics, a message can be
read more than once if the receiver is faster than the sender,
while messages can be lost if the sender is faster than the
receiver. However, this is not a problem in many control ap-
plications, where tasks are interested only in fresh sensory
data rather than in the complete message history produced
by a sensory acquisition task.

To insert a message in a CAB, a task must first reserve
a buffer from the CAB memory space, then copy the mes-
sage into the buffer, and finally put the buffer into the CAB
structure, where it becomes the most recent message. This
is done according to the following scheme:

buf pointer =reserve(cab id);
�copy message in *bufpointer�
putmes(buf pointer, cabid);

Similarly, to get a message from a CAB, a task has to
get the pointer to the most recent message, use the data,
and then release the pointer. This is done according to the
following scheme:

mespointer =getmes(cab id);
�use message�
unget(mespointer, cabid);

5.1 An example

To better illustrate the CAB mechanism, we describe an
example in which a task�� writes messages in a CAB, and
two tasks,���

and���
, read messages from the CAB. As

it will be shown below, to avoid blocking and preserve data
consistency, the CAB must contain 4 buffers. Consider the
following sequence of events:

� At time 	�, task�� writes message�� in the CAB.
When it finishes,�� becomes the most recent data
(mrd) in the CAB.

� At time 	�, task���
asks the system to read the most

recent data in the CAB and receives a pointer to��.

� At time 	�, task�� asks the system to write another
message�� in the CAB, while���

is still reading��.
Hence, a new buffer is reserved to�� . When it fin-
ishes,�� becomes the most recent data in the CAB.

� At time 	�, while ���
is still reading��, ���

asks the
system to read the most recent data in the CAB and
receives a pointer to��.

� At time 	�, while���
and���

are still reading,�� asks
the system to write a new message�� in the CAB.
Hence, a third buffer is reserved to�� . When it fin-
ishes,�� becomes the most recent data in the CAB.

� At time 		, while���
and���

are still reading,�� asks
the system to write a new message�� in the CAB.
Notice that, in this situation,�� cannot be overwritten
(being the most recent data), hence a fourth buffer must
be reserved to�� . In fact, if �� is overwritten,���

could ask reading the CAB while�� is writing, thus
finding the most recent data in an inconsistent state.
When�� finishes writing�� into the fourth buffer,
themrd pointer is updated and the third buffer can be
recycled if no task is accessing it.

� At time 	
, ���
finishes reading�� and releases the

first buffer (which can then be recycled).

� At time 	�, ���
asks the system to read the most recent

data in the CAB and receives a pointer to��.



τ R1

τ R2 τ W

M1 M2 M3 empty

mrd

CAB

Figure 6. CAB configuration at time 	�.

Figure 6 illustrates the situation in the example, at time
	�, when�� is writing�� in the third buffer. Notice that at
this time, the most recent data (mrd) is still��. It will be
updated to�� only at the end of the write operation.

6 Interrupt handling

Interrupts generated by I/O peripheral devices may also
introduce unpredictable delays in control task execution.
In fact, in most operating systems, the arrival of an inter-
rupt from an I/O device causes the immediate execution of
a service routine (device handler) dedicated to the device
management. In other words, a device driver always pre-
empts an application task. This approach is motivated by
the fact that, since I/O operations interact with the environ-
ment, they have real-time constraints, whereas most appli-
cation programs do not. In the context of real-time control
systems, however, this assumption is certainly not valid, be-
cause a control process could be more urgent than an inter-
rupt handling routine. Since, in general, it is very difficult to
bound a priori the number of interrupts that a task may ex-
perience, the delay introduced by the interrupt mechanism
on tasks’ execution becomes unpredictable.

To reduce the interference of the drivers on the applica-
tion tasks and still perform I/O operations with the external
world, the operating system should handle interrupts with
appropriate aperiodic service mechanisms that can be ana-
lyzed to provide an a-priori guarantee of the real-time con-
straints [5]. In other words, interrupts should be handled as
soon as possible, but without jeopardizing the schedulabil-
ity of critical control activities.

A typical technique used in real-time systems to sched-
ule aperiodic requests is based on the concept of aperiodic
server, which is a kind of periodic task whose purpose is
to serve aperiodic requests in a predictable fashion. Like a
periodic task, a server is characterized by a period�� and a
budget��. In general, the server is scheduled with the same
algorithm used for periodic tasks, and, once active, it serves
the aperiodic requests within the limit of its budget. The
order of service of the aperiodic requests is independent of
the scheduling algorithm used for the periodic tasks, and it

can be a function of the arrival time, computation time or
deadline.

During the last years, several aperiodic service algo-
rithms have been proposed in the real-time literature, dif-
fering in performance and complexity. Under fixed prior-
ity schemes, the most common algorithms are the Polling
Server [14], the Deferrable Server [25], and the Sporadic
Server [23]. Under dynamic priority schemes (which are
more efficient in the average) we recall the Total Bandwidth
Server [24] and the Constant Bandwidth Server [1].

7 Conclusions

This paper illustrated the importance of a suitable oper-
ating system support when executing complex control ap-
plications subject to real-time constraints. Among the most
important features needed to execute control applications
with high predictability, a real-time kernel should provide

1. a proper support for executing periodic tasks with ex-
plicit timing constraints;

2. an efficient scheduling algorithm to maximize the pro-
cessor utilization and enable the user to analyze and
verify the schedulability of the task set;

3. an runtime mechanism to detect execution overruns
and deadline misses, to allow the application to react
with proper recovery actions;

4. suitable concurrency control protocols to correctly ac-
cess shared resources;

5. non blocking communication mechanisms for ex-
changing information among periodic tasks running at
different rates; and

6. appropriate aperiodic service mechanisms to handle
interrupt drivers in a controlled fashion and protect the
execution of critical tasks.

Without these features, complex control applications
could experience highly variable and unpredictable delays,
which could significantly degrade the performance of the
controlled system, or even jeopardize its stability.

Today, unfortunately, only a few research operating sys-
tems provide full real-time features able to cope with the
problems presented in this paper. For example, VxWorks
[26] and QNX-Neutrino [18], the most popular commercial
real-time kernels, include the Priority Inheritance protocol
for avoiding priority inversion, but do not have specific sup-
port for handling periodic tasks with explicit timing con-
straints, do not support deadline scheduling, do not have a
time accounting mechanism for measuring the actual execu-
tion time of tasks (necessary to handle execution overruns



and overload conditions), and do not include advanced ape-
riodic service algorithms.

All these features are included into Shark [22], a free
modular real-time kernel for PC platforms, developed at the
Scuola Superiore Sant’Anna of Pisa. Each function (like
scheduling, resource management policy, synchronization
protocol, aperiodic service algorithm, etc.) is available as
a software module that can be easily replaced, or combined
with other modules, to build a custom kernel for specific
real-time applications.

Other kernels providing some of the real-time features
mentioned in this paper are MarteOS [20] and Erika En-
terprise [10]. MarteOS is a real-time kernel for PC plat-
forms developed at the University of Cantabria (Spain); it is
mostly written in ADA, has a POSIX interface, and allows
the user to specify the scheduler at the application level.
Erika Enterprise is an OSEK compliant real-time kernel
specifically designed for minimal embedded systems with
limited onboard resources; it is fully configurable from a
minimal memory footprint of 2 Kbytes, up to more com-
plete configurations.

References

[1] L. Abeni and G. Buttazzo, “Resource Reservation in
Dynamic Real-Time Systems,” Real-Time Systems,
Vol. 27, No. 2, pp. 123–167, July 2004.

[2] N.C. Audsley, A. Burns, M. Richardson, K. Tindell
and A. Wellings, “Applying New Scheduling Theory
to Static Priority Preemptive Scheduling”,Software
Engineering Journal 8(5), pp. 284-292, Sept. 1993.

[3] S. K. Baruah, R. R. Howell, and L. E. Rosier, “Al-
gorithms and Complexity Concerning the Preemptive
Scheduling of Periodic Real-Time Tasks on One Pro-
cessor,”Real-Time Systems, 2, 1990.

[4] E. Bini, G.C. Buttazzo and G.M. Buttazzo, “Rate
Monotonic Analysis: The Hyperbolic Bound,”IEEE
Transactions on Computers, 52(7), pp. 933–942, July
2003.

[5] G. Buttazzo. Hard Real-Time Computing Systems:
Predictable Scheduling Algorithms and Applications
- Second Edition, Springer, 2005.

[6] G. Buttazzo, ”Rate Monotonic vs. EDF: Judgment
Day”, Real-Time Systems, Vol. 28, pp. 1-22, 2005.

[7] Anton Cervin, “Integrated Control and Real-
Time Scheduling,” Doctoral Dissertation, ISRN
LUTFD2/TFRT-1065-SE, Department of Automatic
Control, Lund, April 2003.

[8] D. Clark, “HIC: An Operating System for Hierarchies
of Servo Loops,”Proceedings of IEEE International
Conference on Robotics and Automation, 1989.

[9] M.L. Dertouzos, “Control Robotics: the Procedural
Control of Physical Processes,”Information Process-
ing, 74, North-Holland, Publishing Company, 1974.

[10] The Erika Enterprise kernel, Evidence s.r.l., URL:
http://www.evidence.eu.com/Erika.asp

[11] P. Gai, L. Abeni, M. Giorgi, G. Buttazzo, “A New Ker-
nel Approach for Modular Real-Time Systems Devel-
opment,”IEEE Proc. of the 13th Euromicro Confer-
ence on Real-Time Systems, Delft (NL), June 2001.

[12] T. M. Ghazalie and T. P. Baker, “Aperiodic Servers
In A Deadline Scheduling Environment,”Real-Time
Systems, 1995.

[13] M. Joseph and P. Pandya, “Finding Response Times in
a Real-Time System,”The Computer Journal, 29(5),
pp. 390-395, 1986.

[14] J. P. Lehoczky, L. Sha, and J. K. Strosnider, “En-
hanced Aperiodic Responsiveness in Hard Real-Time
Environments,”Proceedings of the IEEE Real-Time
Systems Symposium, pp. 261-270, 1987.

[15] J. P. Lehoczky, L. Sha, and Y. Ding, “The Rate-
Monotonic Scheduling Algorithm: Exact Characteri-
zation and Average Case Behaviour”,Proceedings of
the IEEE Real-Time Systems Symposium, pp. 166-171,
1989.

[16] J. Leung, and J. Whitehead, “On the Complexity
of Fixed Priority Scheduling of Periodic Real-Time
Tasks,” Performance Evaluation, 2(4), pp. 237-250,
1982.

[17] C.L. Liu and J.W. Layland, “Scheduling Algorithms
for Multiprogramming in a Hard real-Time Environ-
ment,”Journal of the ACM 20(1), 1973, pp. 40–61.

[18] QNX Neutrino RTOS, QNX Software Systems, URL:
http://www.qnx.com.

[19] R. Rajkumar, Synchronous Programming of Reactive
Systems, Kluwer Academic Publishing, 1991.

[20] M. Aldea Rivas and M. Gonzlez Harbour, “MaRTE
OS: An Ada Kernel for Real-Time Embedded Appli-
cations,” Proc. of the 6th International Conference on
Reliable Software Technologies (Ada-Europe 2001),
Leuven, Belgium, May 2001.

[21] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority
Inheritance Protocols: An Approach to Real-Time
Synchronization,”IEEE Transactions on Computers,
39(9), pp. 1175-1185, 1990.

[22] The Shark real-time kernel. URL: http://shark.sssup.it/

[23] B. Sprunt, L. Sha, and J. Lehoczky, “Aperiodic Task
Scheduling for Hard Real-Time System,”Journal of
Real-Time Systems, 1, pp. 27-60, June 1989.

[24] M. Spuri and G.C. Buttazzo, “Scheduling Aperiodic
Tasks in Dynamic Priority Systems,”Real-Time Sys-
tems, 10(2), 1996.

[25] J.K. Strosnider, J.P. Lehoczky, and L. Sha, “The De-
ferrable Server Algorithm for Enhanced Aperiodic
Responsiveness in Hard Real-Time Environments,”
IEEE Transactions on Computers, 44(1), Jan. 1995.

[26] VxWorks Real-Time Operating System, Wind River
Corp., URL: http://www.windriver.com/vxworks.


