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its performance during voltage changes. This model
implements two key mechanisms at the kernel level: 

• Nonblocking communication buffers prevent the
scheduling anomalies caused by speed variations and
allow data exchange among periodic tasks with non-
harmonic period relations.

• To cope with permanent overloads caused by speed
reductions, an elastic task-scheduling approach auto-
matically adjusts task rates based on a set of coeffi-
cients, which the developer can assign during the
design phase based on task importance.

To simplify comparison of task schedules executed at
different clock frequencies, within a range [fmin, fmax], all
quantities of interest, such as computation time and uti-
lization, are expressed as a function of speed, defined as
the normalized frequency S = f/fmax. Thus, the validity
range for normalized speed is [Smin, Smax], where Smin =
fmin/fmax and Smax = 1. In addition, for clarity, task execu-
tion times are considered to be inversely proportional
to processor speed—they are thus modeled as Ci(S) =
Ci(1)/S, where Ci(1) is the task execution time at the
maximum processor speed. However, the proposed solu-
tions do not depend on that condition and apply to dif-
ferent execution time models. Finally, in all scheduling
illustrations, the vertical axis represents processor speed.

REAL-TIME TASK-SCHEDULING PROBLEMS
Several problems can occur when a real-time applica-

tion runs on a variable-speed processor. When tasks
share access to mutually exclusive resources or execute
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M ost embedded computing systems—includ-
ing cell phones, wearable computers, cam-
eras, sensor networks, portable multime-
dia players, GPS-based navigation devices,
video game consoles, and smart toys—are

powered by batteries. Energy consumption is a critical
aspect of these systems, directly affecting both perfor-
mance and lifetime. 

Unfortunately, high performance and a long battery
life are conflicting objectives: To achieve high perfor-
mance, the system must operate at high speed, which
consumes more power, whereas achieving a long bat-
tery life requires the system to consume less energy,
which means operating at lower power. 

A high-level strategy can exploit this dependency
depending on current application needs. For example,
the system can degrade performance to achieve longer
battery duration or it can increase performance at the
expense of higher energy consumption. 

In the presence of timing and resource constraints,
however, a real-time system’s performance does not
always improve as processor speed increases. Similarly,
when reducing processor speed, the delivered service’s
quality might not always degrade as expected. The
“Speed-Performance Tradeoff Anomalies” sidebar
explains this dilemma in more detail.

Although many researchers have looked at reducing
energy consumption of real-time applications,1-6 the
problem of scaling performance with speed variations
requires further exploration. A proposed computational
model varies task response times continuously with
processor speed, enabling the system to predictably scale

Achieving Scalability in
Real-Time Systems



in a nonpreemptive fashion, response times can
actually increase when the processor runs at higher
speeds. In addition, decreasing speed can cause a
permanent overload that degrades system perfor-
mance. Such problems, if not properly handled,
make it impossible to control a real-time system’s
performance as a function of the voltage and limit
the use of real-time scheduling algorithms for
resource optimization. 

Shared resources
Figure 1 illustrates a simple example in which

two tasks, τ1 and τ2, share a common resource.
Task τ1 has a higher priority, arrives at time t = 2,
and has a relative deadline D1 = 7. Task τ2, having
lower priority, arrives at time t = 0 and has a rela-
tive deadline D2 = 23. 

Suppose that, when the tasks are executed at a
certain speed S1, τ1 has a computation time C1 = 6
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Figure 1.Task-scheduling anomaly in the presence of resource

constraints. (a) Task τ1 meets its deadline when the processor is 

executing at a certain speed S1, but (b) misses its deadline when the

speed is doubled.

In a computer system, power consumption is related to
the voltage at which the circuits operate according to an
increasing convex function, whose precise form depends on
the specific technology. For example, in complementary
metal-oxide semiconductor circuits, reducing the supply
voltage can achieve a quadratic power savings at the expense
of a roughly linear frequency reduction.1-3

The speed and voltage at which the processor operates
can control the amount of energy (power × time) that a
portable system consumes. Most current processors are
thus designed to work at different voltage levels, enabling
applications to run at different speeds.

Theoretically, increasing processor speed should cause
application tasks to finish earlier and thereby improve sys-
tem performance. However, this is not always the case.
Ronald L. Graham4 showed that several scheduling anomalies
can arise when running real-time applications on
multiprocessor systems.When tasks share mutually exclu-
sive resources, such anomalies can also appear in a
uniprocessor system due to blocking factors.

Conversely, decreasing voltage to save energy consump-
tion should cause an application to run slower in a con-
trolled fashion, wherein all tasks increase their response
times according to some predefined strategy—for example,
depending on their priority level. Again, this cannot be
achieved when the computational activities have interde-
pendencies due to synchronization conditions or shared
resources.

In addition, reducing processor speed increases the appli-
cation tasks’ computation time, which, as Figure A shows, can
lead to resource contention and processor overload. If the
overload is permanent, the application can behave quite

unpredictably and the system can experience abrupt perfor-
mance degradation.

Figure A. System performance does not increase

monotonically with processing speed due to overload condi-

tions and resource contention.
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Nonpreemptive tasks
Figure 2 illustrates anomalous behavior occurring in

a set of three real-time tasks—τ1, τ2, and τ3—running in
nonpreemptive mode. Tasks are assigned a fixed prior-
ity proportional to their relative deadline; thus, τ1 is the
task with the highest priority and τ3 is the task with the
lowest priority. 

As Figure 2a shows, when tasks are executed at speed
S1, τ1 has a computation time C1 = 2 and completes at
time t = 6. However, if the same task set is executed at
speed S2 = 2S1, τ1 misses its deadline, as Figure 2b shows.
This happens because, when τ1 arrives, τ3 has already
started its execution and cannot be preempted.

A set of nonpreemptive tasks can be considered as a
special case of a set of tasks sharing a single, mutually
exclusive resource for their entire execution. Each task
executes as if it were inside a long critical section with
a length equal to the task computation time. Once a task
starts executing, it behaves as if it were locking a com-
mon semaphore, thus preventing the processor from
executing all other tasks.

Permanent overload
Figure 3 shows the negative effects of a permanent

overload condition, caused by a speed reduction, in a set
of periodic tasks τ1, τ2, and τ3. Figure 3a shows the fea-
sible schedule produced by the rate monotonic (RM)
algorithm7 when the processor runs at a given speed S1,
where the tasks have computation times C1 = 2, C2 = 2,
and C3 = 4, respectively. Figure 3b shows the schedule
that RM obtains when the processor speed is S2 = S1/2,
such that all computation times are doubled. In this 
case, a speed reduction generates a permanent overload
that causes τ2 to miss its deadline and prevents τ3

from executing. 
Note that a scheduling algorithm based on absolute

deadlines, such as earliest deadline first (EDF),7 would
not prevent τ3 from executing and would react to over-
loads by delaying all tasks’ executions more evenly.
Previous work compared RM and EDF in detail for dif-
ferent scenarios.8

AVOIDING SHARED-RESOURCE BLOCKING 
Cyclical asynchronous buffers9 prevent scheduling

anomalies due to speed variations and allow data
exchange among periodic tasks with nonharmonic
period relations. CABs are a kind of wait-free mecha-
nism that let tasks perform read and write operations
simultaneously via memory duplication. If a task τW

wants to write a new message into a CAB while a task τR

is reading the current message, the system creates a new
buffer so that τW can write its message without interfer-
ing with τR. As τW finishes writing, its message becomes
the most recent one in the CAB. To avoid blocking, the
number of buffers that a CAB must handle must equal
the number of tasks that use the CAB plus one.

(with 2 units of time spent in the critical section),
whereas τ2 has a computation time C2 = 16 (with 12
units of time spent in the critical section). 

As Figure 1a shows, if τ1 arrives just before τ2 enters
its critical section, it can complete before its deadline,
without experiencing any blocking. However, if the
same task set is executed at speed S2 = 2S1, τ1 misses its
deadline, as shown in Figure 1b. This occurs because,
when τ1 arrives, τ2 has already granted its resource, caus-
ing extra blocking in the execution of τ1 due to mutual
exclusion.
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Figure 2.Task-scheduling anomaly in the presence of non-

preemptive tasks. (a) Task τ1 meets its deadline when the

processor is executing at speed S1, but (b) misses its deadline

when the speed is doubled.
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Figure 3. Effects of a permanent overload due to processor

speed reduction. In case (b), the processor is running at half-

speed with respect to case (a).



CABs were purposely designed to enable
cooperation among periodic activities run-
ning at different rates, such as control loops
and sensory acquisition tasks. The soft/hard
real-time kernel (SHaRK)10 uses this mecha-
nism as a basic communication support for
periodic tasks.

In general, a CAB provides a one-to-
many communication channel that at any
instant contains the latest message inserted
into it. A message is not consumed by a
receive process, but rather is maintained in
the CAB until a new message overwrites it.
Consequently, once the system has put the
first message into a CAB, a task can never
be blocked during a receive operation.
Similarly, since a new message overwrites
the old one, a sender can never be blocked. 

Note that, using such semantics, a mes-
sage can be read more than once if the
receiver is faster than the sender, while mes-
sages can be lost if the sender is faster than
the receiver. However, this is not a problem
in many control applications, where tasks
are interested only in fresh sensory data
rather than in the complete message history
that a sensory acquisition task produces.

To insert a message in a CAB, a task must
first reserve a buffer from the CAB memory
space, then copy the message into the
buffer, and finally put the buffer into the
CAB structure, where it becomes the most
recent message. This is accomplished as 
follows:

buf_pointer = reserve(cab_id); 
<copy message in *buf_pointer>   
putmes(buf_pointer, cab_id);

Similarly, to retrieve a message from a CAB, a task
must get the pointer to the most recent message, use the
data, and then release the pointer. The following code
executes this action:

mes_pointer = getmes(cab_id);   
<use message>               
unget(mes_pointer, cab_id);

COPING WITH PERMANENT OVERLOADS
To avoid the negative effects of a permanent overload

caused by a processor speed reduction, the user must
specify task periods with some degree of flexibility so
that the system can resize them to remove the overload
condition. The elastic task model, described in the
“Elastic Task Model” sidebar, provides an efficient way
to accomplish task-rate adaptation.

Elastic tasks 
Using the elastic approach, the EDF algorithm7 assigns

a higher priority to tasks with a shorter absolute dead-
line. Thus, if the nominal workload

is greater than 1 (there is a permanent overload in the
system), the system must reduce the utilization of each
task so that the total utilization becomes 

. 

This is akin to a linear spring system, in which a force F
compresses springs (depending on their elasticity) up to
a desired total length. Figure 4 illustrates compression
of the utilizations of a set of elastic tasks. 

In the absence of period constraints (that is, if Tmax =
8), the utilization Ui of each compressed task can be
computed as follows11:
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Elastic Task Model

Given a uniprocessor system whose speed S can be controlled as a
function of the supplied voltage, the elastic task model1 offers an efficient
way to automatically adjust task rates in real-time applications.This model
treats task utilizations like springs that can adapt to a given workload
through period variations.

Unlike other methods, the elastic model makes it easy to determine a
new period configuration dynamically as a function of elastic coefficients
that reflect the tasks’ importance. Once the coefficients are defined based
on some design criterion, periods can be quickly computed depending on
the current workload and desired load level.

An application consists of a set of periodic tasks, each characterized by
four parameters:

• a worst-case computation time Ci(S), which is a function of the speed;
• a nominal period Ti0

, the desired minimum period;
• a maximum allowed period Timax

; and 
• an elastic coefficient Ei.

The elastic coefficient specifies the task’s ability to vary its utilization for
adapting the system to a new feasible rate configuration—the greater Ei,
the more elastic the task.Thus, an elastic task is denoted as τi(Ci, Ti0

, Timax
,

Ei).
From a design perspective, elastic coefficients can be set equal to values

that are inversely proportional to the tasks’ importance.Thus,Ti denotes
the actual period of task τi, which is constrained to be in the range [Ti0

,
Timax

]; U i0
denotes the nominal utilization of task τi, that is, Ui0

= Ci/Ti0
; and

Uimin
denotes its minimum utilization, that is, Uimin

= Ci/Timax
.
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(1)

where

(2)

In the presence of period constraints (Ti = Timax), how-
ever, finding the value Ti requires an iterative solution.
In fact, if one or more tasks reach their maximum period
during compression, the additional compression can
only affect the remaining periods.

Thus, at each instant, the set Γ of tasks can be divided
into two subsets: a set Γf of fixed tasks having a maxi-
mum period, and a set Γv of variable tasks whose period
can still be enlarged. Applying Equations 1 and 2 to the
set Γv of variable springs yields the following result: 
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If there are tasks for which Ui < Uimin, the system must
fix the period of those tasks at its maximum value Timax
(so that Ui = Uimin

), sets Γf and Γv must be updated (thus,
Uf and Ev recomputed), and Equation 3 must be applied
again to the tasks in Γv. If there is a feasible solution,
that is, if the desired utilization Ud is greater than or
equal to the minimum possible utilization 

, 

the iterative process ends when each value that
Equation 3 computes is greater than or equal to
its corresponding minimum Uimin

. In the worst
case, the compression algorithm converges to a
solution (if one exists) in O(n2) steps, where n is
the number of tasks.11

The system can use the same algorithm to reduce
the periods when the overload is over, thereby
adapting task rates to the current load condition to
better exploit computational resources.

Coping with discrete voltage levels
Processors with discrete voltage levels (and thus

discrete speeds) might not exploit total processor
utilization because the ideal speed that minimizes
energy consumption while guaranteeing timing
constraints might not be available. To ensure
schedulability in such processors, the actual speed
must be set to the closest level higher than the ideal
speed. However, this means that the processor is
underutilized.

Consider the situation illustrated in Figure 5 in
which the processor can only run at three speed
levels (S1 = 1, S2 = 2/3, and S3 = 1/3), and the real-
time application consists of two periodic tasks
with a total utilization U = 0.5 when the proces-
sor executes at its maximum speed (Figure 5a).
Clearly, running the task set at the optimal speed
S∗ = 0.5 would fully utilize the processor and sig-
nificantly reduce energy consumption. However,
since this speed is not available, the processor
must run at speed S2 = 2/3 (higher than S∗) to meet
timing constraints. As Figure 5b shows, when the
processor executes at S2, the total utilization of
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Figure 4. Compressing the utilizations of a set of elastic tasks. (a) The

system is overloaded. (b) Enlarging task periods reduces the total uti-

lization to the desired value.
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wasting 25 percent of the processor.
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the task set becomes U(S2) = 0.75, leaving 25 percent of
the processor unused.

In these situations, the system can invoke elastic sched-
uling to exploit the unused processor capacity and run
the application tasks with higher rates, thereby improv-
ing system performance. Figure 6a illustrates the sched-
ule that results from applying this approach.

Alternatively, the system can use elastic scheduling to
reduce energy consumption by allowing the processor to
run at a speed lower than ideal. In the example described
above, if the speed is set at S3 = 1/3, task periods can be
properly enlarged to fully utilize the processor, as Figure
6b shows. Note that, without applying the elastic
method, speed S3 would cause a permanent overload that
would degrade system performance uncontrollably.

M utually exclusive resources and nonpreemptive
code can generate scheduling anomalies in a
processor with dynamic voltage scaling, causing

tasks to increase their response times when the processor
runs at higher speeds. Even worse, decreasing the speed
can cause a permanent overload that degrades system
performance in an uncontrolled fashion.

Such problems can be efficiently handled through a
set of kernel mechanisms, including cyclic asynchronous
buffers and elastic scheduling, that let system designers
scale the performance of real-time applications as a func-
tion of processor speed. As successfully done in the
SHaRK kernel, both CABs and elastic scheduling can
be easily implemented on top of any real-time operat-
ing system, as a middleware layer, and they should be
included in current standards to develop embedded sys-
tems with real-time and energy requirements. ■
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Figure 6. Elastic scheduling.The system can exploit elastic scheduling (a) to shrink task periods and improve performance when it

cannot set the speed at the ideal value or (b) to increase task periods and reduce energy consumption while preventing overloads.
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