
Efficient EDF Implementation for Small Embedded Systems

Giorgio Buttazzo
Scuola Superiore Sant’Anna

Pavia, Italy
buttazzo@sssup.it

Paolo Gai
Evidence S.r.l.

Pisa, Italy
pj@evidence.eu.com

Abstract

Modern embedded systems are often required to
execute under stringent real-time constraints to sat-
isfy high performance requirements. When the avail-
able computational resources are scarce, an efficient
implementation of the scheduler is of crucial impor-
tance for containing system costs. In this paper, we
present an efficient implementation of the Earliest
Deadline First (EDF) scheduler, which is typically
considered difficult and expensive to implement with
respect to fixed priority algorithms, such as the Rate
Monotonic (RM) scheduler. The higher resource uti-
lization and the greater flexibility in handling ape-
riodic requests and overload conditions make EDF
highly desirable for real-time embedded systems. We
show that by using suitable kernel mechanisms for
time representation, EDF can be effectively used
even in small microprocessors for achieving pre-
cise time representation and increasing system uti-
lization. Another important issue for adopting new
schedulers in the market is their compliance with
existing standards. For this reason, in this paper
we discuss how to achieve a compliance with the
OSEK/VDX API, widely used on automotive embed-
ded systems, and we show how commercial kernels
can integrate an EDF scheduler while maintaining
an OSEK compliant API. Finally, we provide some
performance measurements to show that implement-
ing and EDF scheduler on a commercial OSEK-like
kernel, such as ERIKA Enterprise, only introduces
negligible overhead.

1 Introduction

Many modern embedded systems have to satisfy
high performance requirements and have to execute
in dynamic environments where the characteristics
of the computational load cannot be precisely pre-
dicted at design time. In this context, to cope with
the uncertainty, the operating system must provide
efficient support for real-time scheduling and must

be adaptive to modify the internal policies as a func-
tion of the current load conditions. When system
resources are scarce, as usual in small embedded de-
vices, an efficient implementation of the scheduler
is of crucial importance for achieving the required
performance while containing system costs.

Scheduling methods are typically distinguished
into off-line and on-line algorithms. Off-line algo-
rithms build the scheduling sequence before task ex-
ecution, assuming that all tasks have an expected be-
havior that can be predicted by analyzing the task
code. The scheduling table is built to satisfy a set
of constraints specified on the task set and is used
on line to activate the tasks according to the pre-
computed sequence. The strength of this approach
is that complex constraints (such as deadlines, jit-
ter, precedence relations, resource conflicts, non pre-
emption, and fault tolerance) can be taken into ac-
count to produce a feasible schedule. Another ad-
vantage of this approach is that, once the schedule
is computed and stored in a table, the runtime over-
head is negligible, because all scheduling decisions
are taken off line, and only a dispatcher is needed to
read the next task from the table and put in execu-
tion. On the other hand, there are two main disad-
vantages in the off-line approach: one is that storing
the entire scheduling table may require a lot of mem-
ory, depending on the task parameters, which may be
prohibitive in embedded microprocessor with small
memory requirements. Another disadvantage of this
method is that it works only if all the tasks are known
in advance and behave as predicted.

Unfortunately, in many practical situations, tasks
are dynamically activated upon the occurrence of
specific events and their execution is quite difficult
to predict in advance, due to a complex dependency
on input data. As a consequence, when using an
off-line approach, an a-priory guarantee can only be
achieved by making very pessimistic assumptions
on the environment, which cause a waste of sys-
tem resources. This problem is even more significant
for small embedded systems, where the resource are
scarce and need to be carefully allocated.

1

Administrator
Proc. of the 2nd Int. Workshop on Operating Systems Platforms for Embedded Real-Time applications (OSPERT 2006), Dresden, Germany, July 2006.

To overcome these limitations, mainly due to
rigid a-priori assumptions, on-line algorithms build
the schedule as tasks enter the systems. When tasks
consist of an indefinite sequence of jobs (which may
be activated periodically or aperiodically), on-line
algorithms are in turn distinguished in two classes:
fixed priority and dynamic priority algorithms. In
fixed priority algorithms, all jobs of a task are as-
signed the same priority, so the relative priority be-
tween any two tasks does not change. On the con-
trary, in dynamic priority algorithms, jobs belong-
ing to the same task may have different priority, so
the relative priority of two tasks is not fixed, but can
change with time.

A typical example of a fixed priority assignment
is given by the Rate Monotonic (RM) algorithm [12],
according to which a periodic task is assigned a fixed
priority proportional to its rate: the higher the acti-
vation rate, the higher the priority. Another example
of fixed priority assignment is given by the Deadline
Monotonic (DM) algorithm [11], according to which
the priority of a task is inversely proportional to its
relative deadline: the shorter the relative deadline,
the higher the priority. Since the relative deadline is
fixed for all the jobs of a task, DM is a fixed priority
algorithm. The Earliest Deadline First (EDF) algo-
rithm [12] is an example of dynamic priority policy,
because a job is assigned a priority that is inversely
proportional to its absolute deadline: the shorter the
absolute deadline, the higher the priority. Since the
absolute deadline changes from job to job, the rela-
tive priority between tasks is not fixed, but depends
on the absolute deadlines of the current active jobs.

Fixed priority algorithms are simpler to imple-
ment on top of commercial kernels, but dynamic al-
gorithms are superior in many aspects, such as pro-
cessor utilization, schedulability analysis, flexibility
in overload management, and efficiency in aperiodic
task handling. A detailed comparison between Rate
Monotonic and EDF has been discussed by But-
tazzo [4] under several perspectives. In spite of their
advantages, however, dynamic scheduling methods
are not widely used in embedded real-time systems,
mainly because fixed priority algorithms are much
simpler to implement, especially on top of commer-
cial kernels.

In this paper we show that, by using suitable ker-
nel mechanisms for time representation and schedul-
ing, EDF can be effectively used, even in small mi-
croprocessors, for increasing system utilization and
achieving a timely execution of periodic and aperi-
odic tasks.

Moreover, we show how EDF can easily be in-
tegrated in commercial kernels to achieve a compli-
ance with the OSEK/VDX standard [15]. This is an
important issue to consider when supporting legacy
applications. In fact, many industries are reluctant to

use novel scheduling techniques only because of the
potential change they could introduce in the software
design and implementation. Hence, a wide accep-
tance of a new scheduling paradigm can only be ob-
tained if the enhancements can be provided without
changing the current industrial practice. To address
this issue, we show how EDF can be integrated with
the existing OSEK/VDX standard without modify-
ing application source code. Specific performance
results are presented for the ERIKA Enterprise ker-
nel [8], showing that the extra overhead introduced
by our EDF implementation is negligible, compared
with fixed priority algorithms.

The rest of the paper is organized as follows. Sec-
tion 2 presents the related work. Section 3 presents
the problem of time representation in deadline-based
schedulers and introduces an efficient method suit-
able for small real-time kernels. Section 4 shows
how to implement resource reservation and budget
management mechanisms. Section 5 shows the mod-
ifications done on an OSEK-like kernel to support
EDF scheduling. Section 6 shows some performance
results, and Section 7 states our conclusions and fu-
ture work.

2 Related Work

A lot of work has been done in the context of
small scale embedded real-time systems. For ex-
ample, the MCX11 kernel [14] is a kernel totally
written in assembly code for the Motorola 68HC11
microcontroller. It can manage up to 126 tasks and
has a memory footprint of 3 Kbytes. Task schedul-
ing is performed based on a fixed priority scheme
and task communication may occur through shared
memory buffers or message queues. The kernel does
not provide a notion of global time, but only allows
posting events with a time granularity of 50 millisec-
onds. TinyOS [20] is another kernel for embedded
devices typically used for sensor network devices. It
is mainly written in NesC (a dialect of the C lan-
guage), and it implements a set of features useful for
small-scale embedded devices. It lacks basic real-
time support, as the schedule is a non-preemptive
FIFO scheduler. SSX5 is a commercial real-time
system produced by ETAS Gmbh [19] for M68HC12
and other microcontrollers. This kernel provides
fixed priority preemptive scheduling and it is based
on the single-shot execution model, in which tasks
run to completion when activated. They are pre-
empted as appropriate, but always complete before
returning control to the lower priority task they have
preempted. Single shot execution allows the use of a
single stack, which leads to significant reduction in
RAM requirements. MaRTE OS [17] is another real-
time kernel for embedded applications, which allows
greater flexibility. Most of its code is written in Ada

2

with some C and assembler parts and it follows the
Minimal Real-Time POSIX.13 subset. MaRTE im-
plements an application defined scheduler that can
support EDF scheduling on top of it.

MICOS [13] is a microkernel developed for the
Motorola 68HC11 micocontroller, which is also
available for Intel X86 architectures. To facilitate
portability on different platforms, the kernel consists
of two main layers: the kernel layer and the hard-
ware layer. MICOS is one of the few kernels which
implements dynamic EDF-based scheduling for bet-
ter resource utilization. It handles hard real-time
tasks, soft real-time tasks, and non critical activities.
The time management method adopted in the ker-
nel is the one described in this paper. It was used
to implement a resource reservation mechanism for
providing temporal isolation among tasks [1, 2], as
well as good aperiodic responsiveness. The reserva-
tion mechanism allows the user to reserve a fraction
of processor to each soft task to guarantee a min-
imum level of performance. The efficiency of the
time management also allows monitoring task ex-
ecution times for detecting execution overruns and
collecting statistical information on timing parame-
ters. The kernel with all real-time features requires
8 Kbytes of memory. ERIKA Enterprise [8] is a
modular kernel for real-time systems produced by
Evidence Srl. It implements the OSEK/VDX API,
and it also proposes extensions to handle embed-
ded multiprocessor-on-a-chip, and dynamic prior-
ity scheduling, like EDF and soft reservations. For
architectures with very small RAM requirements,
ERIKA Enterprise provides a mono-stack task man-
agement policy, where all tasks can share the same
stack. The kernel also supports multi-stack models
to provide blocking synchronization and communi-
cation primitives.

On the side of the operating system standards, we
would like to cite the OSEK/VDX standard, which
was developed by major automotive industries for
the specification of the kernel API of embedded con-
trol units (ECU). The OSEK standard [15] is specif-
ically designed for small embedded systems, having
in mind the need to save as much RAM/ROM space
as possible. For these reason, OSEK-like systems
only support static configuration of kernel objects
(such as tasks, resources, alarms, etc.) through an
additional language named OIL. The OSEK/VDX
standard supports preemptive and non-preemptive
fixed priority scheduling using Immediate Priority
Ceiling. In Section 5 we will describe how an ef-
ficient implementation of the EDF scheduler can
be integrated in the OSEK/VDX implementation of
ERIKA Enterprise to provide innovative algorithms
without changing the current industrial practice.

��������

�� �� ��

��������� ���������

Figure 1. Linear time model with 32
bits.

3 Time representation

One of the problems that need to be solved when
implementing an EDF scheduler is to provide a
time representation for expressing absolute dead-
lines. Notice that fixed priority schedulers do not
have this problem, since periods and relative dead-
lines can be mapped into a set of priority levels
and do not have to be explicitly represented. In a
deadline-based operating system, time can be repre-
sented in two ways: as a single integer or as a pair
of integers. In the first case, an integer variable is
used to track the elapsed time since reset; the value
is in fact set to zero at system initialization and pe-
riodically incremented at every timer interrupt. The
interval between two consecutive timer interrupts is
called the system tick and defines the time resolution.
In the second case, typical of POSIX systems, time is
represented by a more complex structure (struct
timespec), that is used to represent seconds and
nanoseconds. Operations on timespec are typically
avoided in small microcontrollers because of their
complexity. For this reason, only the first option will
be considered in the following paragraphs.

The system’s lifetime is the maximum time the
system can operate without causing a real-time clock
overrun. It depends on the number of bits used for
time representation and on the time resolution. For
example, with a 10 ms resolution, a linear time clock
represented on 16 bits has a lifetime of about 11 min-
utes, which is not suitable for most real-time appli-
cations.

Typical operating systems for medium size ma-
chines use a linear time model, where time is rep-
resented using a 32 bit variable with 1 millisecond
resolution. In this case, the system lifetime has a
value of about a few months. An example of linear
time model is illustrated in Figure 1.

The main advantage of such a solution is that an
event �� precedes another event �� if and only if
�� � �� . The disadvantage of a linear time model,
however, is that it imposes a finite lifetime. In-
creasing the lifetime requires either using a larger
number of bits or setting a lower time resolution.
Unfortunately, both solutions can be inappropriate
for an embedded system with stringent memory re-
quirements and real-time constraints. In fact, han-

3

dling 32-bit time variables on a 8-bit microcontroller
would cause a large overhead, since each 32-bit inte-
ger operation must be split into several 8-bit instruc-
tions, also considering the reduced number of reg-
isters available (3 for the M68HC11). A large life-
time with a small number of bits can be achieved by
decreasing the time resolution. For example, a life-
time of 1 month with 16-bit time representation can
be achieved using a resolution of 1.6 seconds, which
however is unsuitable for most practical cases.

In general, a time management mechanism
should have the following characteristics:

1. Time resolution should be as high as possible in
order for the kernel to provide high responsive-
ness to asynchronous events. High timer reso-
lution also allows to increase processor utiliza-
tion in the case task periods or deadlines are not
multiple of the system tick. In this situation, in
fact, to avoid missing deadlines, a period which
is not multiple of the tick, should be reduced to
the closest multiple. Hence, the higher the res-
olution, the smaller the utilization increase due
to the period reduction.

2. The maximum time interval � handled by the
system should be as long as possible in order to
manage tasks with large periods or long relative
deadlines (with respect to the system tick).

3. In embedded systems with stringent memory
requirements, the system time should be repre-
sented using the minimum number of bits. Such
a requirement is in contrast with the previous
ones and imposes a trade off in the kernel.

4. The time management mechanism should not
introduce a large runtime overhead.

In general, possible compromises depend on sev-
eral factors, including the processor speed, the avail-
able memory, the efficiency of the kernel, the time
horizon required by the application, the maximum
extension of the relative timing constraints, the task
criticality, and the number of tasks in the system.

A reasonable compromise among the four re-
quirements stated above is to use a circular time
model. It differs from the linear one in that it han-
dles the overflow condition occurring when the �-
bit variable used to represent the system time passes
from �� � � to �.

Figure 2 shows a circular time model, imple-
mented using a 16-bit variable. In this model, each
cycle has a length � = 10000H (hexadecimal), hence
two events with a time difference greater than or
equal to � cannot be handled by the system with-
out additional information. For example, Figure 2
shows two cycles in which four events are repre-
sented. Since events �� and �� have the same value
(�� � ��), they are considered simultaneous by

���� ����

��

��

��

�
�

�

Figure 2. Circular time model with 16
bits.

the system, although they occur in two different cy-
cles. Similarly, the time distance between �� and ��
(�� � ��) is considered to be the same as the one
between �� and ��

�
(��

�
� �� = �� � ��).

In summary, when working with 8-bit or 16-bit
microcontrollers, a long lifetime can be achieved ei-
ther using a 32-bit linear timer (with a large over-
head) or with a 16-bit circular timer, by handling the
overflow of the system clock variable (in this case
the lifetime becomes infinite). It is worth observing
that, when using a circular timer, the overflow has to
be managed at every time comparison, and hence it
must be efficiently handled.

In this work, we implemented the Implicit Cir-
cular Timer’s Overflow Handler (ICTOH), first pro-
posed by Carlini and Buttazzo [5], which is able
to handle such a timer overflow with a very small
overhead compared with other existing techniques
[16, 9, 7].

3.1 The ICTOH algorithm
This section describes the Implicit Circular

Timer’s Overflow Handler (ICTOH) [5], which al-
lows an efficient representation of absolute deadlines
in a circular time model. We first introduce the fol-
lowing definitions.

[Def.] An event and its temporal reference on the
circular timer is denoted as ��. Thus, for exam-
ple, we can say that �� is a task activation and
that �� � ����� .

[Def.] The set of temporal references stored in the
system at time � is denoted as ����.

[Def.] The absolute time at which an event � � �
���� occurs is denoted as �����.

[Def.] The circular timer period is denoted as � . In
other words, � is the minimum interval of time

4

between two non simultaneous events charac-
terized by the same representation in the sys-
tem.

[Def.] We say that two events ��	 �� � ���� belong
to the same cycle if the interval [�����, �����]
represented on the circular timer does not in-
clude the values FFFFH and 0000H. For exam-
ple, in Figure 2 �� and �� do not belong to the
same cycle, whereas �� and �� do belong.

Then the ICTOH method can be defined as fol-
lows.

ICTOH: If events are represented by �-bit un-
signed integers, such that

�� ���	 �� � ���� ������� ������ �
�

�
(1)

then �� ���	 �� � ���� we have:

1. �����
 ����� �� ��� � ��� �
�
�
	 ��� �

��� �� �

2. ����� � ����� �� ��� � ���

�
�

3. ����� � ����� �� ��� � ��� � �

where � denotes a subtraction (modulo ��) be-
tween �-bit integers, evaluated as an unsigned �-
bit integer.

It is worth observing that for 8/16/32-bit integers
such a subtraction operation does not require a spe-
cial support since it is implemented in all CPUs. Fig-
ure 3 shows a set of events which satisfies condition
(1).

Notice that condition (1) represents the price we
have to pay for implementing a high resolution timer
with an infinite lifetime. It means that the system can
only handle tasks with timing constraints that cannot
exceed the value of ��� ticks.

So, for example, if the tick is set to 1 ms, and we
use a 16 bit variable for storing the system time, then
� � ��� � 	

�	, meaning that the longest timing
variable cannot be greater than 32.768 seconds. If
the application includes a task with a greater period,
we can increase the system tick, until a value equal
to the least timing value in the system.

So, actually, ��� represents the maximun ratio
between the longest and the smallest timing parame-
ter. If there is a task set where such a ratio is greater
than ���, then the ICTOH method cannot be used,
and we are forced to pay a greater overhead for han-
dling time variables with a higher number of bits.

The main property of the � operator is that
��	
 � ��	 �� � �� ���������
� �� � ������	
�

where

���

���

���� ����

��

��������

��������

Figure 3. Example of events evaluated
by ICTOH.

	 ������	 �� is the distance from � to � evaluated
on the time circle in the direction of increasing
time values. Notice that ������	 �� � � means
that if � � � then, after a delay of �, we have
� � �, independently of the fact that � and �
belong to two different cycles.

	 ����������� is the value of �, interpreted as an
�-bit unsigned value. We recall that according
to the 2’s complement representation,

����������� �

�
� if �
 �
��
 � otherwise.

For example, when evaluating events �� and �� in
Figure 3, we have that ��� � ������� � �����

����� � ���. Hence, we conclude that �� must
precede �� and that the actual time difference be-
tween the events is ��� � ��� � ��� � ����� �
���.

3.2 Extension
The constraint expressed by equation (1) can be

relaxed if we consider disjoined sets of events.
[Def.] Two sets of events ����� and ����� are said

to be disjoined if every element of the first set
is never compared with an event of the second
set.

[Def.] Let � be the set of all the disjoined sets in
the system.

Then, we can formulate constraint (1) as follows:

�� ������ � � ��� ���	 �� � �����

������� ������ �
�

�
� (2)

In this way it is possible to manage temporal
events which are spread in intervals greater than

5

���� ����

��

��

��

��

��

Figure 4. Two groups of disjoint events
���	 ��� ��	 ��	 ��� that can be handled by
the ICTOH method.

���, provided that events belonging to the same
group are not separated by a time difference greater
than ���. Figure 4 illustrates two groups of events
that satisfy constraint (2).

Task activation times and deadlines represent a
typical example of two disjoint groups of events. In
fact, although an absolute deadline is computed from
task’s activation time (by summing the correspond-
ing relative deadline), the deadline event enters the
system only after task activation, hence there is no
need to compare the two events.

3.3 Implementation notes
Given a pair of events �� end �� represented

through variables with 8, 16, or 32 bits, then by com-
puting the difference ��� � ��� as a signed integer we
can say that:

�����
 ������� ��� � ���
 �

����� � ������� ��� � ��� � �

����� � ������� ��� � ��� � �

It is worth noting that such a result is valid only
for variables represented on 8/16/32 bits, since only
in this case all unsigned numbers with a value greater
than or equal to ��� (evaluated using the two’s com-
plement representation) are considered to be nega-
tive. For variables with a different number of bits,
the test has to be performed as shown in the previ-
ous section, which in several CPUs does not cause a
larger overhead in terms of time and memory.

4 Implementing resource reservations

The ICTOH method can in general be used to ef-
ficiently implement various EDF-based algorithms.
For example, on the ERIKA Enterprise kernel [8],

Figure 5. �� initially preempts ��, but
due to a deadline postponement it is
later on preempted by �� at time 5.

we easily realized a soft resource reservation server,
which is basically an EDF scheduler with an addi-
tional run-time monitoring mechanism for checking
the execution budget of each task. Whenever a task
finishes its budget, its deadline is postponed, thus de-
creasing its priority (see [2] for more details).

The main problem when implementing an effi-
cient resource reservation mechanism is that dead-
line postponement cannot be done forever, because
of the circular timer implementation. To address
this issue in ERIKA Enterprise, a number of design
choices have been taken. They are described below.

4.1 Stack sharing
Stack sharing implies that different tasks can

somehow share the same stack. To achieve a correct
result, the system has to prevent interleaved execu-
tions among tasks. In fact, suppose that two tasks,
�� and ��, share the same stack and suppose that ��
preempts ��; in this case, �� must not be scheduled
before the end of ��, otherwise it can overwrite ��’s
stack data. This situation typically occurs when a
task blocks on a locked semaphore, held by the task
that has been preempted.

Unfortunately, a similar problem can also occur
when adopting a deadline postponement mechanism
to enforce resource reservations, as done by the Con-
stant Bandwidth Server (CBS) [2]. In fact, if ��
preempts �� and consumes all its budget, its dead-
line is postponed, giving the possibility of being pre-
empted by ��. This situation is illustrated in Figure
5. To prevent such a problem, stack sharing must
be avoided when using resource reservation mech-
anisms, or at least restricted to those tasks having
predictable execution times.

4.2 Timer handling
To implement the resource reservation mecha-

nism, the kernel has to export a timing service that
supports at least a fast timer read and a timer in-
terrupt. A fast timer read is needed because the
timer is frequently used to perform time account-
ing and check for deadlines. The timer interrupt

6

Figure 6. Deadline postponement caus-
ing a wrapup of the time reference.

is also needed to implement the preemption mecha-
nism upon budget exhaustion. Fortunately, these fea-
tures are common in most microcontrollers, which
usually have at least one timer that can be read as a
CPU register and programmed in a few clock cycles.

In addition to that, every primitive that may cause
a preemption (e.g., a primitive that activates a task
with priority higher than the running task) has to be
modified to automatically reprogram the timer upon
a system reschedule. The timer must be set to raise
an interrupt in a future instant equal to the current
time plus the budget of the task just being scheduled.
At that time, two things may happen:

	 The timer is reprogrammed again before the
interrupt is raised, which means that another
rescheduling operation has taken place before
the exhaustion of the budget of the running task.
In this case, the running task will be accounted
for the time it has executed.

	 The timer interrupt is raised by the hardware
timer, which means that the budget of the task
has finished before the end of the current in-
stance of the running task. In this case, the
timer interrupt handler performs the following
operations:

– the deadline of the running task is post-
poned;

– the budget of the running task is
recharged;

– the system is rescheduled to check
whether the running task has to be pre-
empted because of the deadline postpone-
ment;

– the hardware timer is reprogrammed
again considering the new budget.

De facto, the timer interrupt is the responsible
for enforcing temporal isolation.

4.3 Timer wrapup
A high number of deadline postponements due to

continuous budget exhaustion may cause a wrapup
of the time reference, as shown in Figure 6, where a
deadline may pass from the far future to the far past.

This can occur when the allocated budget is too
small, or when a task enters an unpredicted long
branch or a loop. To prevent this to happen, a check
is performed when the deadline is going to be post-
poned. If a timer wrapup is caught, the deadline is
set to the longest time instant in the future, which is
equivalent of executing the task in background. No-
tice that, from a theoretical point of view, the timer
wrapup phenomenon prevents implementing a per-
fectresource reservation. However, in practice, such
a reservation error does not create significant prob-
lems.

4.4 Task periodicity
In ERIKA Enterprise, and in many OSEK ker-

nels, there is no concept of task periodicity, which
is handled independently of the task objects using
alarm objects. An alarm object is simply a notifi-
cation mechanism based on external events that can
be programmed to periodically activate a task. The
kernel does not store any information about the peri-
odicity of a task and, in this sense, the action of acti-
vating a task is separated from its activation pattern.
When adding resource reservations to an OSEK-like
kernel, we must consider that task budgets have to
be handled independently of task activation patterns.
The kernel has no knowledge of the status of a task
with respect to its activation pattern. Hence, the ker-
nel has to monitor tasks that have not been activated
for a while, to avoid their deadline to pass from the
far past directly into the far future.

In our implementation, a periodic check is per-
formed every fourth of the system lifetime. The
check simply sets a disableflag for every task having
its deadline in the past. Then, the disable flag must
be checked every time a task has to be activated:
	 if the task is not disabled, deadline calculation

is done as usual;
	 if the task is disabled, its deadline is set to the

current time plus its replenishment period, re-
gardless of the value of its absolute deadline
field.

4.5 Locking and temporal isolation
A final check is needed to handle the case in

which a budget is exhausted when a task is inside
a critical section. In fact, if the task locking a
semaphore is preempted due to budget exhaustion,
then the main properties of SRP and Immediate Pri-
ority Ceiling protocols do not hold anymore (see [3]
for details). As a consequence, a task could even
block after passing the preemption test!

This problem has been solved by temporarily dis-
abling temporal isolation (i.e., the timer that fires
upon budget exhaustion) inside critical sections.
This is equivalent of giving the task some extra bud-
get to complete the critical section, if needed.

7

As a result, the implementation of resource reser-
vation in ERIKA Enterprise turned out to be fairly
efficient (low runtime overhead) and robust against
the possible traps deriving by other interacting ker-
nel features. Performance figures of the implemen-
tation are included in Section 6.

5 Integrating EDF into OSEK

To enable a wide acceptance of a new schedul-
ing method in the industry, besides technical rea-
sons, it is important to show how the new algorithm
can be integrated in the current state-of-the-art in-
dustrial practice. For this reason, in this section
we show how EDF can be easily integrated in the
OSEK/VDX standard, which proposes an API for
small-scale operating systems for automotive em-
bedded control units. The OSEK/VDX standard pro-
poses an API that supports fixed priority scheduling
featuring preemptive, non preemptive and preemp-
tion threshold options, together with shared resource
handling using Immediate Priority Ceiling, and pe-
riodic activations using alarms. It also proposes a
static approach for the system configuration, where
all the objects are specified at design time using a
configuration language called OIL. In practice, an
OIL specification is composed by an implementation
definition, usually provided by the RTOS maker, and
by an application definition, which defines the ob-
jects (Tasks, Resources, ...) that are really present
in the system, together with their parameters. Al-
though the OIL language is specified by a standard,
the particular parameters that can be specified heav-
ily depends on the particular kernel, which makes
OILs from different vendors almost incompatible
[6]. Static configuration through OIL, together with
one-shot task execution supported by OSEK Basic
tasks allow stack sharing among different tasks in
the system. This feature is important because it en-
ables the implementation of OSEK-compliant sys-
tems that fit into a few kilobytes of ROM and RAM.
The OSEK-VDX standard is a perfect candidate for
supporting an alternative scheduling algorithm, such
as EDF, because all the configuration parameters are
static, hence they do not affect the actual parame-
ters in the API (Task-related primitives only receive
the task ID as a parameter). The only modification
required to implement EDF on an OSEK system is
the integration of the EDF parameters together with
the standard OIL parameters. In the case of ERIKA
Enterprise, we added a RELATIVEDEADLINE pa-
rameter in the TASK implementation section, allow-
ing the specification of a relative deadline that is
added to the current time to get the absolute dead-
line needed for EDF task scheduling. Then, resource
usage and mutual exclusion are obtained using the
SRPT algorithm [10], which combines EDF with the

Version Bytes

OSEK BCC1 2136
Simplified BCC1 (FP) 1716
EDF 2004
EDF without stack sharing 2772
EDF with Resource Reservation 4008

Table 3. ERIKA Enterprise ROM (code)
footprint on ARM7TDMI.

SRP [3] for handling shared resources, and with Pre-
emption Thresholds [18, 21] for reducing preemp-
tions and the overall stack space in real-time appli-
cations.

6 Performance measurements

This section describes some performance mea-
surements that have been taken on ERIKA Enter-
prise running on a 50 MHz ARM7TDMI, with cache
disabled and external SDRAM. Table 3 gives an idea
of the typical footprint of ERIKA Enterprise: The
first row considers a full-fledged OSEK configura-
tion, whereas the remaining rows show the footprint
of typical Fixed Priority / EDF implementations (the
OSEK BCC1 row includes boot, StartOS, Activate-
Task, Schedule, TerminateTask, ChainTask, GetRe-
source, and ReleaseResource; the others include the
corresponding reduced versions). As it can be seen,
Fixed Priority and EDF implementation on mono-
stack configurations differ only by around 300 bytes,
which is an affordable (if not negligible) price on the
final footprint. Introducing multi-stack (that allows
the application to use blocking primitives), the foot-
print increases by around 750 bytes. Additional sup-
port for resource reservations accounts for around
1.7 Kb, and it is mainly due to timer handling re-
programming needed in the implementation of the
resource reservation mechanism.

Table 1 shows the impact of the implementation
of EDF on the run-time performance of a kernel. The
queue implementation chosen for the tests is a ����
queue both for Fixed Priority and EDF. ERIKA En-
terprise also supports ���� queuing for Fixed Pri-
ority, which is not showed in the Table because it
seems that most commercial OSEK kernels are cur-
rently using linear queuing [6]. As it can be seen, the
EDF implementation is only slightly more complex
than a linear queuing algorithm on Fixed Priority.

In particular, Tables 2, 4 and 5 show the C source
code and the corresponding gcc generated assem-
bly code for a possible implementation of the pre-
emption test under fixed priorities and EDF, using
wraparound timers. As it can be seen, the EDF im-
plementation only adds 9 assembler instructions to
the test, which is a reasonable overhead considering

8

Version FP w. ss FP no ss EDF w. ss EDF no ss Res. Res

Mutex Lock 1.84 1.84 1.84 1.84 2.5
Mutex Unlock 5.0 9.7 5.52 10.2 22.3
ActivateTask 8.4 13.4 9.5 14.5 20.3

Task End 9.0 14.5 9.0 14.5 16.1

Table 1. ERIKA Enterprise timings, 50 MHz-ARM7TDMI (ss stands for stack sharing). All
the numbers are in �sec.

// C implementation using fixed priority
if (ready != NIL &&

system ceiling < ready prio[ready])

// C implementation using EDF with wraparound timers
if (running == NIL ||

(ready != NIL &&
(signed)(absdline[running] - absdline[ready]) > 0 &&
system ceiling < EE th ready prio[ready]

)
)

Table 2. C source code needed to implement a preemption test.

the length of a typical RTOS primitive.
A major hit on the timing performance is done

by the resource reservation mechanism; that time re-
ported in Table 1 basically accounts for the repro-
gramming of the timer that needs to be done every
time the system is rescheduled. Notice, however,
that the overhead for timing reprogramming has to
be taken into account also when implementing re-
source reservations under fixed priorities.

It is worth noting that, in general, the choice of
the best implementation method for enforcing tem-
poral protection is a tradeoff that depends on the fre-
quency of the system calls invoked by the applica-
tion, the precision required for task suspension, and
the overhead of reprogramming a timer. If a high
precision is not mandatory, or the overhead for re-
programming the hardware timer is high, then a pe-
riodic timer can be used, without the need of repro-
gramming the timer at every rescheduling. In our
case, we chose the most efficient method for the mi-
crocontroller used. In particular, the overhead of Ta-
ble 1 is mainly related to the computation of the new
timer value (that has to be done in any case), whereas
the hardware timer reprogramming simply consists
of a write operation on a memory mapped register.

7 Conclusions

In this paper we showed that dynamic schedul-
ing algorithms, such as EDF, can be efficiently im-
plemented in small operating systems for embedded
applications, enabling a more efficient use of the
computational resources and a more flexible man-
agement of aperiodic events and overload condi-
tions. We also illustrated how EDF can be easily

integrated with existing operating systems standards,
like OSEK-VDX, which is widely used in the auto-
motive industry.

Moreover, we used the efficient EDF implemen-
tation to support the paradigm of soft resource reser-
vations, and we showed the impact of our implemen-
tation on a real kernel, identifying the major fea-
tures that affect the memory footprint and the run-
time overhead. Finally, we evaluated the implemen-
tation and showed that the overhead introduced is af-
fordable for most microcontroller applications.

As a future work, we plan to study the effective-
ness of the EDF implementations on reconfigurable
hardware, such as Altera Nios II, to see whether
the techniques presented in this paper can be effi-
ciently implemented in hardware, thus limiting the
additional system overhead.

References

[1] L. Abeni and G. Buttazzo, “Integrating Multimedia
Applications in Hard Real-Time Systems,” Proc. of
the IEEE Real-Time Systems Symposium, Madrid,
Spain, December 1998.

[2] L. Abeni and G. Buttazzo, “Resource Reservation in
Dynamic Real-Time Systems,” Real-Time Systems,
Vol. 27, No. 2, July 2004.

[3] T.P. Baker, Stack-Based Scheduling of Real-Time
Processes, The Journal of Real-Time Systems 3(1),
pp. 76-100, (1991).

[4] Giorgio Buttazzo, ”Rate Monotonic vs. EDF: Judg-
ment Day”, Real-Time Systems, Vol. 28, pp. 1-22,
2005.

9

// Assembly of the fixed priority implementation
// read ready
ldr r3, .L15+12
ldr r0, [r3, #0]
// ready!= NIL
cmn r0, #1
beq .L5
// read system ceiling and ready prio[ready]
ldr lr, .L15+16
ldr r3, .L15+20
ldr r3, [r3, r0, asl #2]
// read system ceiling value
ldr ip, [lr, #0]
// system ceiling ¡ ready prio[ready]
cmp r3, ip
bls .L5

Table 4. Compiler generated ARM7 as-
sembler needed to implement a fixed
priority preemption test.

// Assembly of the EDF implementation
// read ready
ldr r3, .L18+24
ldr ip, [r3, #0]
// read running
ldr r3, .L18+28
ldr r2, [r3, #0]
// running == NIL
cmn r2, #1
beq .L12
// ready != NIL
cmn ip, #1
beq .L7
// (signed)(absdline[running] - absdline[ready]) � 0
ldr r3, .L18+12
ldr r2, [r3, r2, asl #2]
ldr r3, [r3, ip, asl #2]
rsb r2, r3, r2
cmp r2, #0
ble .L7
//system ceiling ¡ EE th ready prio[ready]
ldr r3, .L18+32
ldr r2, [r3, ip, asl #2]
ldr r3, .L18+36
ldr r3, [r3, #0]
cmp r2, r3 bls .L7

Table 5. Compiler generated ARM7
assembler needed to implement an
EDF preemption test using wraparound
timers.

[5] A. Carlini and G. Buttazzo, ”An Efficient Time
Representation for Real-Time Embedded Systems”,
Proceedings of the ACM Symposium on Applied
Computing (SAC 2003), Melbourne, Florida, USA,
March 9-12, pp. 705-712, 2003.

[6] R. Dreier, K. D. Mller-Glaser, “Requirements for
Real Time Operating Systems and Features of Oper-
ating Systems Implementing the OSEK/VDX Stan-
dard API” Proceeding MASCOTS 2004, Volendam,
The Netherlands, October 2004.

[7] R. Elz and R. Bush, “Serial Number Arith-
metic”, August 1996, Network Working Group, re-
quest for comments, 1982. URL: ftp://ftp.isi.edu/in-
notes/rfc1982.txt.

[8] Evidence Srl, “ERIKA Enterprise RTOS” URL:
http://www.evidence.eu.com.

[9] Pedro Fonseca, “Approximating linear time with fi-
nite count clocks”, Tech. Rep., Dep. de Electrónica,
Universidade de Aveiro, Revista do DETUA
vol.3,n.4,pp:359-361, ISSN-1645-0493, Sept.2001.

[10] P. Gai, G. Lipari, M. Di Natale, “Design Methodolo-
gies and Tools for Real-Time Embedded Systems”,
Special Issue of Design Automation for Embedded
Systems, 2002.

[11] J. Leung and J. W. Whitehead, ”On the Complexity
of Fixed Priority Scheduling of Periodic Real-Time
Tasks”, Performance Evaluation, 2(4), 1982.

[12] C.L. Liu and J.W. Layland, “Scheduling Algorithms
for Multiprogramming in a Hard real-Time Environ-
ment,” Journal of the ACM20(1), pp. 40–61, 1973.

[13] A. Carlini, “A real-time kernel for embedded ap-
plications on a Motorola 68HC11 microcontroller”,
Technical Report, Robotics Lab, University of Pavia,
TR-2001-01, December 2001.

[14] The MCX11 kernel, http://www.introl.com/ introl-
demo/demo/MCX11/contents.html.

[15] OSEK/VDX standard, http://www.osek-vdx.org.

[16] Moonju Park, Lui Sha, and Yookun Cho, “A Pratical
Approach to Earliest Deadline Scheduling”, Tech-
nical Report, School of Electrical Engineering and
Computer Science, Seoul National University, Seoul,
Korea, December 2001.

[17] M. Aldea Rivas and M. Gonzlez Harbour, “POSIX-
Compatible Application-Defined Scheduling in
MaRTE OS,” Euromicro Conference on Real-Time
Systems (WiP), Delft, The Netherlands, June 2001.

[18] M. Saksena and Y. Wang, “Scalable Real-Time Sys-
tem Design using Preemption Thresholds”, Proc. of
the Real Time Systems Symposium, Dec. 2000

[19] The SSX5 kernel, URL: http://www.realogy.com/.

[20] The TinyOS kernel, URL: http://www.tinyos.net/.

[21] Y. Wang and M. Saksena, “Fixed Priority Schedul-
ing with Preemption Threshold”, Proceedings of the
IEEE International Conference on Real-Time Com-
puting Systems and Applications, December 1999.

10

