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Abstract

In most real-time applications, deadlines are artifices
that need to be enforced to meet different performance re-
quirements. For example, in periodic task sets, jitter re-
quirements can be met by assigning suitable relative dead-
lines and guaranteeing the feasibility of the schedule.

This paper presents a method (called minD) for calcu-
lating the minimum EDF-feasible deadline of a real-time
task. More precisely, given a set of periodic tasks with hard
real-time requirements, which is feasible under EDF, the
proposed algorithm allows computing the shortest deadline
that can be assigned to an arbitrary task in the set, or to a
new incoming task (periodic or aperiodic), still preserving
the EDF feasibility of the new task set. The algorithm has a
pseudo polynomial complexity and handles arbitrary rela-
tive deadlines, which can be less than, equal to, or greater
than periods.

1. Introduction

Most real-time applications involve the execution of pe-
riodic activities to perform data sampling, sensory process-
ing, action planning, actuation, and control. The stability
and the performance of a control system is then influenced
by a number of timing variables, including the sampling
periods, the input-output delays, and the sampling jitter
[2]. Although task periods can be precisely enforced by a
real-time operating system, input-output delays depend on
the processor speed and on the specific task interactions,
whereas jitter is mainly induced by scheduling.

The effect of jitter on real-time control applications has
been extensively studied in the literature [11, 17] and sev-
eral techniques have been proposed to cope with it. Marti
el al. [18] proposed a compensation technique according to
which control actions are properly computed depending on
the temporal distance between successive samples. Di Na-
tale and Stankovic [19] proposed the use of simulated an-
nealing to find the optimal configuration of task offsets that

minimizes jitter, according to some user defined cost func-
tion. Cervin et al. [12] presented a method for finding an
upper bound of the input-output jitter of each task by esti-
mating the worst-case and the best-case response time un-
der EDF scheduling, but no method is provided to reduce
the jitter by shortening task deadlines. Rather, the concept
of jitter margin is introduced to simplify the analysis of con-
trol systems and guarantee their stability when certain con-
ditions on jitter are satisfied.

Another way of reducing the jitter is to limit the exe-
cution interval of each task by setting a suitable relative
deadline. Working on this line, Baruah et al. [4] proposed
two methods for assigning shorter relative deadlines to tasks
and guaranteeing the schedulability of the task set. The first
method is based on task utilizations and runs in polynomial
time, whereas the second method has a pseudo-polynomial
complexity since it is based on the processor demand crite-
rion [6]. However, none of them can be used to compute
the shortest possible deadline that minimizes jitter under
schedulability constraints.

Brandt et al. [7] also addressed the problem of reduc-
ing the deadline of a periodic task, but their approach is
based on the processor utilization, hence it cannot find the
shortest possible deadline. Moreover their method is used
to compute the minimum feasible period, while this paper
discusses how to compute the minimum feasible deadline,
without modifying the period.

Shin et al. [23] presented a method for computing the
minimum deadline of a newly arrived task, assuming the
existing task set is feasibly schedulable by EDF; however,
their approach is tailored for distributed applications and re-
quires some off-line computation.

Buttazzo and Sensini [9] also presented an on-line algo-
rithm to compute the minimum deadline to be assigned to
a new incoming task in order to guarantee feasibility under
EDF. However, their approach only applies to aperiodic re-
quests that have to be executed in a periodic environment.

A similar problem has been independently addressed in
[3] using a slightly different approach, but the basic idea for
computing the minimum relative deadline for a new incom-
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ing periodic task was originally proposed in [15], although
no proofs or simulations were presented.

In this paper, the problem is formally presented and gen-
eralized to find the minimum deadline of arbitrary tasks
with periodic, aperiodic, or sporadic activation pattern, and
with deadlines less than, equal to, or greater than periods.
The complexity of the algorithm for computing the mini-
mum deadline is the same as the classical acceptance test
for deadlines different from periods.

The importance of this method in real-time applications
is that it can be effectively used to reduce the response time
of specific control activities or limit their input-output jit-
ter, with the purpose of meeting performance and stability
requirements. As another motivation, the proposed method
can also be very useful to reduce the end-to-end dead-
lines associated with real-time transactions in multi-hop
networks. In fact, given a multi-hop network with an arbi-
trary topology, any real-time transaction that has to traverse

links to reach its destination within a deadline , can be
considered as a chain of real-time messages, each with its
local (node-to-node) deadline: , such
that . Under this situation, the minD al-
gorithm can be used to assign the minimum EDF feasible
deadline to each local message, in order to maximize the
slack available for the transaction and improve system re-
sponsiveness.

The rest of the paper is organized as follows. Section
2 describes the system model and precisely introduces the
problems to be addressed. Section 3 illustrates the deadline
minimization algorithm. Section 4 presents some experi-
mental results and compares the proposed algorithm with
another deadline minimization approach. Finally, Section 5
states our conclusions and future work.

2. Terminology and Assumptions

We consider a set of periodic tasks
that have to be executed on a uniprocessor system. Each task

consists of an infinite sequence of jobs, or task instances,
having the same worst-case execution time (WCET), the
same relative deadline, and the same interarrival period. We
allow tasks to start at different times, although the guaran-
tee test is performed in the worst-case scenario, occurring
for synchronous activations [20]. All tasks are fully preemp-
tive.

The following notation is used throughout the paper:

denotes the -th job of task , with .

denotes the worst-case execution time (WCET) of task
, that is, the WCET of each job of .

denotes the period of task , or the minimum inter-
arrival time between successive jobs.

denotes the relative deadline of task , that is, the max-
imum finishing time allowed for any job, relative to its
activation time.

denotes the absolute deadline of job , that is the
maximum absolute time, before which job must
complete.

denotes the utilization of task , that is, the fraction of
cpu time used by ( ).

denotes the total utilization of the task set, that is, the
sum of all tasks utilizations ( ).

denotes the processor demand of task in , that
is the sum of WCETs of the jobs with arrival time
and absolute deadline in .

denotes the total processor demand of the task set in
, that is the sum of the individual demands

of the tasks in the set.

denotes the hyperperiod of the task set, that is the mini-
mum time interval after which the schedule repeats it-
self. For a set of periodic tasks with zero offset, it is
equal to the least common multiple of all the periods
( ).

It is important to recall that periodic tasks can have ar-
bitrary deadlines, which can be less than, greater than, or
equal to periods. We assume that tasks are scheduled by the
Earliest Deadline First (EDF) algorithm [16], according to
which jobs are assigned priorities inversely proportional to
their absolute deadlines: the shorter the deadline, the higher
the priority.

2.1. Problem statement

Deadlines of tasks’ are artifices often used by the de-
signer to enforce performance requirements (e.g., response
times, communication delays, or input-output jitter) which
affect the behavior of a computer controlled system. The al-
gorithm proposed in this paper allows us to find the shortest
deadline that can be assigned to a task, without jeopardiz-
ing the task set schedulability. More specifically, the pro-
posed method can be used to solve the following problems:

1. Problem 1
Given a set of periodic tasks, with , that is
feasible under EDF, find the minimum relative dead-
line that can be assigned to an arbitrary task

, such that the EDF-feasibility of the task set is pre-
served.

2. Problem 2
Given a set of periodic tasks, with , that is
feasible under EDF, find the minimum relative dead-
line of each task, following a given arbitrary order,
such that the EDF-feasibility of the task set is pre-
served.
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Figure 1. Task set with different deadline as-
signments.

3. Problem 3
Given a set of periodic tasks, with , that
is feasible under EDF, and given a new soft aperiodic
job with arrival time , no deadline, and computa-
tion time , find the minimum relative deadline
that can be assigned to such that EDF still generates
a feasible schedule.

As far as Problem 2 is concerned, it is worth noticing
that minimizing the deadline of the one task does not mean
consuming all the available processor bandwidth and does
not prevent the other deadlines to be reduced. Clearly, the
specific order in which the process is applied can make
a big difference on the deadline improvement that can be
achieved on a task, but this is part of the strategy that can
be applied by the user. Figure 1 shows an example in which
a set of three tasks is scheduled by EDF with two dead-
line assignments: starting from the case in which deadline
are equal to periods, deadlines were minimized in increas-
ing order for case (a) and in decreasing order for case (b).
Notice that, although the selected order can make a signifi-
cant difference in the deadline assignments, minimizing the
deadline of the first tasks can still leave a significant space
for reducing the deadlines of the remaining tasks. As an-
other remark, it should be obvious that, if some tasks may
tolerate a given amount of jitter, their deadlines can be fixed
at predefined values and the deadline minimization process
can be applied only to those tasks whose deadlines need to
be minimized.

For the sake of clarity, the deadline minimization algo-
rithm will be explained for the case of Problem 1, and then
extended for the other two problems.

3. Deadline minimization algorithm

To explain the deadline minimization algorithm pro-
posed in this paper, we assume to have an EDF-feasible task
set consisting of periodic tasks with arbitrary periods
and deadlines, and total utilization . Without loss of
generality, let us assume we have to minimize the relative
deadline of task .

The algorithm is iterative and starts by assigning
the minimum possible relative deadline, which is clearly

. Then, the feasibility of the task set is checked
by using the Processor Demand Criterion [6, 8]. If the task
set is feasible with , then the minimum feasible
deadline of has been found, otherwise is incremented
by a suitable amount, and the feasibility is checked again.
The process of incrementing and checking for feasibil-
ity continues until the task set is found to be schedulable.
At this point, the current relative deadline assigned to is
the minimum deadline that guarantees the feasibil-
ity of the task set.

Before presenting the algorithm in detail, the following
section briefly recalls the EDF guarantee test used to check
the schedulability of the task set.

3.1. EDF feasibility test

Since we consider the general case of periodic tasks with
deadlines less than, equal to, or greater than periods, the fea-
sibility test is performed using the processor demand crite-
rion, which provides a necessary and sufficient condition for
the schedulability of the task set under EDF. For a set of pe-
riodic tasks simultaneously activated at time (i.e.,
with no activation offset), the processor demand in an
interval is the amount of processing time requested by
those jobs activated in and with deadline less than or
equal to . Then, the feasibility of a task set is guaranteed
if and only if, in any interval of time, the processor demand
does not exceed the available time, that is, if and only if

(1)

Baruah, Rosier, and Howell [6] showed that can be
computed as follows:

(2)

Baruah, Mok, and Rosier [5] showed that the time instants
at which the test has to be performed correspond to those
deadlines within the hyperperiod not exceeding the value

(3)

Hence, the feasibility test for EDF can be summarized by
the following theorem.
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Theorem 1 A set of periodic tasks simultaneously acti-
vated at time is schedulable by EDF if and only if

and

(4)

where is the set of all task absolute deadlines not exceed-
ing , that is,

(5)

The complexity of such a feasibility test is pseudo-
polynomial. A different upper bound on the number of
deadlines that must be checked for feasibility can be de-
termined using the busy period approach. A busy period is
any interval of time in which the processor is not idle. It
is worth observing that an idle time interval can have zero
length if the last executed job completes at the same time a
new job is released.

In general, a schedule can have several busy periods in
the first hyperperiod. However, a set of periodic tasks si-
multaneously activated at time is schedulable by EDF
if and only if no deadline is missed in the first busy period

, which is also the longest one [20, 22].
The value of can be computed using a recursive pro-

cedure, which recursively compares the cumulative work-
load in the interval with the length of the in-
terval. Then, the first busy period length is given by
the smallest positive such that . Practically, the
cumulative workload in is the computation time re-
quested by all the jobs released before and can be com-
puted as:

(6)

Hence, the busy period length can be computed by
the following recurrent equation, which is stopped when

:

(7)

Note that, if , then , but nothing can
be said with respect to . Hence, the test can be per-
formed only for those absolute deadlines not exceeding

. In conclusion, the EDF feasibility
of a periodic task test with arbitrary deadlines and simulta-
neous activations can be tested by the following theorem.

Theorem 2 A set of periodic tasks simultaneously acti-
vated at time is schedulable by EDF if and only if

and

(8)

EDF feasibility test( )

= busy period()

if ( ) then
return (“Unfeasible”)

end if

for each ( )

if ( ) then
return (“Unfeasible”)

end if
end for
return (“Feasible”)

end

Figure 2. Pseudo-code of the EDF feasibility
test algorithm.

where is the set of all task absolute deadlines not exceed-
ing , that is,

(9)

The pseudo-code for the EDF feasibility test is shown in
Figure 2.

3.2. Computing deadline increments

A simple but inefficient method to find the minimum
deadline for would be to start by setting , and
then incrementing by one tick at each iteration, until the
task set is found to be schedulable. This algorithm is inef-
ficient because it requires a large number of steps to termi-
nate. The method used in this paper is more efficient since
deadline increments are computed based on the processor
demand evaluated at a deadline miss. The method is illus-
trated in the following section using a simple example.
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Task

10 20 16
1 6 3
2 6 100

Table 1. Task set parameters.
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Figure 3. Processor demand for the task set
of Example 1 when .

3.3. Example

Consider a set of three periodic tasks whose parame-
ters are given in Table 1. The task set is feasible under the
EDF scheduling algorithm, but we want to find the mini-
mum deadline for that preserves feasibility.

The first step is to assign and verify its
schedulability by Theorem 2. To follow the reasoning used
by the algorithm, Figure 3 illustrates the schedule produced
by EDF and the corresponding demand function when

.
As we can see from the figure, at time , the value

of exceeds the available time . Therefore, the task set
is not feasible and has to be increased to reduce the in-
terference caused by . Let be the first time at which the
deadline miss is detected and let be the amount of execu-
tion time exceeding the deadline. We have:

(10)

In general, to avoid the deadline miss at time , has

to be increased to a value such that a sufficient number
of instances are removed from the interval . Let
be the minimum number of jobs of task that must be re-
moved from to avoid the deadline miss at time . It
is easy to see that

(11)

After the removal of jobs, the new processor demand in
becomes

(12)

Notice that, to remove instances from , the new ab-
solute deadline of must be strictly greater than ,
but also greater than or equal to , otherwise
would miss its deadline. Since we are interested in the min-
imum deadline, is set exactly at the value .
Hence,

(13)

The relative deadline of can be computed as

(14)

where is the last release time of task before time . It
is given by

(15)

From equations (11) and (14) we have:

(16)

and using equation (15) we finally have

(17)

In the specific case of the example, the new relative dead-
line for is found to be . Figure 4 illustrates the
schedule produced by EDF and the corresponding demand
function when .

We have shown that, if task is assigned a relative dead-
line , the deadline miss at time is avoided. However,
to guarantee the schedulability of the task set, the feasibil-
ity test must be performed for all the remaining deadlines
in the set . The pseudo-code of the deadline minimization
algorithm, also referred to as the minD algorithm, is illus-
trated in Figure 5.

3.4. Extensions

The minD algorithm illustrated in Figure 5 computes the
minimum relative deadline of that preserves the feasibil-
ity of the task set. Since no particular order has been as-
sumed for the tasks, the algorithm can be used to minimize
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Figure 4. Processor demand for the task set
of Example 1 when .

minD algorithm( , )

for each ( )

if ( ) then

update ()
end if

end for

return( )
end

Figure 5. Pseudo-code of the deadline mini-
mization algorithm.

the relative deadline of an arbitrary task, as stated in Prob-
lem 1.

To solve Problem 2, it is sufficient to iteratively apply
the minD algorithm to all tasks in the set, in a given or-
der. If is the ordered array that specifies the desired se-
quence of task indices, Problem 2 can simply be solved by
the following algorithm:

minD set( ) %

for ( to )

minD algorithm( , )
end for

end

Solving Problem 3, that is, finding the minimum rela-
tive deadline of an aperiodic job , is also very straightfor-
ward. In fact, the only difference with respect to Problem
1 is that the processor demand function must be com-
puted taking into account the computation time of the ape-
riodic job. Let be the job arrival time, its computa-
tion time, and its absolute deadline, initially set equal to

. Clearly, in any interval of time , the total pro-
cessor demand is:

if

otherwise
(18)

When a deadline miss is detected at time , since the pe-
riodic task set was originally feasible, the exceeding time

cannot be larger than . Hence, the dead-
line miss at time can be avoided by simply setting the ab-
solute deadline of the aperiodic task at , which
means . Then, the feasibility test must pro-
ceed for all deadlines in the set , where must also in-
clude . The pseudo-code of the resulting algorithm is il-
lustrated in Figure 6.

4. Simulation results

This section describes a set of simulation experiments
that have been conducted to evaluate the behavior and the
complexity of the proposed algorithm on different applica-
tion scenarios, generated through synthetic task sets with
random parameters within given ranges and distributions.

To generate a feasible task set of periodic tasks with
given utilization , we first generated random uti-
lizations uniformly distributed in (0,1) and then normalized
them to have
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minD aperiodic( , )

for each ( )

if ( ) then

end if

if ( ) then

update ()
end if

end for

return( )
end

Figure 6. Pseudo-code of the algorithm for
minimizing the deadline of an aperiodic job.

Then, we generated computation times as random vari-
ables uniformly distributed in [ , ], and then cal-
culated the period of each task as

Relative deadlines have been computed to generate a feasi-
ble schedule as follows: each deadline was initially set at a
value and then incremented by a random amount
in until obtaining a feasible task set.

After generating the task set, we carried out a number of
simulation experiments aimed at evaluating the behavior of
the proposed algorithm in different application scenarios.

In a first set of experiments, we tested the complex-
ity of the algorithm as a function of the number of tasks.
To do that, we generated a task set with fixed utilization

and measured the number of elementary compu-
tational steps to find the minimum deadline of task . The
number of tasks was varied from 10 to 30, and task execu-
tion times were randomly generated from 1 to 10. The re-
sults of this experiment are illustrated in Figure 7, which re-
ports the average over 10,000 simulation runs.

We also tested the complexity of the algorithm as a func-
tion of the total processor utilization, for a fixed number
of tasks. Figure 8 shows the number of elementary steps to

10 15 20 25 30
10

15

20

25

30

35
Complexity of the algorithm (U = 0.98)

Number of periodic tasks

N
um

be
r 

of
 s

te
ps

Figure 7. Number of steps of the minD algo-
rithm as a function of the number of tasks
( ).

find the minimum deadline of task for a set of 20 peri-
odic tasks, having a total utilization ranging from 0.5 to 0.9.

To evaluate the performance of the algorithm in reduc-
ing the deadline of a task, we tested the average deadline
improvement as a function of the number of tasks. The im-
provement for a task is computed as the normalized ratio

of the actual deadline reduction and the maximum possi-
ble reduction, equal to . That is

Thus, means that no reduction was achieved by the
algorithm on task , so the task will run with its original
deadline, whereas means that the maximum possi-
ble reduction was achieved, so the task will run with a new
relative deadline equal to its computation time. The results
of this test are shown in Figure 9, for ranging from 2 to
30 tasks.

In a second set of experiments, we compared the minD
algorithm with the Improved Total Bandwidth Server
(TB ), introduced by Buttazzo and Sensini [9] for comput-
ing the minimum deadline of aperiodic jobs. In all the cases,
we measured the number of steps required by the two al-
gorithms to find the minimum deadline of an aperiodic
job with random arrival time and given computa-
tion time . The simulations have been done to test the
dependency of the algorithm complexity from the num-
ber of tasks, the task set utilization, and the job execution
time .

We briefly recall that TB starts assigning the aperiodic
job an initial deadline given by the Total Bandwidth Server
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Figure 8. Number of steps to find MinD when
the task set has 20 task while utilization is in-
creased.

rule (TBS rule):

(19)

where is the absolute deadline assigned to the previ-
ous aperiodic request, and then tries to shorten it as much
as possible, while preserving the feasibility of the task set.
Comparing the complexity of the two approaches is in-
teresting, because both algorithms are optimal (i.e., they
find the shortest possible deadline that preserves feasibil-
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Figure 9. Average deadline improvement as a
function of the number of tasks.

ity) and run with pseudo-polynomial complexity, but they
work in opposite directions. In fact, while minD starts with

and increases until a feasible schedule is
found, TB starts from a safe large deadline (given by the
Total Bandwidth Server rule [21]) and tries to decrease it
as much as possible. As a consequence, the two algorithms
should exhibit a different average complexity for different
task set scenarios. Identifying such scenarios is important,
since it would allow a developer to select the most effi-
cient method for a given real-time system, or even switch
between the two algorithms if dealing with dynamic envi-
ronments.

The graphs in Figure 10 show the number of steps re-
quired by the two algorithms as a function of the task set
utilization, for a set of 20 periodic tasks and for a job with
average execution time , which is the average execu-
tion time used for the periodic tasks (computation times of
periodic tasks were generated in the range ,
with and ). It is worth noting that
minD is more efficient than TB for low and medium task
set utilizations ( ), whereas TB becomes superior
for high workloads. In fact, for low periodic utilizations,
there is enough idle time in the schedule to allow aperiodic
jobs to execute with a short relative deadline. Short dead-
lines are immediately found by minD, which starts search-
ing from . For high periodic utilizations, the op-
timal aperiodic deadline is much longer, and thus closer to
the initial one used by TB .

Figure 11 shows the behavior of the two algorithms as a
function of the number of tasks, when the task set utilization
is (the crossing point in Figure 10) and aperiodic
jobs have an average execution time . Again, we ob-
serve that, for less than 20 tasks, minD is more efficient than
TB . In fact, as the number of tasks increases, the idle time
available in the schedule is fragmented into smaller pieces,
and the optimal aperiodic deadline increases, getting closer
to the initial value used by TB .

Finally, Figure 12 shows the number of steps as a func-
tion of the aperiodic execution time , for a set of 20 peri-
odic tasks with total utilization . It is worth not-
ing that TB is very sensitive to the value of , because
increasing also increases the initial deadline assignment
given by the TBS rule, as stated by equation (19). Hence,
for short jobs, the initial guess made by the TB is close
to the optimal value, while for long jobs the initial guess
gets too far away. On the other hand, minD is not much af-
fected by the value of because, when increases, its
initial guess increases towards the optimal deadline.

In summary, the most interesting result derived from the
simulation experiments is that none of the two algorithms
dominates the other, but their runtime behavior depends on
the task set parameters and size. For small task sets (i.e.,
less than 20 tasks) and low/medium processor workloads
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Figure 10. Average number of steps as a
function of the task set utilization.

(i.e., ), the minD algorithm is more efficient
than TB in computing the minimum deadline of an ape-
riodic job, whereas TB is more effective for large task sets
and high utilizations. Moreover,minD is also more efficient
than TB when the execution time of aperiodic jobs is larger
than those of periodic tasks.
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Figure 11. Average number of steps as a
function of the number of periodic tasks.

2 4 6 8 10 12
40

45

50

55

60

65

70

75
MinD vs. TB* for different aperiodic service times 

Aperiodic execution time Ca

N
um

be
r 

of
 s

te
ps

TB*
MinD

20 periodic taks
U = 0.87

Figure 12. Average number of steps as a
function of the aperiodic execution time.

5. Conclusions and future work

In this paper, we presented an algorithm for computing
the shortest deadline of a task, while preserving the feasibil-
ity of the task set. The algorithm can be applied to periodic
and aperiodic tasks and can be useful to reduce input-output
jitter in control applications. Although the algorithm has a
pseudo-polynomial complexity, extensive simulation exper-
iments showed that it can be effectively used on-line in most
practical situations. For the case of aperiodic jobs, the pro-
posed approach has been compared with the Improved To-
tal Bandwidth server introduced by Buttazzo and Sensini
[9]. Simulation experiments showed that no algorithm dom-
inates the other, rather their behavior significantly depends
on the application parameters. In general, minD is more ef-
ficient than TB in computing the minimum deadline of an
aperiodic job when the task set is small, the load is not very
high, and aperiodic jobs have long computation times.

In addition to the efficiency, however, the proposed al-
gorithm is more general than existing techniques, since it
applies to tasks with arbitrary deadlines and arbitrary acti-
vation patterns.

As a future work, we plan to adapt the algorithm to re-
duce the deadlines of several tasks at the same time, with-
out following a predefined order. For example, a system
could have different classes of real-time activities, and some
class might require a uniform improvement with respect to
the others. It would be interesting to find an efficient solu-
tion minimizing the deadlines of a task subset provided that
deadlines have the same scaling factor.

We are also planning to implement the deadline mini-
mization algorithm in the Shark real-time kernel [1, 14] for
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testing the actual performance improvement of real-world
control applications.
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The jitter margin and its application in the design of real-time
control systems. In International Conference on Real-Time
and Embedded Computing Systems and Applications, 2004.

[13] D. Ferrari and D. C. Verma. A scheme for real-time chan-
nel establishement in wide-area networks. IEEE Journal of
Selected Areas in Communications, 8(3):368–379, 1990.

[14] P. Gai, L. Abeni, M. Giorgi, and G. Buttazzo. A new kernel
approach for modular real-time systems development. 13th
Euromicro Conference on Real-Time Systems (ECRTS 2001),
2001.

[15] H. Hoang, S. Karlsson, and M. Jonsson. Minimum edf-
feasible deadline calculation with low-time complexity. In
Real-time systems symposym, wip, 2005.

[16] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment. Jour-
nal of the Association for Computing Machinery, 20(1):46–
61, 1973.

[17] P. Marti. Analysis and Design of Real-Time Control Systems
with Varying Control Timing Constraints. PhD thesis, July
2002.

[18] P. Marti, J. Fuertes, G. Fohler, and K. Ramamritham. Jitter
compensation for real-time control systems. In Real-Time
Systems Symposium, pages 39–48, 2001.

[19] M. D. Natale and J. A. Stankovic. Scheduling distributed
real-time tasks with minimum jitter. IEEE Transactions on
Computers, 49(4):303–316, 2000.

[20] M. Spuri. Analysis of deadline schedule real-time systems.
Technical Report 2772, Inria, France, 1996.

[21] M. Spuri and G. C. Buttazzo. Scheduling aperiodic tasks
in dynamic priority systems. Real-time Systems, 10(2):179–
210, 1996.

[22] J. A. Stankovic, K. Ramamritham, and M. Spuri. Deadline
Scheduling for Real-Time Systems: Edf and Related Algo-
rithms. Kluwer Academic Publishers, 1998.

[23] Q. Zheng and K. G. Shin. On the ability of establishing real-
time chennals in point-to-point packet-switched networks.
IEEE Transactions on Communications, 42(2/3/4):1096–
1105, 1994.

Proceedings of the 12th IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA'06)
0-7695-2676-4/06 $20.00  © 2006



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


