
Quality-of-Control Management in
Overloaded Real-Time Systems

Giorgio Buttazzo, Senior Member, IEEE, Manel Velasco, and Pau Martı́, Member, IEEE

Abstract—Transient overload conditions may cause unpredictable performance degradations in computer controlled systems if not

properly handled. To prevent such problems, a common technique adopted in periodic task systems is to reduce the workload by

enlarging activation periods. In a digital controller, however, the variation applied on the task period also affects the control law, which

needs to be recomputed for the new activation rate. If computing a new control law requires too much time to be performed at runtime,

a set of controllers has to be designed offline for different rates and the system has to switch to the proper controller in the presence of

an overload condition. In this paper, we present a method for reducing the number of controllers to be designed offline, while still

guaranteeing a given control performance. The proposed approach has been integrated with the elastic scheduling theory to promptly

react to overload conditions. The effectiveness of the proposed approach has been verified through extensive simulation experiments

performed on an inverted pendulum. In addition, the method has been implemented on a real inverted pendulum. Experimental results

and implementation issues are reported and discussed.

Index Terms—Quality-of-control, overload management, real-time control.

Ç

1 INTRODUCTION

DIGITAL control systems are designed to optimize
performance under a given set of constraints. When

the controller is executed in a computer together with
several concurrent activities (e.g., sensory acquisition,
system monitoring, filtering, and graphics animation),
timing constraints become a crucial issue to ensure the
expected control performance. Timing constraints are
usually guaranteed offline by analyzing the feasibility of
the schedule produced by a scheduling algorithm on a
given set of tasks. Schedulability analysis is typically
performed on a worst-case scenario, assuming that tasks
execute for a maximum amount of time, known in advance.

Practical experience, however, teaches us that an
accurate prediction of the execution behavior of a task is
very difficult (if not impossible) to achieve due to a number
of reasons. In fact, the execution time of a task is affected by
several low-level mechanisms that are typical in modern
computing systems, such as caching, prefetching, pipelin-
ing, DMA, and interrupts. Such features, although enhan-
cing the average computer performance, introduce a
nondeterministic behavior on task execution, making the
estimation of the worst-case computation time very un-
predictable. Even when running on a predictable hardware
architecture, the execution behavior of a task can change
very much as a function of the input data for programs
having a complex structure. Hence, during system evolu-
tion, the overall workload of a real-time application

consisting of many concurrent activities can have significant
variations that cannot be easily predicted in advance.

In addition, the load can also change because new tasks
can be activated in specific circumstances or timing
constraints can be changed by the application to react to
variations in the environment. For example, the controller
of an autonomous vehicle might decide to activate an
obstacle avoidance procedure when the proximity sensing
system identifies an object close to the robot. Similarly, the
acquisition rate of a proximity sensor could be defined as a
function of the distance from an object, making the robot
more reactive near the obstacles.

From the considerations illustrated above, it is easy to
see that the workload of a complex control system can
change significantly during system lifetime. If the load
increases above the utilization bound of the adopted
scheduling algorithm, timing constraints cannot be guaran-
teed any more and one or more tasks will miss their
deadlines, causing an unpredictable performance degrada-
tion in the system. On the other hand, if the load is too low,
then computational resources are wasted and the system
becomes inefficient. In this situation, the available resources
could be better exploited to increase system performance or,
when dealing with a battery operated system controlled by
a voltage variable processor, the supply voltage could be
reduced to decrease power consumption and prolong
system lifetime.

In real-time systems consisting of periodic activities, a
way to react to workload variations is to modify task rates
to bring the load to a desired value. Several methods have
been proposed in the real-time literature for setting task
rates to optimize control performance while ensuring the
feasibility of the schedule. They are reviewed in Section 2.
However, the consequence of a rate change in terms of
control performance is often neglected. In other cases,
schedulability analysis has been integrated with control

IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 2, FEBRUARY 2007 253

. G. Buttazzo is with the Scuola Superiore Sant’Anna, Via Moruzzi, 1,
56100 Pisa, Italy. E-mail: giorgio@sssup.it.

. M. Velasco and P. Martı́ are with the Technical University of Catalonia,
Pau Gargallo, 5, 08028 Barcelona, Spain.
E-mail: {manel.velasco, pau.marti}@upc.edu.

Manuscript received 6 Nov. 2005; revised 28 July 2006; accepted 8 Aug. 2006;
published online 20 Dec. 2006.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0398-1105.

0018-9340/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

system design to optimize performance, but the methods

are based on static parameters and are too complex to be

used online.
Indeed, a digital controller is always designed as a

function of the sampling period. Hence, if a task period is

changed, the control law has to be changed accordingly. If

the controller is simple, as is a Proportional-Integral-

Derivative (PID) regulator [1], the algorithm can be changed

online when the periods are recomputed. However, control

algorithms are often designed using numerical methods

and specific design tools (e.g., Matlab), hence, updating the

period online is too costly in terms of runtime overhead. If

computing a new control law as a function of the rate

requires too much time to be performed at runtime, a set of

controllers has to be designed offline for different rates and

the system has to switch to the proper controller in the

presence of an overload condition. However, working with

a few discrete periods strongly limits the possibility of

efficiently reacting to an overload condition, causing a

waste of resources. The following example better illustrates

the problem and motivates our approach.

1.1 A Motivating Example

Let us consider a system consisting of a set of n digital

controllers, �1; . . . ; �n (each implemented by a periodic task),

where each controller is provided in three different

versions, designed at three nominal periods: �iðTi1Þ,
�iðTi2Þ, and �iðTi3Þ. In this way, a Quality-of-Control (QoC)

manager can react to an overload condition by adapting the

controller rates to degrade the system performance in a

predictable fashion.
For example, assume that controller �i is designed to

work with periods Ti1 ¼ 100, Ti2 ¼ 200, and Ti3 ¼ 300

milliseconds and, since the system is not in overload, it is

running at its minimum period Ti1. Now, suppose that, at

time t�, for some reason (e.g., the activation of a new task),

the system experiences an overload condition and the QoC

manager decides that the overload can be removed by

setting the period of �i to a value T 0i ¼ 220 ms. Since

controller �i was not designed for this rate, the period T 0i
must be set equal to the next higher period (T 0i ¼ 300) in

order to keep the system schedulable (T 0i ¼ Tik if

Tik�1 < T 0i � Tik). The situation is illustrated in Fig. 1.
However, running the controller �i at 300 ms wastes

system resources and degrades the performance more than

necessary. Two solutions can be applied to overcome this
problem:

1. Increase the number of versions for each controller
so that the difference between the ideal and the
available period can be kept as small as desired.

2. Take a controller �iðTikÞ, designed to work with
period Tik, and run it with period T 0i , properly
selecting Tik in order to reduce degradation.

The first solution is theoretically fine, but it requires
keeping the parameters of all the controllers in memory. If
the amount of memory required for storing all the
controllers is too large for the available resources, this
method cannot be applied in practice. In this paper, we
exploit the second solution and present a method for
reducing the number of controllers to be designed offline,
while still guaranteeing a given control performance with a
continuous period adaptation.

1.2 Contribution and Summary

In this paper, we propose a novel methodology for
managing overload conditions in real-time systems consist-
ing of a set of periodic control tasks running at different
rates. The overload is handled by a rate adaptation
algorithm, which takes into account both timing constraints,
specified according to the elastic task model [5], and
performance constraints, specified using a given QoC
performance index (see Section 3).

To manage the QoC degradation caused by rate
variations, each controller is designed and implemented
for different sampling rates (accurately computed offline to
minimize memory requirements) so that, at runtime, the
QoC manager can switch to the controller instance that
guarantees the required control performance. Thus, the
proposed method requires two phases to be implemented.
In a first phase, each controller �i is characterized offline to
evaluate how the QoC is degraded when the controller is
executed with a period T 0i different from the nominal period
Tik which the controller has been designed for. Then, at
runtime, the QoC manager reacts to overload conditions by
selecting the proper rates that satisfy schedulability and
meet the desired performance requirements. Elastic sche-
duling theory [5] is adopted to promptly react to overload
conditions and select a set of feasible periods, whereas
controllers are switched online as a function of the selected
period. Extensive simulations and practical experiments
have been performed on an inverted pendulum to verify the
effectiveness of the proposed approach.

The rest of the paper is organized as follows: In Section 3,
we address the issue of measuring the quality-of-control
and define a performance index that can be used to evaluate
the effectiveness of the control algorithm. In Section 4, we
evaluate how much the control performance degrades
when a controller designed for a specific rate is executed
at a different rate. Then, we propose a method for
minimizing the number of controllers to be designed offline
at different rates for keeping the quality-of-control in a
desired range and with a bounded error. In Section 5, we
propose an overload management method that adapts task
periods using elastic scheduling and switches the controller
to meet the performance requirements based on the

254 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 2, FEBRUARY 2007

Fig. 1. When the ideal nominal period is not available, the controller must

run at the next higher period to preserve system schedulability.

performance-rate functions computed offline. Section 6
presents some simulation results performed on an inverted
pendulum, whereas Section 7 illustrates the experiments
carried out on a real inverted pendulum. Finally, Section 8
states our conclusions and future work.

2 RELATED WORK

Several methods have been proposed in the real-time
literature for setting task rates to optimize control perfor-
mance while ensuring the feasibility of the schedule.

For example, Kuo and Mok [15] presented a load scaling
technique to gracefully degrade the workload of a system
by adjusting the periods of processes. In this work, tasks are
assumed to be equally important and the objective is to
minimize the number of fundamental frequencies. Other
policies to dynamically adjust tasks’ rates in overload
conditions have been proposed under static [16] and
dynamic priority assignments [3]. Buttazzo et al. [5]
proposed an elastic approach in which tasks are treated as
elastic springs whose utilization can be compressed or
expanded by acting on task periods up to a desired value to
reach a desired load. Elastic coefficients can be used to
encode task importance so that tasks with higher values
experience fewer variations.

Elastic scheduling was also extended to work with tasks
with unknown and variable computation times for adaptive
QoS management [6]. A feedback mechanism was used to
monitor task execution, estimate the load, and change the
rates accordingly. To compensate for the lower utilization
caused by the quantization error, a technique has been
proposed to adjust periods to bring the total utilization
closer to the desired value. However, the method is not
optimal and the utilization error can still be large in the
worst case. Elastic scheduling was also employed to work
with discrete periods for improving networks scheduling
[24] and energy-aware management [22].

The major problem in the techniques cited above is that
rates are computed only based on load considerations to
meet schedulability constraints, without any concern on the
effects that the new periods have on the control perfor-
mance of the system. Indeed, when a digital controller is
implemented as a periodic task, the variation applied on the
task period also affects the control law, which needs to be
recomputed for the new activation rate [19].

The problem of integrating real-time schedulability
analysis with control system design was recently investi-
gated by several authors; however, the consequence of a
rate change in terms of control performance was not always
taken into account.

For example, Seto et al. [25] proposed a method for
determining tasks’ periods within a specified range to
minimize a control performance index defined over the task
set. This approach is effective at a design stage to optimize
the performance of a discrete control system, but cannot be
used for online load adjustment. Abdelzaher et al. [2]
presented a model for QoS negotiation to meet both
predictability and graceful degradation requirements dur-
ing overloads. In this model, the QoS is specified as a set of
negotiation options in terms of rewards and rejection
penalties. Caccamo et al. [8] introduced a rate optimization

framework for real-time control tasks to optimize the
control performance and guarantee the schedulability of
the task set under worst-case conditions. The approach
allows control tasks to execute at optimal frequencies in
normal load conditions, while minimum frequencies are
guaranteed for overload situations.

Shin and Meissner [26] presented a resource reallocation
technique where the effects on control performance of
changing periods and moving tasks are evaluated. Martı́
et al. [20] provided a technique that allows each instance of
a control task to choose the current execution period from a
set of discrete values to improve control performance and
task set schedulability. Cervin et al. [9] presented a
scheduling architecture for real-time control tasks in which
feedback information from the CPU load is used to adjust
the workload of the processor and to optimize the overall
control performance by simple rescaling the task periods.
The approach works fine if the sampling periods are chosen
wisely, that is, for plants sampled reasonably quickly.
Similarly, Martı́ et al. [21] presented an optimal approach to
dynamically allocate processor resources as a function of
the plant states. Eker and Cervin [12], as well as Palopoli
et al. [23], presented specific software tools for evaluating
both the control performance and the schedulability of the
real-time system.

The previous works have treated different aspects of the
codesign of control and real-time systems. However, none
of them has focused on determining the minimum number
of controllers required to keep a desired quality of control
under overload conditions, as we propose here. This work
extends a preliminary approach we started investigating
but using only simulation experiments [7].

3 EVALUATING CONTROL PERFORMANCE

The primary criterion for evaluating the performance of
control systems is to meet stability and response perfor-
mance specifications, such as transient response and steady-
state accuracy. Beyond such requirements, controller design
attempts to minimize the system error produced by certain
anticipated inputs. The system error is defined as the
difference between the desired response of the system and
its actual response. The smaller the difference, the better the
performance.

Performance criteria (also called performance indexes or
cost functions) are mainly based on measures of the system
error. Traditional criteria (reported in control textbooks,
e.g., [11]), such as IAE (Integral of the Absolute Error), ITAE
(Integral of Time-weighted Absolute Error), ISE (Integral of
Square Error), or ITSE (Integral of Time-weighted Square
Error), provide quantitative measures of a control system
response and are used to evaluate (and design) controllers.
Some of them weight errors with time, penalizing steady-
state errors and discounting the transient response errors.

More sophisticated performance criteria, mainly used in
optimal control problems, account for the system error and
for the energy that is spent to accomplish the control
objective. The higher the energy demanded by the con-
troller, the higher the penalty paid in the performance
criterion. In some cases, system error and control energy are
multiplied by a weight to balance their relative importance.

BUTTAZZO ET AL.: QUALITY-OF-CONTROL MANAGEMENT IN OVERLOADED REAL-TIME SYSTEMS 255

For example, in [17] and [10], the performance criterion is
only based on the system error, whereas, in [26] and [25],
both system error and control energy are considered.

The goal of our approach is to minimize the number of
controllers that are required to guarantee a graceful control
performance degradation when continuously adapting the
period of the control task. The IAE performance criterion
will be used to compare the control performance of a task
running at different periods. Among all of the available
norms, IAE has been selected because it gives the best
curves to conceptually illustrate the problem we are
addressing (see a further explanation in Section 4.2.3).

The IAE index is defined as follows:

IAE ¼
Z 1

0

jeðtÞj dt; ð1Þ

where eðtÞ is the system error and j:j denotes an appropriate
norm. The integral upper limit of (1) could also be any
time t marking the evaluation time interval. If we assume
the equilibrium point to be 0 (that is, the system response
converges to zero), then the system error is the same as the
system output yðtÞ. In particular, since we want to compare
the performance of a controller running with different
periods, IAEðT0; T Þ will denote the IAE value obtained by
a controller designed with a nominal period T0, but running
with a period T . Hence, we have:

IAEðT0; T Þ ¼
Z 1

0

jyðtÞj dt; ð2Þ

where yðtÞ is the system output. Notice that, since the
integral upper bound of the IAE index is equal to infinity,
any closed loop with permanent error will give an infinite
value. However, since controllers are designed to remove
permanent errors, the value of the index will be finite. In the
experimental evaluation, for practical purposes, a time
upper bound is used for the integral. For the objective of
this work, the mathematical expression of IAEðT0; T Þ is
required to determine the minimum number of controllers
to be designed.

3.1 Mathematical Expression of IAEðT0; T Þ
In this section, we derive the mathematical expression of the
IAE for a controller designed to work at a nominal period T0

but running with a period T .
Let (3) and (4) be the linear time-invariant system

equations of a continuous-time system in state space form [1]:

_x ¼ AxðtÞ þBuðtÞ; ð3Þ

yðtÞ ¼ CxðtÞ; ð4Þ

where xðtÞ and yðtÞ are the state and the output of the
system at time t and uðtÞ is the control signal applied to the
system at time t. The state (3) and output (4) equations
defining a given system can be considered an abstract
summary of the data obtained by subjecting the system to
different inputs (control signals) and observing the corre-
sponding outputs.

Theorem 1. The mathematical expression of the IAEðT0; T Þ of a
system specified by (3) and (4), where the excitation input uðtÞ

is given by state feedback with a discrete-time controller
designed to work at a nominal period T0, but running with a
period T , is given by

IAEðT0; T Þ ¼
X1
k¼0

Z T

0

jC�cðt; T0ÞxðkT Þj dt; ð5Þ

where �cðt; T0Þ is the discrete-time closed-loop system matrix
obtained with a discretization period of t, and xðkT Þ is the
system state at each time kT .

Proof. Consider the discrete-time state space representation
of the system (3) and (4), obtained with a discretization
period T and output at time kþ 1, given by:

xðkT þ T Þ ¼ �ðT ÞxðkT Þ þ �ðT ÞuðkT Þ; ð6Þ

yðkT þ T Þ ¼ CxðkT þ T Þ; ð7Þ

where

�ðT Þ ¼ eAT �ðT Þ ¼
Z T

0

eAsdsB:

The output y at any given time, within each sampling
period T , is given by:

xðkT þ tÞ ¼ �ðtÞxðkT Þ þ �ðtÞuðkT Þ; ð8Þ

yðkT þ tÞ ¼ CxðkT þ tÞ; ð9Þ

with 0 < t < T . As before, if we consider the equilibrium
point to be 0, the system error becomes equal to the
system output y. The integral of the absolute error of the
system output y during each period T , IAET , is given by

IAET ¼
Z T

0

jyðkT þ tÞj dt; ð10Þ

with 0 < t < T . The IAEðT0; T Þ evaluation of the system
output is the sum of all the IAET values for each period
T , hence:

IAEðT0; T Þ ¼
X1
k¼0

Z T

0

jyðkT þ tÞj dt: ð11Þ

Substituting the output yðkT þ tÞ in (11) by the expres-
sions given by (8) and (9), we obtain:

IAEðT0; T Þ ¼X1
k¼0

Z T

0

jCð�ðtÞxðkT Þ þ �ðtÞuðkT ÞÞj dt:
ð12Þ

Considering the controller K designed assuming a
nominal period T0, the state feedback is given by

uðkT Þ ¼ KðT0ÞxðkT Þ: ð13Þ

Substituting (13) in (12) and reorganizing the resulting
expression, we obtain:

IAEðT0; T Þ ¼X1
k¼0

Z T

0

jCðð�ðtÞ þ �ðtÞKðT0ÞÞxðkT ÞÞj dt:
ð14Þ

256 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 2, FEBRUARY 2007

Simplifying (14) by renaming the closed-loop system
matrix, �cðt; T0Þ ¼ �ðtÞ þ �ðtÞKðT0Þ, the theorem
follows. tu

3.2 Quality-of-Control Performance Index

As done in [20], instead of using the value given by the
IAEðT0; T Þ index, we use its inverse as given by (15), thus
working with a measure that can be interpreted as a
Quality-of-Control (QoC): the smaller the errors, the better
the QoC:

QoCðT0; T Þ ¼
1

IAEðT0; T Þ
: ð15Þ

In the next section, we show how to use the performance
index defined above to describe the quality-of-control of a
real-time system as a function of the sampling rate.

4 PERFORMANCE-RATE FUNCTIONS

Using the performance index defined by (15), our objective
is to evaluate how much the control performance degrades
when a controller designed for a specific rate is executed at
a different rate. Then, by knowing the relation between
performance and rate for a specific controller, we can
decide the range of periods for which that controller can
guarantee a desired level of performance and, thus, decide
when to switch to another controller.

4.1 Analysis

To derive the relation between performance and rate, we
simulated a control system for an inverted pendulum
mounted on a motor driven cart, obtained via discretization
of a linear continuous time-invariant state-space represen-
tation. The control was derived using simple state feedback
(pole placement).

Fig. 2 shows the values of the QoC performance index
achieved by the state feedback controller. The controller
was designed to work at a nominal period T0 ¼ 0:4s and
tested within a range of periods from Tmin ¼ 0:01s to
Tmax ¼ 0:6s. As we can see from the curve, the quality of
control degrades significantly when the sampling period

increases with respect to the nominal value, whereas it is
less sensitive to periods smaller than T0.

The curve shown in Fig. 2, which relates control
performance and controller execution rate, is referred to
as the Performance-Rate Function (PRF) and it is character-
ized by a nominal period T0, used to design the controller,
and a set of periods ½Tmin; . . . ; Tmax�, used to run the
controller.

Each performance-rate function can be formulated in
terms of (15) as

PRF ðT0; t; Tmin; TmaxÞ ¼
fQoCðT0; tÞ j t 2 ½Tmin; . . . ; Tmax�g:

ð16Þ

Using the notation introduced in (16), the performance-
rate function illustrated in Fig. 2 can be expressed as
PRF ð0:4s; t; 0:01s; 0:6sÞ. The shape of degradation also
depends on the nominal period T0. For example, Fig. 3
shows the performance-rate functions obtained from a
controller designed to work with three different sampling
periods: T1 ¼ 0:3s, T2 ¼ 0:4s, and T3 ¼ 0:5s, but tested
within the same range of periods as before. Note that the
degradation is more significant for higher nominal periods.
However, for each function, the properties outlined before
hold. For periods larger than the nominal period, the QoC
of the inverted pendulum response drastically decreased:
The system quickly became unstable, making the pendulum
fall down. This was an expected behavior because the
system was controlled less frequently than it should be.

For rates higher than the nominal one (left side of each
curve), the response suffers a graceful and acceptable
degradation (smooth slope). In terms of the inverted
pendulum response, this means that it takes more time for
the pendulum to recover from a perturbation and it can
suffer bigger deviations from the desired working point
(vertical position). This behavior is less intuitive because we
are controlling the system more frequently. However, when
a controller is designed for a specific period, the optimal
performance is achieved when running exactly with that
value. Therefore, even a shorter period implies a perfor-
mance degradation. A formal justification of this phenom-
enon would require too much space to fit in this paper, but
an intuitive explanation can be given by considering the
case of displaying a digital image on a monitor with a given

BUTTAZZO ET AL.: QUALITY-OF-CONTROL MANAGEMENT IN OVERLOADED REAL-TIME SYSTEMS 257

Fig. 2. Performance-rate function of a controller designed to work at a

nominal period T0 ¼ 0:4s.

Fig. 3. Performance-rate functions of a controller designed to work at

three different nominal periods.

resolution. If the monitor has the same resolution as the

image, the result has the maximum quality. If the monitor

has a lower resolution, the image loses quality since pixels

are dropped. If the monitor has a higher resolution, the

image also loses quality since some pixels are duplicated

and, as a consequence, antialiasing algorithms do not work

properly, producing an image of degraded quality.
Considering the previous observations, we will allow

controllers to execute only with a period less than or equal

to the nominal one, trading graceful performance degrada-

tion for controller flexibility, as further explained in

Section 4.3. In order to prevent instability, a controller is

not allowed to execute with periods longer than the

nominal one.
A controller running with a period that is different from

the nominal one is called a nontuned controller. To better

evaluate the error produced by a nontuned controller at any

running period, it is worth comparing the control perfor-

mance index with the one achieved by the corresponding

tuned controller. Fig. 4 shows the performance function

derived from a controller tuned with a period T0 ¼ 0:4s

against the curve achieved by a controller tuned for any

rate. Note that this curve is the envelope of the set of

performance rate functions.
The curve relative to the ideal controller tuned at any

rate is a special case of the performance-rate function

expressed by (16), where t ¼ T0 8t 2 ½Tmin; . . . ; Tmax�. There-

fore, the performance-rate function of an ideal controller

can be formulated as follows:

PRF ðt; t; Tmin; TmaxÞ ¼
fQoCðt; tÞ j t 2 ½Tmin; . . . ; Tmax�g:

ð17Þ

Note that, in (17), if Tmin ¼ Tmax ¼ t, then the perfor-

mance-rate function is evaluated in one single period value.

And, if t ¼ T0, then PRF ðT0; T0; T0; T0Þ ¼ QoCðT0; T0Þ cor-

responds to the maximum of each performance-rate

function.

4.2 Discussion

Performance-rate functions will be used for bounding the

error during overload conditions. Before presenting our

approach, it is worth making some considerations about the

amplitude of these curves, their specific shape, and the
selection of the IAE index.

4.2.1 Amplitude

It can be easily seen that the amplitude of the performance-
rate functions depends on the initial conditions. In fact,
given that xðkT Þ ¼ �k

cðT Þxð0Þ, (5) can be expressed as

IAEðT0; T Þ ¼
X1
k¼0

Z T

0

C�cðt; T0Þ�k
cðT Þxð0Þ

�� ��dt: ð18Þ

From (18), it is clear that the amplitude of each curve
depends on the initial condition used to obtain the curve.
Therefore, when using several curves, to avoid false
comparisons or scaling errors, we normalized them by
evaluating IAEðT0; T Þ=jxð0Þj, where j � j is the vector norm
associated to the inner integral matrix norm of (18). This
will provide curves that do not depend on the initial
conditions. For the special case of xð0Þ ¼ 0, the previous
expression does not exist. But, for this case, if the initial
state is 0, the IAE evaluation will also be 0 as can be
deduced from (18).

4.2.2 Shape

The specific shape of the performance-rate functions and
their relative position depends on several factors, such as
the nature of the plant, the control specifications, the real-
time constraints, and the controller design methodology.

Regarding the type of plant, for example, a highly
nonlinear plant may always become unstable at the same
execution period due to its nonlinearities. Therefore, the
relative positions of several curves for different nominal
periods will not be as in Fig. 3. They will tend toward 0 at
the same time instant.

In a real-time control system, meeting both control
specifications and real-time constraints may be somewhat
subtle. On one hand, meeting control specifications may
require short periods, which may prevent task set schedul-
ability. On the other hand, if the control task period is
specified to obtain a feasible task set, the control perfor-
mance specifications may not be completely achieved.
Therefore, a good design must trade control performance
versus real-time performance. As a consequence, the shape
of the curves must be computed considering these
decisions.

It is also important to account for the controller design
methodology. For example, performance-rate functions will
have different shapes for controllers designed through a
discrete-time approximation of a continuous-time design
(like discrete-time PID controllers) than for controllers
designed through direct discrete-time design methods
(e.g., discrete-time pole placement).

In summary, to successfully use performance-rate func-
tions in real-time and control codesign approaches as we
do, the designer must be aware of the type of plant, system
constraints, and controller design methods to be used. For
an initial analysis of these issues, see [27].

4.2.3 The IAE Index

By using the IAE index (or any other standard index) to
evaluate the goodness of a plant response, we are hiding the

258 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 2, FEBRUARY 2007

Fig. 4. Performance-rate function of a controller tuned to work with a

nominal period T0 ¼ 0:4s against the ideal controller tuned at any rate.

real dynamics of the plant. That is, two different dynamics,
e.g., an oscillating dynamic and a nonoscillating but slow
dynamic, can give the same IAE value. This may complicate
comprehension of the real behavior of the system.

At the controller design stage, for a nominal period, we
specify the exact behavior for our system. However, when
the controller is executed with other periods than the
nominal, the real behavior cannot be controlled anymore.
Therefore, it is not possible to specify a particular family of
behaviors.

In Section 3, we argued that the IAE index was selected
because it gives the best curves to conceptually illustrate the
problem we are addressing.

Among the IAE, ISE, ITAE, and ITSE indexes, ITAE and
ITSE are not really useful because they are weighted by
time. This shifts the maximum of each curve, thus losing the
graphical relation between each nominal period and the
corresponding maximum of each performance-rate curve.

Indexes like ISE or any quadratic cost function (such as
those used in optimal control problems) will give similar
results as IAE. For example, using a standard quadratic cost
function such as (19), where Q is a weighting matrix,

JðT0; T Þ ¼
Z 1

0

yT ðtÞQyðtÞ dt; ð19Þ

the type of performance rate functions are equivalent to
those obtained by IAE. Fig. 5 shows the equivalent curve to
Fig. 2 when J is used.

In summary, performance-rate functions are good tools
for codesigning real-time and control systems, but their
specific shape depends on several engineering and design
choices.

4.3 Bounding the Error during Overloads

To cope with overload conditions, tasks must change rates.
However, if we want to always have the best control
performance achievable for any given task rate, the
execution period of the task must always coincide with
the nominal period used for the controller design. As
described in [19], this can be achieved either by redesigning
the controller at runtime for each new execution period or
by accessing it from a table of predesigned controllers. If
redesigning the controller is too expensive (in terms of

computational overhead) to be done at runtime, a number
of controllers must be designed offline and stored into
memory: one for each possible rate the task may adapt to
cope with overload situations. When the number of possible
periods the task is allowed to take is too big, the solution
presented above can be unfeasible in terms of memory
demand (see [19] for a detailed overhead analysis).

A possible way to overcome this problem is to restrict the
task to work only with discrete rate variations. However,
working with a small number of discrete periods is not
efficient because it may be impossible to reach the desired
load after a rate variation. Having a discrete number of rates
means having a discrete number of resulting workloads. For
example, if, during an overload, the new periods are
computed using a typical load compression algorithm
(e.g., the elastic compression algorithm [5] or other similar
methods [3]), then the resulting periods (which are treated
as continuous variables) have to be enlarged to the closest
available period for which the controller has been designed.

After resizing all the periods, the system workload may
be much lower than the desired one specified in the load
compression algorithm. As a consequence, the system
would run with low efficiency. To address this issue, some
authors [24], [10] proposed an adjustment technique to
slightly resize some periods after a discrete load compres-
sion to reach a workload closer to the desired one.

However, there is no need to work with discrete periods.
Instead of forcing the control tasks to work at predefined
rates, one could let them work at a rate resulting from the
compression algorithm and switch to the most appropriate
controller that bounds the control performance error with
respect to the ideal tuned controller, thus posing a trade-off
design choice: number of controllers versus QoC.

To bound the error produced by a nontuned controller
(with respect to the ideal one tuned at any period), we have
to switch controllers as soon as the control performance
decreases below a given bound �max. To reduce the number
of controllers that have to be designed offline to keep the
error below a given value, we can apply the following
approach (see Fig. 6 as a reference):

1. The user starts by specifying the minimum admis-
sible QoC level ðQoCminÞ and the maximum error
�max (specified in percentage) that can be tolerated

BUTTAZZO ET AL.: QUALITY-OF-CONTROL MANAGEMENT IN OVERLOADED REAL-TIME SYSTEMS 259

Fig. 5. Performance rate function for a quadratic performance index.

Fig. 6. Sequence of controllers bounding the performance error to a

given value.

with respect to the optimal curve corresponding to
the ideal tuned controller (the Envelope curve in
Fig. 6).

2. The maximum error, �max, allows the user to
derive the minimum performance curve (the
Envelope Error curve in Fig. 6), which is given
by Envelope� �max � Envelope.

3. The range of possible periods is bounded by Tmin and
Tmax. Tmin corresponds to the default period of the
controller task that is guaranteed by the scheduling
algorithm adopted by the system.Tmax corresponds to
the nominal period of the controller whose perfor-
mance rate function crosses the intersection of the
minimum performance curve with QoCmin.

4. The first controller can be designed using the
nominal period T1 ¼ Tmax.

5. The next nominal period can be set to the value T2 <
T1 given by the intersection of the performance-rate
function tuned at T1 with the minimum performance
curve (i.e., the Envelope Error curve) and so on for the
other periods while they are not smaller than Tmin.
Note that, since envelopes are monotonically de-
creasing, the next nominal period (found on the left
of Tmax) will always be an intersection above QoCmin.

It is worth noting that QoCmin is the worst acceptable
quality, meaning that, beyond this limit, the controlled
plant would misbehave or crash, whereas �max is the
tolerated error of the controlled plant for any given period.
Independently of the relative value of the executing period
within the allowed range, �max will always imply a quality
higher than QoCmin.

Fig. 6 illustrates an example showing the sequence of
performance-rate functions that bound the error with
respect to the tuned controller (the Envelope curve) to a
value equal to �max (the Envelope Error curve). For this case,
we need four performance-rate functions (corresponding to
nominal periods equal to 0.31s, 0.38s, 0.46s, and 0.54s) to
bound the error produced by a nontuned controller
executing within ½Tmin; . . . ; Tmax� ¼ ½0:28s; . . . ; 0:54s�, where
�max ¼ 0:3 and QoCmin ¼ 0:6. Tmin is the default task period
(0:28s) and Tmax is obtained from QoCmin, which is the
minimum quality of service level specified by the user. Note
that the bold line in Fig. 6 is the expected QoC when
controllers are switched in the overload situation. In terms
of the inverted pendulum, this translates into a maximum
allowed recovery time and pendulum deviation. This
specification can be easily mapped into a minimum QoC.

Notice that load variations cannot be predicted at runtime,
but the maximum load variation should be estimated at
design time. If the overload is too high (beyond the predicted
value) to push periods outside the range, the system should
generate an exception because this is a design error. The
exception could be handled in several ways, e.g., by
admission control, but then the consequence of rejecting a
task could be even worse than running it at a lower rate.
However, this issue is out of the scope of the paper.

Note also that �max relates control performance to system
resources in terms of memory requirements (number of
controllers to be designed offline and stored for runtime
access). If �max ¼ 0, (that is, the Envelope Error curve

coincides with the Envelope curve), the number of con-
trollers to be designed offline would be equal to the number
of possible rates the task could run to adapt within the
specified range ½Tmin; . . . ; Tmax�, which causes the largest
memory demand. The QoC achieved in this case would be
the optimal one because, for each execution rate, the system
would execute the corresponding tuned controller. As �max
increases, fewer controllers need to be designed offline
(meaning less storage memory) at the expense of reducing
the average achievable QoC.

4.4 Trading Performance with Resources

As outlined in Section 4.3, the value of �max determines the
number of controllers to be designed offline and, therefore,
the resource requirements. The memory requirements for
storing a controller has been discussed by Martı́ et al. [19].
Here, we are interested in evaluating how the performance
degrades as a function of the number of controllers.

It should be pointed out that the specification of �max has
to be coherent with QoCmin and Tmin. In fact, it makes no
sense to specify an �max that results in a QoC lower than
QoCmin at Tmin because it is a contradiction in terms of
control performance.

The maximum value allowed for �max can be computed
by noting that, at Tmin, the distance between the Envelope
curve and the Envelope error curve is equal to the distance
between the Envelope curve and QoCmin, that is:

QoCðTmin; TminÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Envelope curveðTminÞ

� ðQoCðTmin; TminÞ � �maxQoCðTmin; TminÞÞ|ffl{zffl}
Envelope error curveðTminÞ

¼ QoCðTmin; TminÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Envelope curveðTminÞ

�QoCmin:

Hence, the maximum value for �max is given by

��max ¼
QoCðTmin; TminÞ �QoCmin

QoCðTmin; TminÞ
: ð20Þ

Fig. 7 illustrates a few examples showing the relation
between �max and the minimum number of controllers. Each
subfigure shows the Envelope curve (dotted line), the
Envelope error curve (dash-dotted line), the QoCmin value
(horizontal dashed line), the Tmin value (vertical solid thick
line), and the resulting performance rate functions (solid
lines) for each experiment (except for Fig. 7d)), that is, the
number of controllers to be designed offline. All of the
experiments have been carried out for QoCmin ¼ 0:6 and
Tmin ¼ 0:3.

Fig. 7a shows the result achieved by specifying the
maximum possible error �max ¼ 0:52, computed using (20).
In this case, only one controller is required, with a nominal
period of 0.48.

Figs. 7b and 7c show the number of controllers required
for �max ¼ 0:3 and �max ¼ 0:15, respectively. It is worth
noticing that the relation between �max and the number of
controllers is not linear. In fact, three controllers are
required with �max ¼ 0:3, whereas seven controllers are
needed with �max ¼ 0:15.

Fig. 7d illustrates the case for �max ¼ 0, in which the
Envelope error curve coincides with the Envelope curve. Here,
the number of required controllers is not shown since it

260 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 2, FEBRUARY 2007

would be theoretically infinite (and practically equal to the

number of possible rates, assuming a given granularity).
The results illustrated in Fig. 7, as well as other

simulations experiments (not shown here for space limita-

tions), indicate that the number of controllers to be designed

offline is inversely proportional to �max:

number of controllers � 1

�max
: ð21Þ

The exact relationship is not easy to derive since it depends

on the exact shape of the performance rate functions, that is,

on the matrices that characterize each controlled plant.

4.5 The Algorithm

In this section, we present the detailed algorithm (named

Nominals) that produces the set of nominal periods that can

be used to design the minimal set of controllers that keep

the QoC error smaller than �max. The algorithm requires as

input arguments the default rate of the controller (Tmin), the

minimum QoC level specified by the user (QoCmin), and the

maximum tolerated error with respect to the optimal

envelope curve (�max). The pseudocode of the algorithm is

reported in Fig. 8.
As it can be deduced from the code, the complexity

analysis of the algorithm can be split into two levels: the

actual search for the set of nominal periods and the

evaluation of QoCðt; tÞ and PRF ðTmax; t; Tmin; TmaxÞ. The

complexity of evaluating these two functions, which is

equivalent to evaluating (15) and (16), basically depends on

the order of the model matrices that characterize each

controlled plant. Recall, however, that this algorithm is to

be executed offline.
After finding Tmax, the search depends on the processor

clock granularity g. In particular, the complexity is given by

the number of evaluations of the if statement, which is
Tmax�Tmin

g . For the sake of clarity, the algorithm assumes

BUTTAZZO ET AL.: QUALITY-OF-CONTROL MANAGEMENT IN OVERLOADED REAL-TIME SYSTEMS 261

Fig. 7. Trading off performance, �max, and resources, with QoCmin ¼ 0:6 and Tmin ¼ 0:3. (a) �max ¼ 0:52. (b) �max ¼ 0:3. (c) �max ¼ 0:15. (d) �max ¼ 0.

Fig. 8. The Nominals algorithm.

g ¼ 1. If this is not the case, the first statement in the while

loop, t ðt� 1Þ, should be replaced with t ðt� gÞ.
Taking into account that the number of controllers to be

designed offline can be approximated by (21), the computa-
tional complexity of the Nominals algorithm plus the cost of
computing the set of nominal controllers can be expressed
as follows:

cost ¼ Tmax � Tmin
g

� �
aþ 1

�max

� �
b: ð22Þ

The first summand of (22) is the number of evaluations
of the if statement multiplied by a, which is the cost for
evaluating its condition. The second summand is the
approximated number of nominal controllers multiplied
by b, which is the cost for computing each controller.
Altogether, in a standard PC Pentium 4 with 1GB of RAM,
the Nominals algorithm takes a few hundred milliseconds
for a few controllers (large �max) up to a few seconds when
the number of controllers is 300 (�max ¼ 0, g ¼ 1).

5 OVERLOAD MANAGEMENT POLICY

The algorithm presented in Section 4.5 can be used to derive
the nominal rates of the performance-rate functions that
allow keeping the maximum error �max below a given
bound. Such nominal rates are then used to design the
corresponding controllers that have to be stored into
memory for a possible runtime adaptation during transient
overload conditions.

Initially, the system starts executing each controller at the
nominal rate closest to Tmin, that is guaranteed by the
scheduling algorithm adopted by the system and gives the
best QoC. If an overload condition occurs, task periods need
to be increased to reduce the load up to a desired value.

In this work, task rate adjustment is performed through
the elastic task model [4], [5], according to which task
utilizations are treated like springs that can be compressed
to a given workload through period variations. The
advantage of the elastic model with respect to the other
methods proposed in the literature is that a new period
configuration can be easily determined online as a function
of the elastic coefficients, which can be set to reflect tasks’
importance. The greater the elastic coefficient, the more
flexible a task is to period variations.

Once elastic coefficients are defined based on some
design criterion, the new task utilizations can be quickly
computed online depending on the current workload and
the final desired load level. Then, the new period config-
uration can be easily derived from the task computation
times and the (compressed) utilizations.

If the period Ti resulting after the compression algorithm
falls in the interval ðTk; Tkþ1� given by two consecutive
nominal periods in the performance-rate graph, each
control task must select the controller with nominal period
equal to Tkþ1. The way controllers have been designed
guarantees that, during overload conditions, as long as
periods vary in the range ½Tmin; Tmax�, the QoC degradation
will be bounded; that is, the performance error with respect
to the ideal tuned controller will be less than �max.

Note that the given algorithm might cause fast switching
between controllers (chattering) if the workload quickly
changes around a switching point. To avoid this problem,
hysteresis can easily be added into the algorithm to absorb
chattering.

6 SIMULATION RESULTS

In this section, we evaluate the method we have presented
to control the QoC performance under overload conditions.
To illustrate the benefits of our approach, we focus on a
simple scenario, where the period of a control task can be
increased from 0:25s to 0:54s to cope with an overload
condition. The numbers we use here relate to the simula-
tions presented in Section 4 performed on an inverted
pendulum. Here, we compare three different controller
execution strategies whose performance curves are illu-
strated in Fig. 9 (which has been extracted from Fig. 6):

1. Optimal task. This case considers the execution of
a tuned controller for each period computed by
the load compression algorithm. Although this
solution theoretically provides the best QoC, it
may not be practical for the large amount of
required memory. In fact, for this particular range
of periods, if we assume a system clock granular-
ity of 0:01s, we need enough memory for storing
30 controllers (corresponding to nominal periods
of 0:25s; 0:26s; . . . ; 0:54s). Note that the number of
controllers increases to 300 (or 3,000) with a clock
granularity of 1�s (or 0:1�s). The performance-rate
function of this task corresponds to the Envelope
curve illustrated in Fig. 9.

2. Adaptive task. This case considers the set of four
controllers, derived with the method presented in
Section 4.3 and Section 4.5, that guarantees a
maximum error �max ¼ 0:3. According to the over-
load management policy explained in Section 5,
whenever the period of a controller is adapted by the
elastic compression algorithm, the system selects the
appropriate controller for each period computed by
the load compression algorithm. The performance
rate function of this task corresponds to the Set curve
illustrated in Fig. 9.

262 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 2, FEBRUARY 2007

Fig. 9. Performance-rate functions for the Optimal task (Envelope),

Adaptive task (Set), and Static task ð0:54sÞ.

3. Static task. This case considers the execution of a
single controller, regardless of the task execution
period in the specified range. The performance-rate
function of this task corresponds to the 0:54s curve
in Fig. 9. For this case, in overload conditions, no
single controller is able either to keep the pendulum
stable or to guarantee the QoCmin specified by the
user. Note that if the controller is designed according
to any period belonging to the specified range, if the
task executes with a longer period, the inverted
pendulum may fall down (as discussed in Sec-
tion 4.1). The only case where the task does not
execute with a period longer than the nominal one is
when the controller is designed with a nominal
period equal to the upper limit of the specified
execution range, that is, 0:54s. However, in this case,
as can be seen from Fig. 9, for execution rates
ranging form 0:25s to 0:46s, the controller provides a
QoC lower than that specified by the user. Also note
that the performance-rate function of this task
overlaps with the Set curve in the time interval from
0:46s to 0:54s.

Table 1 shows the evaluation summary of the experi-

ments performed on the three controller execution strate-

gies: The second row reports the number of required

controllers, the third row indicates the average QoC

achieved by each method, the fourth row expresses the

QoC in average percentage, and the last row indicates

whether the method is able to keep the minimum QoC level

specified by the user. As we can see from the table, the

optimal task achieves an average QoC of 1.15 for each

execution. However, by drastically reducing the number of

controllers from 30 to 4, our adaptive task is able to keep an

acceptable QoC level, equal to 1.01, corresponding to

87.8 percent of the optimal value, whereas the static task,

which does not adapt the controller while the task period is

increased, only achieves an average QoC of 0.67, corre-

sponding to 58.2 percent of the optimal value.

7 EXPERIMENTAL RESULTS

In this section, we describe the experimental setup that we
used to corroborate the theoretical approach, as well as the
simulation results. We explain the coding of the algorithms
on a real-time kernel and discuss the experimental results.

7.1 Setup

Fig. 10 illustrates the experimental setup. The plant is a
pendulum mounted on a cart (from Inteco [14]), where the

pole can swing freely only in the vertical plane. The cart is

actuated by a DC motor on a straight track, using a belt for

transmission. For the sake of balance, two identical joined

pendulum rods and loads are attached to the cart (see

Fig. 11). Two optical incremental sensors are connected to

the system: one for the pendulum angle and one for the cart

position. Using these signals, the computer calculates the

control outputs and sends them to the DC motor through a

Pulse Width Modulator (PWM) module so that the desired

control is achieved.
The personal computer runs the SHARK real-time kernel

[13], which implements the elastic task model [5].

7.2 The Process Model

To be able to control the pendulum, its dynamics has been

derived. In particular, the dynamic relations for the cart

position and the pendulum angle are given by (23) and (24),

€x ¼ F �mlð
€� cos �þ _�2 sin �Þ � fc _x

ðM þmÞ ; ð23Þ

BUTTAZZO ET AL.: QUALITY-OF-CONTROL MANAGEMENT IN OVERLOADED REAL-TIME SYSTEMS 263

TABLE 1
Experimental Evaluation Summary

Fig. 11. The inverted pendulum.

Fig. 10. Experimental setup.

€� ¼ mgl sin ��ml€x cos �� fp _�

ðIp þml2Þ
; ð24Þ

where the parameters are shown in Table 2.
The nonlinear equations (23) and (24) describe the

system with four states, x, _x, �, _�, cart position and velocity,

and angle and angular velocity, respectively. To be able to

use normal stabilization theory, (23) and (24) must be

linearized. In the up position, it is natural to choose the

equilibrium point (�0 ¼ 0, _�0 ¼ 0) and linearize around it.

This is the region in which the stabilizing control will be

applied. Around the equilibrium point, the linearized

versions of (23) and (24) are given by (25) and (26).

€x ¼ F �ml
€�� fc _x

ðM þmÞ ; ð25Þ

€� ¼ mgl��ml€x� fp
_�

ðIp þml2Þ
: ð26Þ

Taking into account the parameter values reported in

Table 3, the A and B matrices of the continuous model of

the pendulum in the up position are given by (27) and (28).

A ¼

0 1:00 0 0
0 �1:71 �0:75 0:02
0 0 0 1:00
0 2:71 16:70 �0:55

2
664

3
775; ð27Þ

B ¼

0
1:56

0
�2:46

2
664

3
775: ð28Þ

7.3 Controller Design and Implementation

The controller was designed using standard pole placement
in the discrete-time domain. Therefore, matrices A and B
were discretized using well-known methods [1]. Afterward,
several controller gains were obtained using appropriate
nominal sampling periods for a given continuous-time pole
location, i.e., forcing specific system dynamics.

Fig. 12 shows the pseudocode that each task should
execute under SHARK. Each task has the list of nominal
periods obtained offline via the Nominals algorithm. Each
task uses the SHARK system call getPeriod() to obtain the
period Ti resulting after the compression algorithm. After-
ward, it executes the controller whose nominal period Tni is
the upper bound of the interval of two consecutive nominal
periods that contain Ti.

7.4 Experimental Performance Rate Functions

In order to obtain the performance rate functions for each
nominal sampling period, we established the following
procedure: We gave two reference positions r1 and r2 for
the pendulum cart, as shown in Fig. 10. For a given nominal
period and for an execution period, the cart had to switch
50 times between these two references. Fig. 13 illustrates
this procedure over six reference changes. For each
reference change, we obtained the corresponding IAE.
And, after obtaining the 50 IAEs, we averaged them. By
doing this, we filtered false or misleading measurements,
which are always prone to occur on experimental setups.

For each nominal period, we repeated this experiment
for all execution periods within an appropriate range.
Fig. 14 shows the experimental performance rate function
we obtained by a nominal period of 30ms, when the range
of tested periods was from near 0ms to 50ms (with a step of
0:1ms). As can be seen, the shape is very similar to the
performance rate functions obtained by simulation (see
Fig. 2 or Fig. 3).

Although the curve shown in Fig. 14 seems continuous, it
is not. It is a collection of about 500 points. However,
50 points would be enough to capture the shape of the
curve. This would mean testing the range of periods with a
step of 1ms.

264 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 2, FEBRUARY 2007

TABLE 2
Parameters of the Process

TABLE 3
Parameters Values

Fig. 12. Pseudocode of the control task.

The similarity between the simulated and experimental

performance rate functions allowed us to apply the

procedure of finding the minimum number of controllers

required to keep a desired QoC in the experimental setup.

7.5 Results

Our algorithm for determining the set of nominal periods

was tested for a given value of � in our experimental setup.

The sequence of resulting controllers keeping a bounded

error is illustrated in Fig. 15. As can be seen, only three

nominal periods close to 0:04s, 0:03s, and 0:02s (approxi-

mately) are required to keep the desired QoC within a range

of periods given by ½0:015; . . . ; 0:04�. The thick-downstairs-

like line, starting at 0:015s and finishing at 0:04s, indicates

the average QoC values that the task will achieve in the

overload condition.
Including this set of nominal periods into the task code,

we have been able to control the degradation occurring

during an overload situation. To do so, we have overloaded

the SHARK kernel by a synthetic task set in order to trigger

the elastic procedure and cause the control task to change

its period.

8 CONCLUSIONS

The problem of managing the quality of control (QoC) in

real-time control systems subject to overload conditions has

been investigated. We assumed that load adjustments were

achieved through period variations. To make an efficient

use of the available resources while still guaranteeing the

feasibility of the schedule, we did not restrict periods to

vary on a limited set of predefined values, but allowed

them to change continuously, making sure to switch to a

proper controller to keep the QoC within a desired range.
By analyzing the performance characteristics of a

controller running at a rate different than its nominal one,

we proposed an approach that allows the user to design the

minimum number of controllers needed to guarantee a

desired performance in a set of admissible rates. The

method allows the application designer to specify an error

with respect to the ideal control performance of a perfectly

tuned controller and provides a criterion to balance such an

error with control performance and memory requirements.
The effectiveness of the proposed approach has been

verified through extensive simulations, as well as real

experiments, carried out on an inverted pendulum. The

experimental results confirmed the validity of the approach

and provided quantitative evidence of the dependency of

the specified error from the achieved control performance

and the memory requirements.
As future work, we plan to further extend the proposed

method so that controllers can be adapted not only to cope

with overloads, but also to better conform with the control

application dynamics, that is, to provide an integrated QoC

management framework for the system and the application,

as a whole. This could be achieved by dynamically tuning

the elastic coefficients of control tasks according to changes

occurring in the controlled plant.

BUTTAZZO ET AL.: QUALITY-OF-CONTROL MANAGEMENT IN OVERLOADED REAL-TIME SYSTEMS 265

Fig. 13. Reference tracking.

Fig. 14. Experimental performance rate function for T0 ¼ 0:03s.

Fig. 15. Experimental sequence of controllers keeping a bounded error.

ACKNOWLEDGMENTS

This work has been partially supported by IST-004527
ARTIST2 Network of Excellence on Embedded Systems
Design.

REFERENCES

[1] K.J. �Aström and B. Wittenmark, Computer-Controlled Systems, third
ed. Prentice-Hall, 1997.

[2] T. Abdelzaher, E. Atkins, and K. Shin, “QoS Negotiation in Real-
Time Systems and Its Application to Automated Flight Control,”
IEEE Trans. Computers, vol. 49, no. 11, pp. 1170-1183, Nov. 2000.

[3] G. Beccari, S. Caselli, M. Reggiani, and F. Zanichelli, “Rate
Modulation of Soft Real-Time Tasks in Autonomous Robot
Control Systems,” Proc. 11th IEEE Euromicro Conf. Real-Time
Systems, 1999.

[4] G. Buttazzo, G. Lipari, and L. Abeni, “Elastic Task Model for
Adaptive Rate Control,” Proc. IEEE Real-Time Systems Symp., Dec.
1998.

[5] G. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni, “Elastic
Scheduling for Flexible Workload Management,” IEEE Trans.
Computers, vol. 51, no. 3, pp. 289-302, Mar. 2002.

[6] G. Buttazzo and L. Abeni, “Adaptive Workload Management
through Elastic Scheduling,” Real-Time Systems, vol. 23, no. 1,
pp. 7-24, July 2002.

[7] G. Buttazzo, M. Velasco, and P. Martı́, “Managing Quality-of-
Control Performance under Overload Conditions,” Proc. 16th
Euromicro Conf. Real-Time Systems, July 2004.

[8] M. Caccamo, G. Buttazzo, and L. Sha, “Elastic Feedback Control,”
Proc. 12th IEEE Euromicro Conf. Real-Time Systems, pp. 121-128,
June 2000.

[9] A. Cervin, J. Eker, B. Bernhardsson, and K.-E. Arzen, “Feedback-
Feedforward Scheduling of Control Tasks,” Real-Time Systems,
vol. 23, nos. 1-2, pp. 25-53, July 2002.

[10] A. Cervin and J. Eker, “The Control Server: A Computational
Model for Real-Time Control Tasks,” Proc. IEEE 15th Euromicro
Conf. Real-Time Systems, pp. 113-120, July 2003.

[11] R.C. Dorf and R.H. Bishop, Modern Control Systems, seventh ed.
Addison-Wesley, 1995.

[12] J. Eker and A. Cervin, “Matlab Toolbox for Realtime and Control
Systems Codesign,” Proc. Sixth Int’l Conf. Real-Time Computing
Systems and Applications, Dec. 1999.

[13] P. Gai, L. Abeni, M. Giorgi, and G. Buttazzo, “A New Kernel
Approach for Modular Real-TIme Systems Development,” Proc.
13th Euromicro Conf. Real-Time Systems, June 2001.

[14] Inteco Ltd., Intelligent Technology for Control, http://www.
inteco.cc.pl/, 2006.

[15] T.-W. Kuo and A.K. Mok, “Load Adjustment in Adaptive Real-
Time Systems,” Proc. 12th IEEE Real-Time Systems Symp., Dec.
1991.

[16] C. Lee, R. Rajkumar, and C. Mercer, “Experiences with Processor
Reservation and Dynamic QOS in Real-Time Mach,” Proc. Multi-
media Japan ’96, Apr. 1996.

[17] F. Lian, J. Moyne, and D. Tilbury, “Network Design Consideration
for Distributed Control Systems,” IEEE Trans. Control Systems
Technology, vol. 10, no. 2, pp. 297-307, Mar. 2002.

[18] C.L. Liu and J.W. Layland, “Scheduling Algorithms for Multi-
programming in a Hard Real-Time Environment,” J. ACM, vol. 20,
no. 1, pp. 40-61, 1973.

[19] P. Martı́, G. Fohler, K. Ramamritham, and J.M. Fuertes, “Jitter
Compensation for Real-Time Control Systems,” Proc. 22nd IEEE
Real-Time System Symp., Dec. 2001.

[20] P. Martı́, G. Fohler, K. Ramamritham, and J.M. Fuertes, “Improv-
ing Quality-of-Control Using Flexible Timing Constraints: Metric
and Scheduling Issues,” Proc. 23rd IEEE Real-Time System Symp.,
Dec. 2002.

[21] P. Martı́, C. Lin, S. Brandt, M. Velasco, and J.M. Fuertes, “Optimal
State Feedback Based Resource Allocation for Resource-Con-
strained Control Tasks,” Proc. 25th IEEE Real-Time Systems Symp.,
Dec. 2004.

[22] M. Marinoni and G. Buttazzo, “Adaptive DVS Management
through Elastic Scheduling,” Proc. 10th IEEE Int’l Conf. Emerging
Technologies and Factory Automation (ETFA ’05), Sept. 2005.

[23] L. Palopoli, L. Abeni, and G. Buttazzo, “Real-Time Control System
Analysis: An Integrated Approach,” Proc. 21st IEEE Real-Time
Systems Symp., Dec. 2000.

[24] P. Pedreiras and L. Almeida, “The Flexible Time-Triggered (FTT)
Paradigm: an Approach to QoS Management in Distributed Real-
Time Systems,” Proc. IEEE Int’l Parallel and Distributed Processing
Symp., Apr. 2003.

[25] D. Seto, J.P. Lehoczky, L. Sha, and K. Shin, “On Task Schedul-
ability in Real-Time Control Systems,” Proc. 17th IEEE Real-Time
Systems Symp., pp. 13-21, Dec. 1996.

[26] K. Shin and C. Meissner, “Adaptation of Control System
Performance by Task Reallocation and Period Modification,” Proc.
11th IEEE Euromicro Conf. Real-Time Systems, pp. 29-36, June 1999.

[27] M. Velasco, P. Martı́, R. Castañé, R. Villá, and J.M. Fuertes, “Key
Aspects for Co-Designing Real-Time and Control Systems,” Proc.
Int’l Workshop Real-Time and Control (RTC ’05), July 2005.

Giorgio Buttazzo graduated in electronic en-
gineering from the University of Pisa in 1985
and received the master’s degree in computer
science from the University of Pennsylvania in
1987 and the PhD degree in computer en-
gineering from the Scuola Superiore Sant’Anna
of Pisa in 1991. He is a full professor of
computer engineering at the Scuola Superiore
Sant’Anna of Pisa. From 1987 to 1988, he
worked on active perception and real-time

control at the G.R.A.S.P. Laboratory at the University of Pennsylvania,
Philadelphia. His main research interests include real-time operating
systems, dynamic scheduling algorithms, quality of service control,
multimedia systems, advanced robotics applications, and neural net-
works. He has authored six books on real-time systems and more than
200 papers in the field of real-time systems, robotics, and neural
networks. Professor Buttazzo is a senior member of the IEEE.

Manel Velasco graduated in maritime engineer-
ing in 1999 and received the PhD degree in
automatic control in 2006, both from the Tech-
nical University of Catalonia, Barcelona, Spain.
Since 2002, he has been an assistant professor
in the Department of Automatic Control at the
Technical University of Catalonia. He has been
involved in research on artificial intelligence from
1999 to 2002 and, since 2000, on the impact of
real-time systems on control systems. His

research interests include artificial intelligence, real-time control
systems, and collaborative control systems, especially on redundant
controllers and multiple controllers with self-interacting systems.

Pau Martı́ received the degree in computer
science and the PhD degree in automatic control
from the Technical University of Catalonia,
Barcelona, Spain, in 1996 and 2002, respec-
tively. Since 1996, he has been an assistant
professor in the Department of Automatic Control
at the Technical University of Catalonia. From
1999 to 2002, he spent several months as a
visiting student at Malardalen University, Vas-
teras, Sweden. From 2003 to 2004, he held a

research fellow appointment in the Computer Science Department at the
University of California at Santa Cruz, involved in research on soft real-
time systems. His research interests are real-time control systems, with
emphasis on the interaction and integration of control systems, real-time
systems, and communication systems. He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

266 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 2, FEBRUARY 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

