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Abstract

Most control systems involve the execution of periodic
activities, which are automatically activated by the operat-
ing system at the specified rates. When the application con-
sists of many concurrent tasks, each control activity may ex-
perience delay and jitter, which depend on several factors,
including the scheduling algorithm running in the kernel,
the overall workload, the task parameters, and the task in-
teractions. If not properly taken into account, delays and
jitter may degrade the performance of the system and even
jeopardize its stability.

In this paper, we evaluate three methodologies for reduc-
ing the jitter in control tasks: the first one consists of forc-
ing the execution of inputs and outputs at the period bound-
aries, so trading jitter with delay; the second method re-
duces jitter and delay by assigning tasks shorter deadlines;
whereas, the third method relies on non preemptive execu-
tion. We compare these techniques by illustrating examples,
pointing out advantages and disadvantages, and evaluat-
ing their effects in control applications by simulation. It is
found that the deadline advancement method gives the bet-
ter control performance for most configurations.

1 Introduction

Real-time control applications typically involve the exe-
cution of periodic activities to perform data sampling, sen-
sory processing, control, action planning, and actuation.
Although not strictly necessary, periodic execution simpli-
fies the design of control algorithms and allows using stan-
dard control theory to guarantee system stability and per-
formance requirements. In a computer controlled system,
periodic activities are enforced by the operating system,
which automatically activates each control task at the spec-
ified rate.

Nevertheless, when the system involves the execution of
many concurrent tasks, each activity may experience de-
lay and jitter, which depend on several factors, including
the scheduling algorithm running in the kernel, the overall
workload, the task parameters, and the task interactions. If

not properly taken into account, delay and jitter may de-
grade the performance of the system and even jeopardize its
stability [18, 20, 12].

The problem of jitter in real-time control applications
has received increased attention during the last decade and
several techniques have been proposed to cope with it. Nils-
son [24] analyzed the stability and performance of real-time
control systems with random delays and derived an optimal,
jitter-compensating controller. Mart´ı et al. [23] proposed a
compensation technique for controllers based on the pole
placement design method. Di Natale and Stankovic [13]
proposed the use of simulated annealing to find the optimal
configuration of task offsets that minimizes jitter, accord-
ing to some user defined cost function. Cervinet al. [10]
presented a method for finding an upper bound of the input-
output jitter of each task by estimating the worst-case and
the best-case response time under EDF scheduling [22], but
no method is provided to reduce the jitter by shortening task
deadlines. Rather, the concept ofjitter margin is introduced
to simplify the analysis of control systems and guarantee
their stability when certain conditions on jitter are satisfied.

Another way of reducing jitter and delay is to limit the
execution interval of each task by setting a suitable relative
deadline. Working on this line, Baruah at al. [5] proposed
two methods for assigning shorter relative deadlines to tasks
and guaranteeing the schedulability of the task set. Shinet
al. [25] presented a method for computing the minimum
deadline of a newly arrived task, assuming the existing task
set is feasibly schedulable by EDF. Buttazzo and Sensini
[8] also presented an on-line algorithm to compute the min-
imum deadline to be assigned to a new incoming task in
order to guarantee feasibility under EDF.

Another common practice to reduce jitter in control ap-
plications is to separate each control task into three distinct
subtasks performing data input, processing, and control out-
put [11]. The input-output jitter is reduced by postpon-
ing the input-output subtasks to some later point in time,
so trading jitter with delay. While it has been shown that
task splitting in general may improve the schedulability of
a task set [16], the method also introduces a number of
problems that have not been deeply investigated in the real-
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time literature. Finally, another possible technique to re-
duce scheduling-induced jitter is to execute the application
in a non preemptive fashion.

In general, none of the techniques above can reduce
the jitter all the way down to zero. There will always
be some variability in the execution time of the (sub)tasks
themselves, and there might be additional jitter caused by
poor timer resolution, tick scheduling, non-preemptable
kernel calls, etc. In this paper, however, we will focus
on scheduling-induced jitter, and we will consider stan-
dard control algorithms that can be assumed to have near-
constant computation times.

Although the techniques above have often been used
in control applications, a comprehensive assessment and
a comparative evaluation of their effect on control perfor-
mance is still missing. In this paper, we provide a sys-
tematic description of these techniques, illustrating exam-
ples and pointing out possible problems introduced by each
method. Then, we discuss a number of simulation experi-
ments aimed at evaluating the effect of these approaches in
control applications.

The rest of the paper is organized as follows. Section 2
presents the system model and the basic assumptions. Sec-
tion 3 provides a definition of jitter and identifies the possi-
ble causes. Section 4 introduces the three approaches con-
sidered in this work for jitter reduction and discusses pros
and cons of the methods. Section 5 describes some experi-
mental results carried out to evaluate the three approaches.
Section 6 states our conclusions and future work.

2 Terminology and Assumptions

We consider a set� = {τ1,τ2, . . . ,τn} of periodic tasks
that have to be executed on a uniprocessor system. Each
periodic taskτ i consists of an infinite sequence of task in-
stances, or jobs, having the same worst-case execution time
(WCET), the same relative deadline, and the same interar-
rival period. The following notation is used throughout the
paper:

τi,k denotes thek-th job of taskτ i, with k ∈� .
Ci denotes the worst-case execution time (WCET) of task

τi, that is, the WCET of each job ofτ i.
Ti denotes the period of taskτ i, or worst-case minimum

inter-arrival time.
Di denotes the relative deadline of taskτ i, that is, the max-

imum finishing time allowed for any job, relative to its
activation time.

ri,k denotes the release time of jobτ i,k. If the first job is
released at timeri,1 = Φi, also referred to as the task
phase or the offset, the generick-th job is released at
time ri,k = Φi +(k−1)Ti.

si,k denotes the start time of jobτ i,k.
fi,k denotes the finishing time of jobτ i,k.

Ri,k denotes the response time of jobτ i,k, that is, the differ-
ence of its finishing time and its release time (Ri,k =
fi,k − ri,k).

INLi,k denotes the input latency of a control jobτ i,k, that
is, the interval between the release of the task and the
reading of the input signal. If the input is performed at
the beginning of the job, thenINLi,k = si,k − ri,k.

IOLi,k denotes the input-output latency of a control jobτ i,k,
that is, the interval between the reading of the input
and the writing of the output. If the input is performed
at the beginning of the job and the output at the end,
thenIOLi,k = fi,k − si,k.

Ui denotes the utilization of taskτ i, that is, the fraction of
CPU time used byτi (Ui = Ci/Ti).

U denotes the total utilization of the task set, that is, the
sum of all tasks utilizations (Ui = ∑n

i=1Ui).

We assume all tasks are fully preemptive, although some of
them can be executed in a non preemptive fashion. More-
over, we allow relative deadlines to be less than or equal to
periods.

3 Jitter characterization

Due to the presence of other concurrent tasks that com-
pete for the processor, a task may evolve in different ways
from instance to instance; that is, the instructions that com-
pose a job can be executed at different times, relative to
the release time, within different jobs. The maximum time
variation (relative to the release time) in the occurrence of
a particular event in different instances of a task defines the
jitter for that event. The jitter of an event of a taskτ i is
said to berelative if the variation refers to two consecutive
instances ofτi, andabsolute if it is computed as the maxi-
mum variation with respect to all the instances.

For example, the response time jitter (RTJ) of a task is
the maximum time variation between the response times of
the various jobs. IfRi,k denotes the response time of thekth

job of taskτ i, then the relative response time jitter of taskτ i

is defined as

RTJrel
i = max

k
|Ri,k+1−Ri,k| (1)

whereas the absolute response time jitter of taskτ i is defined
as

RTJabs
i = max

k
Ri,k −min

k
Ri,k. (2)

Of particular interest for control applications are the time
instants at which inputs are read and outputs are written. An
overview of control task timing is given in Figure 1. The
time interval between the release of the task and the reading
of the input signalyi(t) is called the input latency and is
denoted by INLi,k. The interval between the reading of the
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Figure 1. Control task timing.

input and the writing of the output is called the input-output
latency and is denoted by IOLi,k.

In the figure, it is assumed that the input signalyi(t) is
sampled at the start timesi,k, and that the control signalui(t)
is updated at the finishing timefi,k. Under this assumption,
the response-time jitter is equivalent to the output jitter.

Similarly, the input jitter (INJ) of a task is the maximum
time variation of the instants at which the input is performed
in the various jobs. Thus, the relative input jitter of taskτ i

can be defined as

INJrel
i = max

k
|INL i,k+1− INL i,k| (3)

whereas the absolute input jitter of taskτ i is defined as

INJabs
i = max

k
INL i,k −min

k
INL i,k. (4)

Another type of jitter of interest in control applications
is the input-output jitter (IOJ), that is, the maximum time
variation of the interval between the reading of the input and
the writing of the output. The relative input-output jitter of
taskτi is defined as

IOJrel
i = max

k
|IOLi,k+1− IOLi,k| (5)

whereas the absolute input-output jitter of taskτ i is defined
as

IOJabs
i = max

k
IOLi,k −min

k
IOLi,k. (6)

The jitter experienced by a task depends on several fac-
tors, including the scheduling algorithm running in the ker-
nel, the overall workload, the task parameters, and the task
interactions through shared resources.

The example shown in Figure 2 illustrates how the jitter
is affected by the scheduling algorithm. The task set con-
sists of three periodic tasks with computation timesC1 = 2,
C2 = 3, C3 = 2, and periodsT1 = 6, T2 = 8, T3 = 12. No-
tice that, if the task set is scheduled by the Rate Monotonic
(RM) algorithm (Figure 2a), the three tasks experience a
response time jitter (both relative and absolute) equal to 0,

2, and 8, respectively. Under the Earliest Deadline First
(EDF) algorithm (Figure 2b), the same tasks experience a
response time jitter (both relative and absolute) equal to 1,
2, and 3, respectively. Also the input-output jitter changes
with the scheduling algorithm; in fact, under RM, the three
tasks have an input-output jitter (both relative and absolute)
equal to 0, 2, 5, respectively, whereas under EDF the input-
output jitter is zero for all the tasks. In general, EDF sig-
nificantly reduces the jitter experienced by tasks with long
period by slightly increasing the one of tasks with shorter
period. A more detailed evaluation of these two scheduling
algorithms for different scenarios can be found in [9].

Using the same example shown in Figure 2, it is easy
to see that, if taskτ3 has a shorter computation time (e.g.,
C3 = 1), the response time jitter experienced byτ 3 under
RM decreases from 8 to 3, while the input-output jitter
becomes 0. Hence, the jitter is heavily dependent on the
workload, especially for fixed priority assignments. Also
note the dependency on the task set parameters. In fact, by
slightly increasing the periodT3, under EDF, the first job
of τ3 would be preempted by the second job ofτ 1, so the
jitter of τ3 would increase significantly. It is also clear that
the task offsets have an influence on the jitter. Finally, more
complex interferences may occur in the presence of shared
resources, which can introduce additional blocking times
that may increase the jitter.

4 Jitter control methods

We now introduce three common techniques typically
adopted to reduce jitter in real-time control systems. They
are described in the following sections.

4.1 Reducing jitter by task splitting

The first approach exploits the fact that most control ac-
tivities have a common structure, including an input phase,
where sensory data acquisition is performed, a processing
phase, where the control law is computed, and an output
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Figure 2. Jitter under RM (a) and EDF (b).
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Figure 3. Task input and output can be forced to
occur at period boundaries.

phase, where the proper control actions are sent to the con-
trolled plant. Hence, each control taskτ i is divided into
three subtasks: input, processing, and output. The compu-
tation times of these three subtasks will be denoted asIi, Pi,
andOi, respectively, and the total computation time is given
byCi = Ii + Pi + Oi.

The key idea behind this method is to force the input
subtask to be executed at the beginning of the period and
the output subtask to be executed at the end, as illustrated
in Figure 3.

The input and output subtasks can be forced to execute
at desired time instants by treating them as interrupt rou-
tines activated by dedicated timers. The processing sub-
task, instead, is handled as a normal periodic task, subject
to preemption according to the scheduling algorithm. This
method will be referred to asReducing Jitter by Task Split-
ting (RJTS). To avoid using two distinct timers, the output
part of thek-th job can be executed at the beginning of the
next period, that is just before the execution of the input part
of the (k +1)-th job.

Figure 4 shows how the task set illustrated in Figure 2
would be handled by using the RJTS technique. Note that
the output part of each job is always executed at the begin-
ning of the next period, just before the input part of the next
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Figure 4. A task set executed according to the
RJTS method.

job. As it can be seen from the example, treating the input-
output parts as interrupt handling routines can significantly
reduce the jitter for all tasks. The advantages of this method
are the following:

• The fixed input-output delay greatly simplifies both the
controller design and the assertion of system stability.
The case of a one-sample delay is especially simple to
handle in the control analysis [1]. In contrast, analyz-
ing stability under jitter is much more difficult and re-
quires either knowledge of the statistical distributions
of the delays [24] or leads to potentially conservative
results [19].

• In theory, the task splitting method can be applied to all
the tasks and under any workload, whenever the task
splitting overhead can be considered negligible.

However, there are other concerns that must be taken into
account when applying this technique:



• The jitter reduction is obtained by inserting extra de-
lay in the task execution. In fact, when applying this
method, input and output parts are always separated
by exactly a period, while normally the average delay
could be smaller. The effect of having a higher delay
in the control loop has to be carefully analyzed, since
it could be more negative than the effect of jitter.

• Executing the input/output parts as high priority in-
terrupt routines causes extra interference on the pro-
cessing parts of the control tasks. Such an interfer-
ence needs to be taken into account in the guaran-
tee test. Feasibility analysis becomes more complex,
but can still be performed using appropriate methods,
like the one proposed by Jeffay and Stone [17], or by
Facchinettiet al. [14].

• The extra interference caused by the input/output parts
running as high priority interrupt routines decreases
the schedulability of the system. As a consequence,
tasks must run at lower rates with respect to the nor-
mal case.

• The input and output parts of different tasks may com-
pete for the processor among themselves, hence they
need to be scheduled with a policy that, in general,
could be different than that used for the control tasks
(e.g., it could be preemptive or non preemptive). As a
consequence, a two-level scheduler is required in the
real-time kernel to support such a mechanism. Fig-
ure 5 shows an example in which the input and out-
put parts of different tasks overlap in time and require
a scheduling policy. In the example, input and out-
put parts always preempt processing parts, but among
themselves they are scheduled with a priority equal
to the task priority they belong. More specifically, if
P1, . . . ,Pn are the priorities assigned to then control
tasks (whereP1 ≥ P2 ≥ . . . ≥ Pn), each corresponding
input and output part of taskτ i can be assigned a pri-
ority P∗

i = P0 + Pi, whereP0 is a priority level higher
thanP1.

• Finally, the implementation of the RJTS method re-
quires an extra effort to the user, who has to program a
timer for each task to trigger the input and output parts
at the period boundaries.

4.2 Reducing jitter by advancing dead-
lines

Another common approach that can be applied to reduce
jitter is to shorten the task relative deadlines. In fact, if a
task τi is guaranteed to be executed with a relative dead-
line Di, clearly its input-output jitter, as well as its response
time jitter, cannot be greater thanDi −Ci. This method will
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Figure 6. A task set executed according to the
RJAD method.

be referred to asReducing Jitter by Advancing Deadlines
(RJAD). Following this approach, Baruahet al. [5] pro-
posed two methods for assigning shorter relative deadlines
to tasks and guaranteeing the schedulability of the task set.

Figure 6 illustrates an example in which the three tasks
shown in Figure 2 are required to execute with a jitter no
higher that 3, 0, and 10, so their deadlines are set toD i =
Ci + Jitter, that is to 5, 3, and 12, respectively.

The RJAD method has the following advantages with re-
spect to the RJTS approach:

• The method does not require any special support from
the operating system, since jitter constraints are simply
mapped into deadline constraints.

• No extra effort is required to the user to program ded-
icated timers. Once jitter constraints are mapped into
deadlines, the kernel scheduler can do the job.

• There are no interrupt routines creating extra interfer-
ence in the schedule, so the guarantee test can be per-
formed with the classical response time analysis [21, 2]
or more efficient techniques [6], under fixed priorities,
or with the processor demand criterion [4], under EDF.

• Advancing deadlines, jitter and delay are both reduced,
implying better achievable control performance.

However, there are also the following disadvantages with
respect to the RJTS approach:



• The major problem of this method is that it cannot re-
duce the jitter of all the tasks, but only a few tasks can
be selected to run with zero (or very low) jitter. A bet-
ter result could be achieved by exploiting task release
offsets, but the analysis becomes of exponential com-
plexity.

• Advancing task deadlines, the system schedulability
could be reduced. As a consequence, as in the RJTS
method, tasks could be required to run at lower rates
with respect to the normal case.

4.3 Reducing jitter by non preemption

A third method for reducing the input-output jitter of a
task is simply to execute it in a non preemptive fashion. This
method will be referred to asReducing Jitter by Non Pre-
emption (RJNP). For example, if the task set illustrated in
Figure 2 is executed using non preemptive rate-monotonic
scheduling, the resulting schedule would be, for this partic-
ular case, the same as that one generated by EDF, depicted
in Figure 2b.

The RJNP method has the following advantages:

• Using a non preemptive scheduling discipline, the
input-output jitter becomes very small for all the tasks
(assuming that the task execution times are constant),
since the interval between the input and output parts is
always equal to the task computation time. This makes
it easy to compensate for the delay in the control de-
sign.

• Another advantage of this method is that the input-
output delay is also reduced to the minimum, which
is also equal to the task computation time. This prob-
ably gives the largest performance improvement, since
control loops are typically more sensitive towards de-
lay than jitter.

• Non preemptive execution allows using stack sharing
techniques [3] to save memory space in small embed-
ded systems with stringent memory constraints [15].

On the other hand, the RJNP approach introduces the
following problems:

• A general disadvantage of the non preemptive disci-
pline is that it reduces schedulability. In fact, a non
preemptive section of code introduces an additional
blocking factor in higher priority tasks that can be
taken into account with the same guarantee methods
used for resource sharing protocols.

• There is no least upper bound on the processor utiliza-
tion below which the schedulability of any task set can

be guaranteed. This can easily be shown by consider-
ing a set of two periodic tasks,τ1 andτ2, with priori-
tiesP1 > P2 and utilizationUi = ε, arbitrarily small. If
C2 > T1, C1 = εT1, andT2 = C2/ε, the task set is un-
schedulable, although having an arbitrarily small uti-
lization.

• Achieving non preemptive execution for all user
tasks is easy in standard operating systems (a single
semaphore can be used), but making only one or a few
tasks non preemptible requires a larger programming
effort.

In order to evaluate the impact of the different ap-
proaches on control performance, the three methods have
been compared by simulation under different scenarios. The
results of the simulations are illustrated and discussed in the
next section.

5 Experimental Results

5.1 Simulation Set-Up

We consider a system withn = 7 periodic tasks that are
scheduled under EDF1 [22]. The tasks are distinguished
in two categories: a subset of control tasks, whose jitter and
delay must be bounded, and a subset of hard real-time tasks,
with no jitter and delay requirements, except for schedula-
bility. The number of control tasks is changed in the exper-
iments as a simulation parameter.

The performance of the various jitter reduction methods
is evaluated by monitoring the execution of a control task,
τ1, with period T1 = 50 ms and constant execution time
C1 = 5 ms. The input and output operations are assumed
to takeI1 = O1 = 0.5 ms, leavingP1 = 4 ms for the pro-
cessing part. Notice thatτ1 is not necessarily the task with
the shortest deadline. In fact, the other six tasks,τ 2–τ7,
are generated with random attributes, with fixed execution
timesCi uniformly distributed in [1, 10] ms, and utilizations
Ui chosen according to a 6-dimensional uniform distribu-
tion to reach the desired total utilization (algorithmUUni-

Fast in [7]). Task periods are then given byTi = Ci/Ui. Rel-
ative deadlines are set equal to periods (Di = Ti) for all hard
real-time tasks, whereas they can be reduced by the RJAD
method for the control tasks. The offsetΦi of each task is
uniformly distributed in [0,Ti].

The following parameters are varied in the simulation
experiments:

• The total utilizationU is varied between 0.2 to 0.9 in
steps of 0.1. We also include the caseU = 0.99.

1For lack of space we decided to perform the experiments only under
EDF, which guarantees full processor utilization in the fully preemptive
case, but similar simulations can be carried out under any fixed priority
assignment.



• The number of control tasks is varied between 1 and 7.
For each control task,I1 = O1 = 0.5 ms is assumed for
the input and output phases.

• The implementation of the control tasks is varied de-
pending on the specific technique used to reduce the
jitter.

(We have assumed fixed execution times in an attempt to
keep down the number of simulation parameters. In future
work, we would like to study the effects of stochastic exe-
cution times as well.)

To better evaluate the enhancements achievable with the
three methods discussed in Section 4, we also monitor the
results when no special treatment is applied on control
tasks. Thus, we consider the following four methods:

Standard Task Model (STM). Each task, including the
control tasks, is assigned a relative deadline equal to
the period.

Reducing Jitter by Task Splitting (RJTS) The output
and input operations of the control tasks are imple-
mented in non-preemptible timer interrupt routines.
An extra overhead of 0.5 ms was assumed for this
implementation, making the non-preemptible section
1.5 ms. This can potentially cause hard real-time tasks
to miss their deadlines.

Reducing Jitter by Advancing Deadlines (RJAD) The
deadlines of the control tasks are advanced according
to Method 2 of Baruahet al. [5].

Reducing Jitter by Non Preemptive Execution (RJNP).
Control tasks are implemented as non-preemptible
tasks, whereas hard tasks can be normally preempted.
This can potentially cause hard real-time tasks to miss
their deadlines.

For each parameter configuration,N = 500 random task
sets are generated, and the system is simulated for 50 s (cor-
responding to 1000 invocations ofτ 1). The absolute input
jitter (INJ), the absolute input-output jitter (IOJ), and the
average input-output latency (IOL) forτ 1 are recorded for
each experiment. To evaluate the effect of each method on
task schedulability, we also recorded the percentage of un-
feasible task sets, i.e., the number of task sets where one or
more hard real-time tasks miss a deadline. When a deadline
is missed, the simulation for the current task set is aborted
and the performance is not counted.

Two sets of experiments were carried out: one to evalu-
ate the effects of the methods on the timing behavior, and
one to see their impact on the control performance. For the
INJ, IOJ, and IOL results, standard deviations for the av-
erage values were computed and they were never greater
than 0.35 ms for any configuration. For the control cost
evaluation, the standard deviation was less than 0.2%, not
counting cases where the control loop went unstable.
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Figure 7. Jitter results with one control task and
six hard real-time tasks.

5.2 Jitter Results

We first tested the jitter reduction methods with one con-
trol task and six hard real-time tasks. The results are re-
ported in Figure 7. Note that RJAD is very successful in
reducing both the input jitter (INJ) and the input-output jit-
ter (IOJ) while minimizing the input-output latency (IOL)
for all load cases. RJTS also performs very well in reduc-
ing both INJ and IOJ for any utilization, but gives a very
long IOL, as expected. Finally, RJNP is able to reduce the
IOJ and the IOL to a minimum, but actually increases the
INJ slightly compared to the standard task model. RJNP
is also the most invasive method in terms of schedulability
(bottom-right graph), causing hard real-time tasks to miss
deadlines for utilizations higher than 0.5.

Figure 8 illustrates the results achieved with four con-
trol tasks and three hard real-time tasks. In this case, RJAD
does not work quite as good anymore, because four control
tasks to advance their deadlines. RJNP keeps the IOJ and
the IOL and a minimum, while the INJ increases. Moreover,
it causes even more deadlines to be missed with respect to
the previous case. Note that some deadlines are also missed
with RJTS at high utilizations, due to the non-preemptible
interrupt routines needed for executing the input-output
parts at the end of the periods. For the same reason, some
jitter is now also experienced by RJTS (upper graphs).

A final simulation experiment has been performed with
seven control tasks and the results are shown in Figure 9.
In this case, a very high sampling jitter occurs under RJNP
(upper-left graph), whereas RJAD shows virtually no im-
provement at all with respect to the standard task model
(STM, upper graphs). Also RJTS experiences more jitter
than before, due to the higher number of interrupts. No-
tice that no deadlines are missed (bottom-right graph) since
there are no hard tasks anymore.
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Figure 8. Jitter results with four control tasks and
three hard real-time tasks.

5.3 Control Performance Results

The actual control performance degradation resulting
from scheduling-induced delay and jitter depends very
much on the control application. In general, however, con-
trollers with a high sampling rate (compared to, e.g., the
cross-over frequency) are less sensitive to delay and jitter.

In this section, we study two benchmark control prob-
lems: one assuming fast sampling and the other assuming
slow sampling. In each case, it is assumed that taskτ1 im-
plements a Linear Quadratic Gaussian (LQG) controller [1]
to regulate a given plant. The sampling period is hence
T1 = 50 ms in both cases. Associated with each plant is
a quadratic cost functionV that is used both for the LQG
control design and for the performance evaluation of the
control loop. The two plants and their cost functions are
given below:

Plant 1:

dx
dt

=
[
0 1
9 0

]
x+

[
1
0

]
u+

[
1
0

]
v

y =
[
0 1

]
x+

√
0.1e

V = E lim
T→∞

1
T

∫ T

0

(
xT

[
0 0
0 10

]
x+ u2

)
dt

Plant 2:

dx
dt

=
[

0 1
−3 −4

]
x+

[
0
1

]
u+

[
35
−61

]
v

y =
[
2 1

]
x+ e

V = E lim
T→∞

1
T

∫ T

0

(
xT

[
2800 80

√
35

80
√

35 80

]
x+ u2

)
dt
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Figure 9. Jitter results with seven control tasks.

Here,x is the plant state vector,u is the control signal,y
is the measurement signal,v is a continuous-time zero-mean
white noise process with unit intensity, ande is a discrete-
time zero-mean white noise process with unit variance. Fur-
ther,v ande are assumed to be independent.

Plant 1 is a linear model of an inverted pendulum (an
unstable plant) with a natural frequency of 3 rad/s. Assum-
ing a constant input-output delay of 5 ms, the cost func-
tion produces an LQG controller that achieves a cross-over
frequency of 5.2 rad/s and a phase margin of 31◦. This
can be seen as a typical, quite robust control design with
a high enough sampling rate. The jitter margin [10] is com-
puted to 82 ms, which is larger than the sampling period
and indicates that the control loop cannot be destabilized by
scheduling-induced jitter.

Plant 2 (a stable plant) and its associated cost function
represent a pathological case where the LQG design method
gives a controller that is very sensitive to delay and jitter
[24]. Assuming a delay of 5 ms, the resulting cross-over
frequency is 20.6 rad/s while the phase margin is only 17◦.
The jitter margin is found to be only 10 ms, indicating that
latency and jitter from the scheduling might destabilize the
control loop.

Assuming the same simulation set-up as in the jitter eval-
uation, for each parameter configuration,N = 500 random
task sets were generated and the control performance of task
τ1 was recorded for 50 s. For STM, RJAD, and RJNP, the
controller was designed assuming a constant delay of 5 ms,
while for RJTS, the delay was assumed to be 50 ms. The
whole procedure was repeated for each of the two plants,
the results being reported in Figure 10. In the figure, the
costs have been normalized such that the performance un-
der minimum delay and jitter is 1.

For Plant 1, it can be noted that RJTS performs uni-
formly worse than the other implementations, including
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Figure 10. Control performance evaluation for two different plants.

STM. This is due to the long input-output latency, which,
despite the exact delay compensation, destroys the perfor-
mance. As the number of control tasks and the load in-
crease, the performance of STM, RJAD, and RJNP degrades
only slightly, RJNP performing the best in the case of multi-
ple controllers, while RJAD works the best for a single con-
troller. Also notice the performance break-down of RJTS
for 7 control tasks and high loads, where the extra schedul-
ing overhead causes taskτ1 to miss its outputs.

For Plant 2, the issue of jitter is more critical. While
RJTS gives a constant performance degradation (except for
the case of seven control tasks and high load) the other im-
plementations exhibit degradations that seem to relate to the
total amount of jitter (INJ+ IOJ) reported in Figures 7–9.
As a consequence, RJAD has an edge over RJNP for almost
all system configurations. Note that, for sufficiently high
utilizations, some implementations actually cause the con-
trol loop to go unstable (the cost approaches infinity) for
high loads.

In summary, RJAD gives the better control performance
for most system configurations. At the same time, it does
not cause any deadlines to be missed. RJTS is the “safest”
implementation, in that it gives a more or less constant per-
formance degradation, even for an unrobust control design,
many control tasks, and a high CPU load.

6 Conclusions

In this paper we studied three scheduling techniques
for reducing delay and jitter in real-time control systems
consisting of a set of concurrent periodic tasks. The first
method (RJTS) reduces jitter by splitting a task in three
subtasks (input, processing and output) and forces the ex-
ecution of input and output parts at the period boundaries.
The second method (RJAD) reduces jitter and delay by

assigning the tasks a shorter deadline. The third method
(RJNP) simply relies on non preemptive execution to elim-
inate input-output jitter and delay.

Advantages and disadvantages of the three approaches
have been discussed and a number of simulation experi-
ments have been carried out to compare these techniques
and illustrate their effect on control system performance. In
the simulation results, it was seen that RJTS and RJNP can
compromise the schedulability of the system if this issue is
not taken into account at design time. RJAD performed very
well for a single control task and reasonably well for mul-
tiple control tasks. RJTS was able to reduce both the input
jitter and the input-output jitter to a minimum but produced
a long input-output latency.

In conclusion, for a robust control design (with sufficient
phase and delay margins), the performance degradation due
to jitter is very small, even for the standard task model. For a
single control task, the RJAD method can reduce this degra-
dation all the way down to zero in most cases. On the other
hand, a constant one-sample delay gives a very large penalty
in comparison. Hence, it is clear that the RJTS method
should be avoided for robust control systems.

For unrobust control systems with very small phase and
delay margins, RJTS could be considered to be a “safe”
choice of implementation. For many system configurations,
however, even STM performs better than RJTS. One has
to go to quite extreme situations to find examples where
RJTS actually gives better control performance than STM.
In these situations, the computing capacity is probably
severely under-dimensioned, and it is questionable whether
any implementation can actually meet the control perfor-
mance requirements.

Finally, in terms of control performance, the RJNP
method sometimes performs better and sometimes worse
than RJAD in the various configurations. However, one



should keep in mind, that RJNP may cause hard tasks to
miss their deadlines and requires a more difficult off-line
analysis.

As a future work, we plan to provide support for these
techniques in the Shark operating system, in order to eval-
uate the effectiveness of these approaches on real control
applications. Also, we would like to explore the trade-off
between jitter and delay for a wider class of plants and con-
trollers.

References
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