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Abstract

Software control systems may be subject to high interfer-
ence caused by concurrency and resource sharing. Reduc-
ing delay and jitter in such systems is crucial for guaran-
teeing high performance and predictability. In this paper,
we present a general approach for reducing delay and jitter
by acting on task relative deadlines. The method allows the
user to specify a deadline reduction factor for each task to
better exploit the available slack according to specific jitter
sensitivity. Experimental results confirm the effectiveness
and the generality of the proposed approach with respect to
other methods available in the literature.

1 Introduction

Complex software systems are often implemented as a
number of concurrent tasks that interact with a given set
of resources (processor, memories, peripherals, etc.). Tasks
related to control activities are typically periodic, and are
activated with a specific rate derived by the system’s de-
signer. Other tasks related to specific input/output devices
(e.g., serial lines, data buses, networks) may be aperiodic
and can be activated by interrupts or by the occurrence of
particular events.

Although the activation rates of periodic tasks can be
precisely enforced by the operating system through proper
kernel mechanisms, the execution pattern of each task de-
pends on several factors, including the scheduling algorithm
running in the kernel, the overall system workload, the task
set parameters, the interaction with the shared resources,
and the interference introduced by interrupts. As a conse-
quence, control tasks may experience variable delays and
jitter that can degrade the system performance, if not prop-
erly handled.

The effects of delays and jitter on real-time control ap-
plications have been extensively studied in the literature
[10, 19] and several methods have been proposed to cope

with them. Marti el al. [18] presented a control technique
to compensate the effect of jitter with proper control actions
computed based on the temporal distance between succes-
sive samples. Cervin et al. [11] presented a method for find-
ing an upper bound of the input-output jitter of each task by
estimating the worst-case and the best-case response time
under EDF scheduling, but no method is provided to reduce
the jitter. Rather, the concept ofjitter margin is introduced
to simplify the analysis of control systems and guarantee
their stability when certain conditions on jitter are satisfied.

Other authors proposed suitable scheduling methods for
reducing the delay and jitter caused by complex intertask
interference. For example, Di Natale and Stankovic [12]
proposed the use of simulated annealing to find the optimal
configuration of task offsets that minimizes jitter, accord-
ing to some user defined cost function. Baruah et al. [4]
followed a different approach to reduce both delay and jit-
ter by reducing the relative deadline of a task, so limiting
the execution interval of each job. Two methods have been
illustrated for assigning shorter relative deadlines to tasks
while guaranteeing the schedulability of the task set: the
first method is based on task utilizations and runs in poly-
nomial time, whereas the second one (more effective) has a
pseudo-polynomial complexity since it is based on the pro-
cessor demand criterion [2].

Brandt et al. [6] also addressed the problem of reducing
the deadline of a periodic task, but their approach is based
on the processor utilization, hence it cannot be used to find
the shortest possible deadline.

Zheng et al. [20] presented a method for computing the
minimum deadline of a newly arrived task, assuming the
existing task set is feasibly schedulable by EDF; however,
their approach is tailored for distributed applications and
requires some off-line computation. When the utilization of
all the tasks in the task set is high, the number of off-line
computations are very large, that make this method become
not efficiently, high computational complexity.

Buttazzo and Sensini [7] also presented an on-line algo-
rithm to compute the minimum deadline to be assigned to
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a new incoming task in order to guarantee feasibility un-
der EDF. However, their approach only applies to aperiodic
requests that have to be executed in a periodic environment.

Hoang et al. [16] and Balbastre et al. [5] independently
proposed a method for minimizing the relative deadline of
a single periodic task, while keeping the task set schedula-
ble by EDF. Although the approach can be applied sequen-
tially to other tasks in a given order, the deadline reduction
achievable on the first task is much higher than that achiev-
able on the other tasks in the sequence. To avoid this prob-
lem, in the same paper, Balbastre et al. also proposed a
method to perform a uniform scaling of all relative dead-
lines. The problem with a uniform reduction, however, is
that jitter and delay may not necessarily reduce as expected
(and for some task they could even increase).

To allow more flexibility in controlling the delay and jit-
ter in software controlled systems, in this paper we present
a general approach for reducing task deadlines according to
individual task requirements. The method allows the user
to specify a deadline reduction factor for each task, to bet-
ter exploit the available slack according to tasks actual re-
quirements. The deadline reduction factor can be specified
as a real number in [0,1], with the meaning that a value
equal to one allows the relative deadline to be reduced up
to the minimum possible value (corresponding to the task
computation time), whereas a value equal to zero means no
reduction.

As special cases, the method can minimize the deadline
of a single task (by setting its reduction factor to 1 and
the others to zero), or perform a uniform deadline rescal-
ing in the task set (by setting all reduction factors to 1). If
two tasks have the same delay/jitter requirements and need
to reduce their relative deadlines as much as possible, this
can simply be achieved by setting both reduction factors
to 1 and all the others to zero. Note that this could not
be achieved by applying a deadline minimization algorithm
[16, 5] to the tasks in a given order, because the first task
would steal all the available slack for itself, leaving small
space for the second.

The rest of the paper is organized as follows. Section
2 presents the system model and the terminology adopted
throughout the paper. Section 3 illustrates the addressed
problem with some concrete examples. Section 4 describes
the deadline reduction algorithm. Section 5 presents some
experimental results and compares the proposed method
with other deadline reduction approaches. Finally, Section
6 states our conclusions and future work.

2 Terminology and assumptions

We consider a set� � ���� ��� � � � � ��� of � periodic
tasks that have to be executed on a uniprocessor system un-
der the Earliest Deadline First (EDF) algorithm [17]. Each

task�� consists of an infinite sequence of jobs, or task in-
stances, having the same worst-case execution time and the
same relative deadline. All tasks are fully preemptive. The
following notation is used throughout the paper:

���� denotes the�-th job of task��, (where� � �� �� � � �),
that is the�-th instance of the task execution.

���� denotes the release time of job����, that is the time at
which the job is activated and becomes ready to exe-
cute.

���� denotes the start time of job���� , that is the time at
which the first instruction of���� is executed.

���� denotes the finishing time of job����, that is the time at
which the job completes its execution.

	� denotes the worst-case execution time of task��.


� denotes the period of task��, or the minimum inter-
arrival time between successive jobs.

�� denotes the relative deadline of task��, that is, the max-
imum finishing time (relative to its release time) al-
lowed for any job.

���� denotes the absolute deadline of job���� , that is the
maximum absolute time before which job� ��� must
complete (���� � ���� ���).

� denotes the utilization of task��, that is the fraction of
cpu time used by�� (� � 	��
�).

 denotes the total utilization of the task set, that is, the
sum of all tasks utilizations ( �

��

��� �).

���� denotes the response time of job���� , that is the inter-
val between its release time and its finishing time:

���� � ���� � ���� � (1)

������ denotes the input-output delay of job� ��� , that is
the interval between its start time and its finishing time:

������ � ���� � ����� (2)

�
�� denotes the response time jitter of a task, that is the
maximum variation in the response time of its jobs:

�
�� � ���
�
������ ���	

�
������ (3)
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Figure 1. Example of a real-time task.

Figure 1 illustrates some of the parameters defined
above.

Moreover, each task�� is characterized by a maximum
relative deadline����

� (considered to be the nominal one)
and a minimum relative deadline����

� , specified by the
application designer. When not explicitly assigned, we as-
sume����

� � 
� and����
� � 	�.

3 Problem statement

The method proposed in this work to reduce delay and
jitter in periodic tasks requires the application designer to
specify an additional task parameter, called thedeadline re-
duction factor, Æ�, which is a real number in [0,1]. A value
Æ� � � indicates that task�� is very sensitive to delay and
jitter, hence its relative deadline is allowed to be reduced
up to its minimum possible value (����

� ). A valueÆ� � 

indicates that task�� is not sensitive to delay and jitter, so
its relative deadline does not need to be modified. In gen-
eral, we assume that the sensitivity of�� to delay and jitter
is proportional toÆ�.

Once all deadline reduction factors have been specified
according to delay and jitter sensitivity, the problem we
want to solve is to shorten all deadlines as much as possible
to respect the proportions dictated by the reduction factors,
while keeping the task set feasible.

Note that task specific jitter coefficients have also been
defined by Baruah et al. [4] (they were denoted by� � and
called jitter tolerance factors). In that work, however, the
objective was to minimize the weighted jitter of the task
set, defined as

WtdJitter�� � � ���
�

�
�
��
��

�
�

rather than reducing deadlines proportionally to sensitivity,
as done in this paper.

To better motivate the proposed approach, we now il-
lustrate an example that shows the advantage of specifying
individual reduction factors.

3.1 A motivating example

Consider a set of three periodic tasks with periods
� �
, 
� � �, 
� � ��, and computation times	� � �, 	� �

�,	� � �. Suppose that�� and�� are control tasks sensitive
to delay and jitter, whereas�� is not and can be executed
anywhere within its period. Assuming�� � ����

� � 
�
for each task, the schedule produced by EDF is shown in
Figure 2. The response time jitters of the tasks are�
�� �
�,�
�� � �, and�
�� � �.

Now observe that, for this task set, the uniform scaling
algorithm proposed by Balbastre et al. [5] does not pro-
duce any change in the schedule, so it cannot reduce any
jitter. For this particular case, in fact, the maximum com-
mon reduction factor that guarantees a feasible schedule is
1/3, meaning that for each task we can set�� � �����
�.
As shown in Figure 3, however, the schedule produced by
EDF with such deadlines is exactly the same as that shown
in Figure 2.

Also notice that minimizing the deadline of a single task
(using the algorithm proposed by Hoang et al. [16] or by
Balbastre et al. [5]) may not necessarily have the desired
effect on the other jitter sensitive tasks. For example, as
depicted in Figure 4, minimizing�� the jitter of�� becomes
zero, but the jitter of�� cannot be reduced below 2 (even if
�� is minimized after��).

In this case, a better solution to reduce the delay and jitter
of �� and�� is to reduce the deadlines of both tasks simulta-
neously, leaving�� unchanged. As an example, assuming
Æ� � Æ� � �, the maximum common reduction factor that
can be applied to both tasks to keep the task set feasible is
2/3, meaning that we can set�� � 
���,�� � 
���, and
�� � 
�. Figure 5 shows the schedule produced by EDF
with such deadlines.

The next section describes the algorithm that computes
the new feasible deadlines according to the specified reduc-
tion factorsÆ�.

4 The algorithm

Before describing the algorithm, it is worth observing
that, for the feasibility constraint, the actual deadline reduc-
tion will be less than or equal to the one specified by the
reduction factor, that is

����
� ���

����
� �����

�

� Æ��
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Figure 2. EDF schedule with relative deadlines equal to periods.
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Figure 3. EDF schedule with uniformly scaled deadlines.
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Figure 4. EDF schedule when only �� deadline is minimized.
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Figure 5. EDF schedule when deadlines of both �� and �� are reduced.



However, to respect the proportions specified by the reduc-
tion factors, we must compute the new deadlines in such a
way that��� � � �� � � � � � (andÆ�, Æ� �� 0) we have

����
� ���

����
� �����

�

�Æ� �
����
� ���

����
� �����

�

�Æ� �

This means that

�� � �� � � � � �
����
� ���

����
� �����

�

�Æ� � �

where� is a constant less than or equal to one. Hence,
the problem consists in finding the greatest value of� that
keeps the task set feasible, where deadlines are computed as

�� � �
���
� � �Æ���

���
� �����

� � (4)

The highest value of� that guarantees feasibility can be
found by binary search.

The search algorithm assumes that the task set� is feasi-
ble for� � 
 (that is, when all tasks are scheduled with the
maximum deadlines), and starts by trying feasibility with
� � � (that is, with all tasks having their minimum dead-
lines). If� is found feasible with� � �, then the algorithm
exits with the best solution, otherwise the binary search is
started.

The feasibility test as a function of� can be per-
formed using the function reported in Figure 6, where
all relative deadlines are first computed according to
Equation (4), and then the test is performed using the
Processor Demand Criterion [2, 3]. In particular, the
��������� ������ ������ ) function returns 1 if the task
set� is feasible, 0 otherwise.

Feasible(� � �)

for � � 
 to �
�� � �

���
� � �Æ���

���
� �����

� �;
end for

F = Processordemandtest(� );

return (F);
end

Figure 6. Feasibility test as a function of �.

The binary search algorithm to find the highest value of
� is reported in Figure 7. Note that, besides the task set pa-
rameters, the algorithm requires a value�, needed to bound
the complexity of the search and stop the algorithm when

Best alpha(� � �)
���� � �;
���� � 
;
� � ���� � ����;

if Feasible(� � ����) then return(����);

while �� � �� do
� � ����� � �������;

if Feasible(� , �) then ���� � �;
else ���� � �;

� � ���� � ����;
end while

return(����);

end

Figure 7. Binary search algorithm for finding
the highest � that guarantees feasibility.
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Figure 8. Search values for � � ���.

the search interval (� � ���� � ����) becomes smaller
than a given error.

For example, for the case illustrated in Figure 8, if� �
���, the algorithm will try six values (1, 1/2, 1/4, 1/8, 3/16,
and 7/32) and stops by returning the last feasible value, that
is � � ���. In general, the complexity of the algorithm
is logarithmic with respect to�, and the number of steps to
find the best� is given by

� � �� ���
�
��

For the given example,���
�
����� � ��, so we have

� � . Once the highest feasible� is found, the task dead-
lines are reduced according to Equation (4), which takes
into account the individual reduction factors.



5 Experimental results

This section describes a set of simulation experiments
that have been conducted to evaluate the effectiveness of
the proposed algorithm to reduce delay and jitter of spe-
cific tasks according to given reduction factors. For special
cases, the method is also compared with the algorithm that
uniformly scales all deadlines [5] and with the algorithm
that minimizes the relative deadline of a single task [16, 5].

We have investigated different application scenarios,
generated through synthetic task sets with random param-
eters within given ranges and distributions. To generate a
feasible task set of� periodic tasks with given utilization
	  �, we first generated� random utilizations uniformly
distributed in (0,1) and then normalized them to have

��
���

� � 	�

Then, we generated� computation times as random vari-
ables uniformly distributed in [	���,	���] (with 	��� �
� and	��� � �
) and then calculated the period of each
task as


� �
	�
�
�

For each task��,����
� has been set equal to
� and����

�

has been set equal to	�.
For each generated task set� , we measured the maxi-

mum response time of each task (�� � ���
�
������) and

the maximum response time jitter (�
�� � ���
�
��
�����)

caused by EDF under three different deadline setting:

1. Plain: all tasks run with their maximum deadlines:
�� � �

���
� ;

2. Scaled: all deadlines are uniformly scaled by the same
factor according to the algorithm proposed by Balbas-
tre et al. [5];

3. New: task deadlines are computed by the proposed al-
gorithm according to given reduction factors.

In the first experiment, a simulation has been carried
out with a set of 10 periodic tasks, having fixed utilization
 � 
��. The proposed algorithm has been applied to a
group of four tasks with the same reduction factor (Æ � � �),
while leaving the remaining tasks with their original dead-
lines (Æ� � 
). In particular, the four tasks with the longest
periods (from�� to ���) have been selected for reduction.
The worst-case response time and the response time jitter
(RTJ) have been measured for each task and then averaged
over 1000 simulation runs. A value� � �
�� was used to
find the best�.
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Figure 9. Worst-case response times when
applying the proposed algorithm to task 7, 8,
9 and 10.
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Figure 10. Response Time Jitter when apply-
ing the proposed algorithm to task 7, 8, 9 and
10.

Figures 9 and 10 respectively show the response time and
jitter achieved for each individual task in this experiment.
Note that, the!-axis shows the task identification number,
where tasks are ordered by increasing period, so that task
number 1 is the one with the shortest period. In particular,
Figure 11 reports the jitter experienced by each task under
the proposed algorithm, showing the 95% confidence inter-
val around each average value.

As expected, the results show that restricting deadline
reduction only to a subset of sensitive tasks allows better
control of delay and jitter.
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Figure 11. Confidence intervals (95%) of the
jitter measures achieved in the first experi-
ment under the proposed algorithm.
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Figure 12. Worst-case response times when
applying the proposed algorithm uniformly to
all the tasks.

Also note that reducing all task deadlines by the same
scaling factor (as done by the Scaled algorithm) has not a
significant effect on jitter reduction with respect to the Plain
scenario (where all deadlines are equal to the periods), thus
justifying the need for adopting selective reduction factors.

A second experiment has been carried out to compare
our algorithm against the uniform scaling algorithm [5]
when all relative deadlines are uniformly scaled by the same
reduction factor (Æ� � � for � � �� � � � � �
). We have ap-
plied both methods on the same task set taken for the first
experiment, using the same value of� (�
��).
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Figure 13. Response Time Jitter when apply-
ing the proposed algorithm uniformly to all
the tasks.
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Figure 14. Confidence intervals (95%) of the
jitter measures achieved in the second exper-
iment under the proposed algorithm.

As shown in Figures 12 and 13, our algorithm performs
almost the same as the uniform scaling algorithm for tasks
with short periods, whereas it performs slightly better for
tasks with longer periods. All values plotted in the graphs
represent the average over 1000 simulations, and the 95%
confidential intervals on the average jitter achieved under
the proposed algorithm are shown in Figure 14.

Finally, the performance of the proposed method has
also been compared against the plain EDF scheduler and
the scaled method when the task set has a lower utilization
equal to � 
�.
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Figure 15. Worst-case Response Time when
applying the proposed algorithm to task 7, 8,
9 and 10 ( � 
�).
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Figure 16. Response Time Jitter when apply-
ing the proposed algorithm to task 7, 8, 9 and
10 ( � 
�).

Figures 15 and 16 show the response time and jitter of
each tasks when applying the new algorithm to tasks 7, 8,
9, 10 only, whereas Figures 17 and 18 show the response
time and jitter of the tasks when applying the new algorithm
uniformly to all the tasks.

All the experiments confirm that the proposed approach
is able to reduce both delay and control jitter of specific
control tasks according to desired scaling factors and under
different load conditions. With respect to the plain EDF and
uniform scaling algorithm, the proposed algorithm is more
effective when the task set has a high utilization.
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Figure 17. Worst-case Response Time when
applying the proposed algorithm uniformly to
all the tasks ( � 
�).
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Figure 18. Response Time Jitter when apply-
ing the proposed algorithm uniformly to all
the tasks ( � 
�).

6 Conclusions

In this paper we presented a method for reducing the rel-
ative deadlines of a set of periodic tasks according to given
reduction factors,Æ� � �
� ��, denoting task sensitivity to
jitter and delay. A valueÆ� � � denotes high sensitivity to
delay and jitter, indicating that the task relative deadline can
be reduced as much as possible, up to the minimum possi-
ble value which guarantees the task schedulability, whereas
a valueÆ� � 
 denotes no sensitivity, indicating that the task
relative deadline does not need to be modified.



Note that shortening the relative deadline decreases the
admissible execution interval of a task, affecting both its
response time and jitter.

Moreover, the proposed approach generalizes two other
methods presented in the real-time literature for jitter reduc-
tion: the deadline minimization algorithm, independently
developed by Hoang et al. [16] and by Balbastre et al. [5],
and the uniform deadline scaling method, proposed by Bal-
bastre et al. in the same paper. In fact, using the proposed
approach, the relative deadline of a single periodic task��
can be minimized simply by settingÆ� � � and all other
reduction factors to zero. Similarly, a uniform reduction of
all task deadlines can simply be achieved by setting all re-
duction factors to 1.

Experimental results confirm the effectiveness of the
proposed approach, showing that deadline reductions are
more significant when acting only on a subset of selected
tasks.

As a future work, we plan to investigate the issue also
under fixed priorities. Here, the deadline reduction algo-
rithm cannot be trivially extended, because changing rela-
tive deadlines may also affect the priority order, and hence
the feasibility test.
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