
The Multi Supply Function Abstraction for Multiprocessors ∗

Enrico Bini , Giorgio C. Buttazzo, Marko Bertogna
Scuola Superiore Sant’Anna

Pisa, Italy
{e.bini,g.buttazzo,m.bertogna}@sssup.it

Abstract

Multi-core platforms are becoming the dominant com-
puting architecture for next generation embedded systems.
Nevertheless, designing, programming, and analyzing such
systems is not easy and a solid methodology is still missing.

In this paper, we propose two powerful abstractions to
model the computing power of a parallel machine, which
provide a general interface for developing and analyzing
real-time applications in isolation, independently of the
physical platform. The proposed abstractions can be ap-
plied on top of different types of service mechanisms, such
as periodic servers, static partitions, and P-fair time parti-
tions. In addition, we developed the schedulability analysis
of a set of real-time tasks on top of a parallel machine that
is compliant with the proposed abstractions.

1 Introduction

Multi-core architectures represent the next generation of
computing devices for providing an efficient solution to the
problem of increasing the processing speed with contained
power dissipation. In fact, increasing the operating fre-
quency of a single processor would cause serious heating
problems and considerable power consumption [13]. Pro-
gramming multi-core systems, however, is not trivial, and
the research community is working to produce new theoret-
ical results or extend the well established theory for unipro-
cessor systems developed in the last 30 years. The core
of the difficulties in multiprocessor scheduling can be syn-
thesized as follows:two unit-speed processors provide less
computational resource than one double-speed processor.

One of the most useful concepts developed in the last
years that needs to be extended to multiprocessors is the
Resource Reservationparadigm [21, 1], according to which
the capacity of a processor can be partitioned into a set of
reservations, each equivalent to a virtual processor (VP)

∗This work has been partially supported by the ACTORS European
project under contract 216586.

that provides a fraction of the available computing power.
A reservation is often modelled by a pair(Qi, Pi) indi-
cating thatQi units of time are available every periodPi,
meaning that the virtual processor has an equivalent band-
width αi = Qi/Pi. The main advantage of this approach
is for soft real-time applications with highly variable com-
putational requirements, for which a worst-case guarantee
would cause a waste of resources and degrade system ef-
ficiency. In fact, when the worst case is rare, a more op-
timistic reservation increases resource usage while protect-
ing other tasks from being delayed by sporadic overruns [9].
Such a property is referred to astemporal protection(also
calledtemporal isolationor bandwidth isolation).

Temporal protection has the following advantages: (i) it
prevents an overrun occurring in a task to affect the tempo-
ral behavior of the other tasks, and (ii) it allows to guaran-
tee an application allocated to a virtual machine in “isola-
tion” (that is, independently of the other applications in the
system) only based on its timing requirements and on the
amount of allocated resource.

Below we discuss some works related to our approach.

1.1 Related works

One of the first paper addressing resource reservations
was published in 1993 by Parekh and Gallager [24], who
introduced the Generalized Processor Sharing (GPS) algo-
rithm to share a fluid resource according to a set of weights.
Mercer et al. [21] proposed a more realistic approach where
a resource can be allocated based on a required budget and
period. Stoica et al. [28] introduced the Earliest Eligible
Virtual Deadline First (EEVDF) for sharing the computing
resource. Deng and Liu [10] achieved the same goal by
introducing a two-level scheduler (using EDF as a global
scheduler) in the context of multi-application systems. Kuo
and Li [16] extended the approach to a Fixed Priority global
scheduler. Kuo et al. [17] extended their previous work [16]
to multiprocessors. However they made very stringent as-
sumptions (such as no task migration and period harmonic-
ity) that restricted the applicability of the proposed solution.

1

Proc. of the 15th IEEE Int. Conf. on Embedded and Real-Time Computing Systems and Applications, Beijing, China, August 24-26, 2009 (Best Paper).



Moir and Ramamurthy [22] proposed a hierarchical ap-
proach, where a set of P-fair tasks can be scheduled within
a time partition provided by another P-fair task (called “su-
pertask”) acting as a server. However, the solution often
requires the weight of the supertask to be higher than the
sum of the weights of the served tasks [15].

Many independent works proposed to model the service
provided by a uniprocessor through a supply function. Mok,
Feng, and Chen introduced the bounded-delay resource par-
tition model [12]. Almeida et al. [2] provided timing guar-
antees for both synchronous and asynchronous traffic over
the FTT-CAN protocol by using hierarchical scheduling.
Lipari and Bini [20] derived the set of virtual processors that
can feasibly schedule a given application. Shin and Lee [26]
introduced the periodic resource model also deriving a uti-
lization bound. Easwaran et al. [11] extended this model
allowing the server deadline to be different than the period.

The research on global EDF algorithms has been also
very active. Funk, Goossens, and Baruah [14] derived the
EDF analysis on uniform multiprocessors, later extended by
Baruah and Goossens [5] to the constrained deadline model.
Baker [4] proposed a method for estimating the maximum
possible interference for each task. Bertogna et al. [7] pro-
posed a very efficient test for multiprocessor systems under
both EDF and fixed priority scheduling.

Shin et al. [25] proposed a multiprocessor periodic re-
source model to describe the computational power supplied
by a parallel machine. They model a virtual multiproces-
sor by the triplet〈Π, Θ, m′〉 meaning that an overall budget
Θ is provided bym′ processors every periodΠ. The big
advantage of this interface is that it is simple and captures
the most significant features of the platform. Nonetheless,
it has two main drawbacks. First, the same periodicityΠ
is provided to all the tasks scheduled on the same virtual
multiprocessor. This can lead to a quite pessimistic inter-
face design. In fact, the period of the interface is typically
constrained by the task with the shortest period. However,
tasks with longer period could be scheduled by a server with
larger period, saving runtime overhead. Hence, an approach
that reserves time with different periodicity is more efficient
and can better capture the needs of an application composed
by tasks with different periods. Second, considering the cu-
mulative budgetΘ supplied by all the processors leads to a
more pessimistic analysis, than considering the contribution
of each VP. This happens because the worst-case scenario
in multiprocessor systems occurs when the available pro-
cessors allocate resources with the maximum possible level
of parallelism. Hence, the analysis must assume that the
overall resourceΘ is provided with a level of parallelism
that is often higher than it really is.

Leontyev and Anderson [19] proposes a very simple,
though effective, multiprocessor interface with a single pa-
rameter, thebandwidth. The authors suggest that a band-

width requirementw > 1 is best allocated by an inte-
ger number⌊w⌋ of dedicated processors plus a fraction of
w− ⌊w⌋ allocated onto the other processors. This choice is
supported by the evidence that a given amount of computing
speed is better exploited on the minimum possible number
of processors. However, there are some circumstances in
which this approach is not best suited. In fact, the authors
illustrate an example in which a set of real-time tasks is not
schedulable when the suggested policy is adopted, whereas
the tasks can meet their deadlines under a different band-
width allocation strategy. Moreover, there are situationsin
which the proposed allocation strategy cannot be adopted,
when the physical platform is already allocated to other ap-
plications, and processors may not be entirely available.

1.2 Contribution of the paper

In this paper, we propose two abstractions for a parallel
machine: (i) the Multi Supply Function (MSF) abstraction,
which describes the exact amount of resource provided by
the platform, and (ii) the Multi-(α, ∆) (Mα∆) abstraction,
which is much simpler to use for the programmer but intro-
duces some waste of the available resource.

We propose a schedulability test that can be used on top
of both resource abstractions for verifying the feasibility of
a real-time task set under global EDF, global fixed priority
(FP), and any work-conserving algorithm.

The rest of the paper is organized as follows. Section 2
introduces the terminology and notation. Section 3 shows
the reference architecture. Section 4 defines the multi sup-
ply function (MSF) abstraction. Section 5 proposes a guar-
antee test on top of a multiprocessing device abstracted by
the multi supply function. Finally, Section 6 states our con-
clusions and presents some future work.

2 Terminology and notation

We model an application as a set ofn sporadic tasksΓ =
{τi}n

i=1. Each taskτi = (Ci, Ti, Di) is characterized by
a worst-case computation timeCi, a minimum interarrival
time Ti (also referred to as period), and a relative deadline
Di. Each taskτi releases a sequence of jobsτi,k, where
each job is characterized by an arrival timeri,k, an absolute
deadlinedi,k, a computation timeci,k. We have thatci,k ≤
Ci, ri,k ≥ ri,k−1 + Ti, anddi,k = ri,k + Di. In this paper,
we assume aconstrained deadlinemodel, whereDi ≤ Ti.
Time is continuous and time variables are represented by
real numbers.

Each applicationΓ is scheduled onto a virtual platform
V , modelled as a set ofm virtual processors (VP)V =
{νj}m

j=1. Each VPνj is characterized by a supply func-
tion Zj(t) that models the amount of timeνj can provide.
The concept of supply function is recalled in Section 4.1.

2

Proc. of the 15th IEEE Int. Conf. on Embedded and Real-Time Computing Systems and Applications, Beijing, China, August 24-26, 2009 (Best Paper).



. . .

. . .

. . .

Application

platform

layer

platform

layer
Scheduling

Virtual

Allocation

Physical

Application Scheduler

Resource Allocation

τ1 τ2 τ3 τ4 τn

ν1 ν2 νm

π1 π2 π3 π4 π5 π6 π7 π8 πp

Figure 1. Architecture overview.

All the VPs belonging to all the virtual platforms in the
system are allocated onto the physical platformΠ, which
consists of a set ofp physical processorsΠ = {πk}p

k=1.
Finally, to lighten the notation, we may denotemax{0, x}
as(x)0.

3 The overall architecture

The quick evolution of hardware platforms strongly mo-
tivates the adoption of appropriate design methodologies
that simplify portability of software on different architec-
tures. This problem is even more crucial for multi-core sys-
tems, where the performance does not grow linearly with
the number of cores and the efficiency of resource usage
can only be achieved by tailoring the software to the spe-
cific architecture and exploiting the parallelism as much as
possible. As a consequence, an embedded software devel-
oped to be highly efficient on a given multi-core platform,
could be very inefficient on a new platform with a different
number of cores.

To reduce the cost of porting a software on different
multi-core architectures, we propose to abstract the phys-
ical architecture with a set of virtual processors. In general,
the system should be designed as a set of abstraction layers,
each offering a specific service according to a given inter-
face. The advantage of this approach is that one can replace
a mechanism inside a layer without modifying the other lay-
ers, as long as the new mechanism complies with the speci-
fied interface. To virtualize the multi-core platform, we use
the general architecture depicted in Figure 1.

At the upper layer, the application is developed as a set
of real-time tasks with deadline constraints running on a set
of virtual processors. Either global or partitioned schedul-
ing schemes can be used at this level to assign tasks to vir-
tual processors. Each virtual processorνj is implemented
by a server mechanism capable of providing execution time
according to a given supply function. Servers are then allo-
cated to physical processors based on a different scheduling
policy. In this way, a change in the hardware platform does
not affect the application and the upper-layer scheduler, but
only the server allocation layer.

In this paper, we focus on the virtual processor abstrac-

tion, proposing a general interface for describing a virtual
processor and presenting a feasibility analysis to guarantee
the application on the virtual processors using global EDF,
global FP, and any work conserving scheduler.

4 The multi supply function abstraction

In this section, we describe a suitable abstraction for a
set ofm VPs that allows exploiting arbitrary fractions of
processing time available in the physical platform. With
respect to other interfaces proposed in the literature [25,19],
our approach is more general and more precise, because it
can capture arbitrary reservations.

The reason for proposing a new interface is that, in multi-
application systems, some fraction of the processor can al-
ready be occupied by other applications that are not under
our control; hence, we often cannot assume that each pro-
cessor is fully available. Second, considering the amount of
resource provided by each VP individually is more precise
than dealing with the cumulative value and allows achieving
tighter results.

For these reasons, we introduce the following definition
to abstract a parallel machine.

Definition 1 A Multi Supply Function (MSF) of a setV =
{νj}m

j=1 of VPs is a set ofm supply functions{Zνj}m
j=1,

one for each VP, respectively.

Below, we illustrate the definition of supply function as pro-
posed in the literature [23, 20, 26] and then we extend it to
more general cases.

4.1 The supply function

The supply function of a single VP represents the mini-
mum amount of resource that the VP can provide in a given
interval of time. The VP allocates time to the application
during a “resource time partition” (Def. 3 in [23]) that here
is extended to non-periodic partitions.

Definition 2 (compare with Definition 3 in [23]) A time
partitionP ⊆ R is a countable union of non-overlapping
intervals1

P =
⋃
i∈N

[ai, bi) ai < bi < ai+1. (1)

Without loss of generality we set the instant when the VP is
created in the system equal to0. Hence we havea0 ≥ 0.

Given a partitionP , its supply function [23, 20, 26] mea-
sures the minimum amount of time that is provided by the
partition in any interval.

1The mathematical development does not change ifP is any Lebesgue
measurable set.

3

Proc. of the 15th IEEE Int. Conf. on Embedded and Real-Time Computing Systems and Applications, Beijing, China, August 24-26, 2009 (Best Paper).



Definition 3 (Def. 9 in [23], Def. 1 in [20]) Given a parti-
tionP , we define thesupply functionZP(t) as the minimum
amount of time provided by the partition in every interval of
time of lengtht ≥ 0, that is

ZP(t) = min
t0≥0

∫
P∩[t0,t0+t]

1 dx. (2)

Definition 3 requires the knowledge of the exact time
partitionP allocated by the VP to the application, which
is often known only at run-time (and not at design time). In
fact, the actual allocation typically depends on events (such
as the contention with other VPs) that cannot be easily pre-
dicted. In the following, we extend Definition 3 by remov-
ing the need for such a knowledge.

Definition 4 Given a VPν, we definelegal(ν) as the set of
partitionsP that can be allocated byν.

Definition 5 Given a serverν, its supply functionZν(t) is
the minimum amount of time provided by the serverν in
every time interval of lengtht ≥ 0,

Zν(t) = min
P∈legal(ν)

ZP(t). (3)

Below we report the supply function for several well
known server mechanisms.

Explicit Deadline Periodic The Explicit Deadline Peri-
odic (EDP) model [11], that generalizes the periodic re-
source model [20, 26], has the following supply function

Z(t) = max{0, t−D + Q− (k + 1)(P −Q), kQ} (4)

with k =
⌊

t−D+Q
P

⌋
, where the VP providesQ time units

every periodP within a deadlineD.

Static partition When a VPν allocates time statically
according to a partitionP , then the set of legal partitions
legal(ν) consists of the unique elementP . In this special
case of Eq. (3), the supply functionZν(t) can be computed
as follows (Lemma 1 by Mok et al. [23]):

Zν(t) = min
t0=0,b1,b2,...

∫
P∩[t0,t0+t]

1 dx. (5)

P-fair time partition Now we investigate the implemen-
tation of a VP through a P-fair server [6, 3] with weightw.
We think that this case is relevant, because P-fair algorithms
allow achieving full resource usage on multiprocessors.

Holman and Anderson proposed the following lower
bound of P-fair supply function (Corollary 2 in [15])

Zν(t) ≥ ⌊w(⌊t⌋ − 1)⌋ − 1. (6)

However, the lower bound proposed in this paper is tighter
(see Figure 3).

In P-fair schedules the processing resource is allocated
to the different tasks by time quanta. Without loss of gener-
ality, the length of the time quanta can be assumed unitary.
Using the notation of Def. 2, it means that a P-fair partition
P has

ai ∈ Z bi = ai + 1. (7)

A time partitionP associated to a weightw is defined to be
P-fair [6] when

∀t ≥ 0 − 1 < w t−
∫

[0,t]∩P

1dx < 1. (8)

From Equation (8), it follows [6, 3] that thejth time
quantum (we start counting fromj = 0 to be consistent
with Def. 2) allocated in[aj , aj + 1), must be within the
interval [⌊

j

w

⌋
,

⌈
j + 1

w

⌉)
(9)

denoted as thejth subtask window. Figure 2 shows an ex-
ample of the subtask windows (represented by horizontally
aligned segments) whenw = 7

17 .

222120191817161514131211109876510 2 3 4

Figure 2. An example of the subtask window.

For expressing the supply function of a P-fair server
mechanism we first define the following quantity.

Definition 6 Letν be a VP implemented by a P-fair server.
We definelen(k) as the length of the longest interval where
at mostk time quanta are allocated. Formally

len(k) = max
P∈legal(ν),t0∈N

{
h ∈ N :

∫
[t0,t0+h)∩P

1 dx ≤ k

}
(10)

The introduction oflen(k) allows the definition of the
supply function by the following Lemma.

Lemma 1 The supply function of a VPν implemented by a
P-fair server whose weight isw, is given by:

Zν(t)=


0 0 ≤ t ≤ len(0)
t +k − len(k) len(k) ≤ t ≤ len(k) + 1
k + 1 len(k)+1≤ t≤ len(k + 1)

(11)

4

Proc. of the 15th IEEE Int. Conf. on Embedded and Real-Time Computing Systems and Applications, Beijing, China, August 24-26, 2009 (Best Paper).



Proof Since a P-fair task allocates time by integer time
quanta, we have that

∀t ∈ N, Zν(t) ∈ N. (12)

We start by proving that

∀k ∈ N Zν(len(k)) = k. (13)

From Definition 6, it follows thatZν(len(k)) ≥ k, because
there exists a legal time partitionP and an interval[t0, t0 +
len(k)) that contains at leastk time quanta. Nonetheless, it
cannot happen thatZν(len(k)) > k, becauselen(k) is the
maximum length among the intervals that containsat most
k time quanta. Hence, Eq. (13) follows.

From Equations (13) and (12) it follows that

∀k ∈ N Zν(len(k) + 1) ∈ {k, k + 1}
because, for every integer step,Zν can either increment by
one or remain constant. Nonetheless, it cannot happen that
Zν(len(k) + 1) = k, becauselen(k) is themaximumlength
that can containk units. Hence,

∀k ∈ N Zν(len(k) + 1) = k + 1. (14)

SinceZν can be either constant or increase with unitary
slope, the lemma follows. 2

In the next lemma, we compute the value oflen(k) when
the weightw of the VP is a rational number.

Lemma 2 Given a weightw = p
q , p, q ∈ N \ {0}, we have

len(k) = max
j=0,...,p−1

{⌈
(j + k + 2) q

p

⌉
−

⌊
j q

p

⌋}
− 2 (15)

whenk = 0, . . . , p− 1. Moreover we have

len(k + p) = len(k) + q. (16)

Proof Let P be the time partition andt0 be the start of
the interval[t0, t0 + len(k)) that originates the maximum
interval lengthlen(k), as defined in Def. 6. We claim that:

• t0 must coincides with the end of a time quantum, oth-
erwise it would be possible to left shiftt0, achieving
a largerlen(k) without increasing the amount of re-
source provided in[t0, t0 + len(k)). We call this inter-
val thejth time quanta.

• In the critical partitionP , thejth time quanta must start
at the beginning of thejth time window (that is, the
interval of Eq. (9)), otherwise we can build another P-
fair time partition that anticipates thejth time quanta,
so achieving a largerlen(k).

Hence,t0 =
⌊

j
w

⌋
+1 for somej. Since the interval[t0, t0+

len(k)) must contain (at most)k time quanta, by similar
arguments as those exposed before, we conclude that the
end of the critical interval occurs one quantum before the
end of thej + k + 1 time window, that is

t0 + len(k) =
⌈

j + k + 2
w

⌉
− 1.

Since we do not know what is thejth time window that orig-
inates the critical interval, we must check all of them, that
is

len(k) = sup
j∈N

{⌈
j + k + 2

w

⌉
−

⌊
j

w

⌋}
− 2.

However, if the weight is rational (w = p/q), then we only
need to test forj from 0 to p− 1. This proves Eq. (15).

Finally, we conclude by proving Eq. (16).

len(k+ p) = max
j=0,...,p−1

{⌈
(j + k + p +2) q

p

⌉
−

⌊
j q

p

⌋}
−2

= max
j=0,...,p−1

{⌈
(j + k + 2) q

p

⌉
−

⌊
j q

p

⌋}
−2 +q

= len(k) + q

as required. 2

Figure 3 illustrates the supply function of a VP that is
implemented by a P-fair server whose weight isw = 7

17 .
The valueslen(k) are computed according to Eq. (15).

0 42 6 8 10 12 14 16 18 20 22

Zν(t)

t(len(0), 0)
(len(1), 1)

(len(2), 2)
(len(3), 3)

(len(4), 4)
(len(5), 5)

(len(6), 6)
(len(7), 7)

∆=4+4/7

exact supply, Eq. (11)
α, ∆ lower bound, Eq. (19)

Holman, Anderson [15]

Figure 3. The supply function for a P-fair server
with weight w = 7/17.

4.2 The (α, ∆) Virtual Processor

The supply function defined in Def. 5 represents a tight
model of the service provided by a VP. As shown in Sec-
tion 4.1, however, it depends on the specific server imple-
menting the reservation and it may not be straightforward to
derive. A simpler abstraction able to describe the reserva-
tion through a few parameters, independently of the specific
server implementation, would be often more desirable.

5

Proc. of the 15th IEEE Int. Conf. on Embedded and Real-Time Computing Systems and Applications, Beijing, China, August 24-26, 2009 (Best Paper).



Mok et al. [23] introduced the “bounded delay partition”,
which is described by two parameters: a bandwidthα and a
delay∆. The bandwidthα measures the amount of resource
that is assigned to the demanding application, whereas∆
represents the worst-case service delay. This abstraction
has also the additional benefit of being common to other
fields, such as networking [27], disk scheduling [8], and
network calculus analysis [18]. This means that the analy-
sis proposed here can easily be extended to a more complex
system including different architecture components. Theα
and∆ parameters are formally defined below.

Definition 7 (compare Def. 5 in [23]) Given a VPν with
supply functionZν , thebandwidthαν of the VP is defined
as

αν = lim
t→∞

Zν(t)
t

. (17)

Indeed the bandwidth captures the most significant fea-
ture of a VP. However, two VPs with the same bandwidth
can allocate time in a significantly different manner. Sup-
pose that a VP allocates the processor for one millisecond
every 10 and another one allocates the processor for one
second every 10 seconds. Both the VPs have the same band-
width (10% of the physical processor), however, the first
VP is moreresponsivein the sense that an application can
progress more uniformly. The∆ parameter provides a mea-
sure of the responsiveness, as proposed by Mok et al. [23].

Definition 8 (compare Def. 14 in [23]) Given a VPν with
supply functionZν and bandwidthαν , thedelay∆ν of the
VP is defined as

∆ν = sup
t≥0

{
t− Zν(t)

αν

}
. (18)

Informally speaking, given a VPν with bandwidthαν , the
delay∆ν is the minimum horizontal displacement such that
the lineαν(t−∆ν) is a lower bound ofZν(t).

Once the bandwidth and the delay are computed, the sup-
ply function of the VPν can be lower bounded as follows:

Zν(t) ≥ αν(t−∆ν)0. (19)

This linear lower bound of the supply function allows the
definition of an abstraction of the multiprocessor that is sim-
pler than theMSF.

Definition 9 The Multi-(α, ∆) (Mα∆) abstraction of a
set V = {νj}m

j=1 of VPs, represented by them pairs
{(αj, ∆j)}m

j=1, is a special MSF defined by{Zνj :
Zνj (t) = αj(t−∆j)0}m

j=1.

Below we propose the computation of theα, ∆ parame-
ters for some classes of servers.

Explicit Deadline Periodic For a VPν modeled by EDP
we have [11]

αν =
Qν

Pν
∆ = Pν + Dν − 2Qν (20)

whereν providesQν time units every periodPν within a
deadlineDν .

Static partition The interested reader can find the com-
putation of theα and∆ parameters of a static partition in
the work by Feng and Mok [12].

P-fair time partition Let ν be a VP implemented by a
P-fair server with weightw = p

q . From Equation (16) it
follows immediately that

αν = lim
t→∞

Zν(t)
t

= lim
k

k

len(k)
=

p

q
= w (21)

For computing the delay∆ν we observe (Eq. (11),
Fig. 3) that the linear lower bound is constrained by the
points(len(k), k). It follows that

∆ν = sup
k∈N

{
len(k)− k

w

}
. (22)

In the example of Figure 3 (w = 7
17 ) the delay results to be

∆ = 7− 17
7 ≈ 4.571. More in general, Figure 4 shows the

delay∆ as a function of the bandwidth of the VP. From the

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

bandwidthα

∆

Figure 4. Values of ∆ for a P-fair VP.

graph, it can be noticed that the delay is upper bounded by
a function that is inversely proportional to the bandwidthα.

Lemma 3 Given a P-fair VPν with bandwidthw ∈ R, we
have

∆ν ≤ 2
w

. (23)

Proof From Lemma 2 we have

len(k) = sup
j∈N

{⌈
j + k + 2

w

⌉
−

⌊
j

w

⌋}
− 2

≤ sup
j∈N

{
j + k + 2

w
+ 1− j

w
+ 1

}
− 2

≤ k + 2
w

6

Proc. of the 15th IEEE Int. Conf. on Embedded and Real-Time Computing Systems and Applications, Beijing, China, August 24-26, 2009 (Best Paper).



P1

P2

P3

P4

a=0 b c d e f g h i j l m Dk=n

Figure 5. Example of supply distribution.

Hence, from Eq. (22), we have

∆ν = sup
k∈N

{
len(k)− k

w

}
≤ sup

k∈N

{
k + 2

w
− k

w

}
=

2
w

as required. 2

5 Global scheduling algorithms over aMSF

In this section, we analyze the schedulability of a task set
Γ = {τi}n

i=1 on a virtual platformV = {νj}m
j=1 abstracted

by aMSF. To simplify the notation, we denoteZνj by Zj .
Let τk be the task that we are analyzing. Without loss of
generality, we set the activation ofτk ’s job under analysis
equal to0. We label the VPs by decreasing value ofZj(Dk)
(notice that, differently than in uniform multiprocessors[14,
5] whereZj(t) = αjt, this ordering is task dependent).

First, we assume that the time partitionPj provided by
each VPνj in [0, Dk) is known in advance. Later, in Theo-
rem 2, we will compute the worst-case partitionPj starting
from the supply functionsZj . For eachPj , we define its
characteristic functionSj(t) as

Sj(t) =

{
1 t ∈ Pj

0 t /∈ Pj

(24)

We introduce the lengthLℓ as the duration over[0, Dk)
during which the time is provided byℓ VPs in parallel.

∀ℓ = 0, . . . , m, Lℓ =

∣∣∣∣∣∣
t ∈ [0, Dk) :

m∑
j=1

Sj(t)= ℓ


∣∣∣∣∣∣ (25)

To lighten the notation, we do not report the dependency of
the lengthsLℓ on the task indexk.

Figure 5 shows an example of time partitions and the
corresponding lengthsLℓ. Using the labels introduced in
the figure, we have:L0 = h − g, L1 = b − a + g − f +
i − h + l − j + n − m, L2 = c − b + j − i + m − l,
L3 = d − c + f − e, andL4 = e − d. In the rest of the
paper we will often use the lengths{Lℓ}m

ℓ=0 as an alternate
representation of the set of partitions{Pj}m

j=1 allocated by
theMSF platform.

Moreover,Wk denotes the workload of jobs with higher
priority interfering onτk, and Ik denotes the total dura-
tion in [0, Dk) in which τk is preempted by higher priority
jobs. Bertogna et al. [7] proposed several techniques to up-
per bound the interfering workloadWk when global EDF,

global FP or a generic work-conserving (WC) scheduler is
used. Below we report these upper bounds [7]. When global
EDF is used, we have

Wk≤W
EDF

k =
n∑

i=1
i6=k

⌊
Dk

Ti

⌋
Ci+min

{
Ci, Dk−

⌊
Dk

Ti

⌋
Ti

}
(26)

For a generic work conserving algorithm, instead, we have:

Wk ≤ W
WC

k =
n∑

i=1,i6=k

W k,i (27)

where

W k,i =Nk,iCi+min {Ci, Dk + Di − Ci −Nk,iTi} (28)

with Nk,i =
⌊

Dk+Di−Ci

Ti

⌋
. Finally, for a global FP sched-

uler, we have:

Wk ≤ W
FP

k =
k−1∑
i=1

W k,i (29)

assuming that tasks are ordered by decreasing priority.
We highlight that the upper bounds on the workload can

be refined by iterating the computation of the interference
Ik with the reduction of the workloadWk, as suggested by
Bertogna et al. [7]. However we do not report the details
here, due to space limitations.

Given the lengths{Lℓ}m
ℓ=0, we can compute an upper

bound on the interferenceIk produced on a job belonging
to τk by an interfering workloadWk.

Theorem 1 Given a window[0, Dk) with MSF character-
ized by the lengths{Lℓ}m

ℓ=0, the interferenceIk on τk pro-
duced by a set of higher priority jobs with total workload
Wk cannot be larger than

Ik≤ Ik = L0+
m∑

ℓ=1

min

Lℓ,

(
Wk −

∑ℓ−1
p=0 pLp

)
0

ℓ

 (30)

Proof Given a window[0, Dk) with MSF characterized
by {Lℓ}m

ℓ=0, we first find the distribution of the interfering
workloadWk that maximizes the interferenceIk on τk. We
will prove thatIk is maximized when the workload is dis-
tributed over the setsLℓ with smallestℓ, according to the
following strategyA:

• start allocating the workload on the single processor
available in time instants∈ L1;

• as long as there is remaining workload to allocate, con-
tinue distributing it over the subsequent setLℓ (with
ℓ = 2, . . . , m), with parallelismℓ.

7

Proc. of the 15th IEEE Int. Conf. on Embedded and Real-Time Computing Systems and Applications, Beijing, China, August 24-26, 2009 (Best Paper).



• Let Lz be the first interval that is not entirely occupied
by jobs ofWk.

Suppose, by contradiction, that a different distribution
of the workloadWk produces a larger interference onτk.
In this latter distribution, consider the set of instants∈ Lℓ,
ℓ = 1, . . . , m, where the workloadWk has been allocated
on strictly less thanℓ processors. Since there is at least one
processor available,τk is not interfered in any such instant.
Therefore, a largerIk can be produced redistributing the
workload that was allocated in these instants, so that it is
executed on all available processors, i.e., onℓ processors in
instants∈ Lℓ. This new distributionA′ still produces aIk

larger thanA.
Since inA the workload is distributed among all setsLℓ

with 1 ≤ ℓ ≤ z, the larger interference produced inA′ must
be due to workload allocations over at least one setLy with
y > z. Let ξ ≤ Ly be the amount of time for whichWk is
allocated inLy (on ally processors). There areξy workload
units that are used byA′ to produceξ units of interference.
Theseξy units were scheduled byA on a lower number of
processors≤ z. Therefore, the interference produced byA
allocating the aboveξy units over intervals with parallelism
at mostz is greater thanξy

z > ξ. The same argument can
be applied to any other share ofWk that is being executed
with parallelism> z, reaching a contradiction. Therefore,
the largest interference is produced when the workload is
distributed over the time instants∈ Lℓ with smallestℓ.

The contributions to the interference from eachLℓ are
therefore

• Lℓ for each setLℓ, with 0 ≤ ℓ ≤ z − 1;

• 1
ℓ

(
Wk −

∑z−1
ℓ=0 ℓLℓ

)
for Lz; and

• 0 for setsLℓ, with ℓ > z.

Eq. (30) follows summing all contributions. 2

By replacing the workloadWk of Eq. (30) byW
EDF
k ,

W
WC
k , andW

FP
k (see Equations (26), (27) and (29)), we can

compute the upper bounds of the interferencesI
EDF
k , I

WC
k ,

andI
FP
k for global EDF, a work-conserving algorithm, and

global FP, respectively.
Theorem 1 assumes that theMSF platform provides time

by a set of static partitions{Pj}m
j=1 over[0, Dk). However

MSF is described by the set of supply functions{Zj}m
j=1,

and the partitionsPj actually provided to the application
can be anything that complies with the supply function de-
scription. The theorem below finds the most pessimistic
time partitions, i.e. the partitions such that if the task set is
guaranteed on them, it is guaranteed on any time partition
that can be allocated by theMSF.

Theorem 2 Given aMSF platform modeled by{Zj}m
j=1,

if the taskτk is feasible on the set of time partitions

{Pj}m
j=1 = {[Dk − Zj(Dk), Dk)}m

j=1, (31)

then it is feasible on any set of partitions{Pj}m
j=1 comply-

ing with theMSF.

Proof As explained in the proof of Theorem 1, the largest
interference of a workloadWk on a taskτk is produced dis-
tributing the workload over the setsLℓ with the smallest
level of parallelismℓ.

We prove this theorem by transforming any other set of
partitions{P ′j}m

j=1 into the one of Eq. (31) without de-
creasing the associated interference bound. First we shift
rightward all the intervals of each partition, then we reduce
the amount of resource of the partition toZj(Dk) (Fig-
ure 6 represents these two steps). First, we shift rightwards

P ′j

P ′j

Pj
Zj(Dk)

0 Dk

Figure 6. The transformations of a partition.

one or more particular intervals inP ′j. For each partition
P ′j , we are interested in chunks[a, b) of continuous supply,
i.e., [a, b) ⊆ P ′j , limt→a− Sj(t) = limt→b+ Sj(t) = 0,
Sj(t) = 1 ∀t ∈ [a, b). While shifting rightwards a supply
chunk, there are three possible situations, each one causing
a different effect on the lengthsL′0, . . . , L

′
m.

1. Shifts that increase the supply parallelism. A shift of
this kind decreasesL′x andL′y<x, and increasesL′x+1

andL′y−1 by the same amount. This happens, for in-
stance, with the shift in Figure 7(a), where shifting
rightwards the chunk ofP ′1 by ε causes an increase
in L3 andL0, and a decrease inL2 andL1.

2. Shifts that do not vary anyL′j (Figure 7(b)).

3. Shifts that decrease the supply parallelism. A shift of
this kind decreasesL′x andL′y<x, and increasesL′x−1

andL′y+1 by the same amount (Figure 7(c)).

The upper bound on the interference (Equation (30)) might
increase in the first case, is left unchanged in the second
case, and might decrease in the third case. For instance,
consider the first situation: there is an increase in the length
with smallest index (y − 1) and with largest index(x + 1),
and a decrease in the lengths with “central” indexesL′y and

L′x. LetL′z be the first set for which it isWk−
∑z−1

p=0 pL′p <

8

Proc. of the 15th IEEE Int. Conf. on Embedded and Real-Time Computing Systems and Applications, Beijing, China, August 24-26, 2009 (Best Paper).



(a)

(b)

(c)

P ′
1

P ′
1

P ′
1

P ′
2

P ′
2

P ′
2

P ′
3

P ′
3

ε

ε

ε L′
0 ← L′

0 + ε
L′

1 ← L′
1 − ε

L′
2 ← L′

2 − ε
L′

3 ← L′
3 + ε

L′
0 ← L′

0 − ε
L′

1 ← L′
1 + ε

L′
2 ← L′

2 + ε
L′

3 ← L′
3 − ε

L′
1 ← L′

1
L′

2 ← L′
2

Figure 7. Typologies of right shifts.

zL′z. If z < y − 1 or z > x + 1 the interference does not
change. Ify − 1 ≤ z ≤ x + 1, the resulting interference
is larger than the interference computed with the original
valuesL′y−1, L

′
y, L

′
x, L′x+1 before the shift.

Hence we apply to{P ′j}m
j=1 only transformation of the

first two kinds. We proceed as follows.

1. We start from the leftmost chunk among all the parti-
tions. Leta be the start of this chunk, andb its end.

2. We shift the chunk rightwards until some of the fol-
lowing conditions occurs.

(a) a reaches the beginning of a chunk of a different
partition. In this case, we continue shifting the
other chunk together with the first one, forming
a block of chunks with identical start timea, but
different end timesb1 andb2.

(b) b reaches the beginning of a chunk on the same
partition. We merge both chunks.

(c) b reaches the end of the window (atDk), we con-
tinue shifting the next chunk if any.

If the above operations are correctly performed, each move
will increase the supply parallelism, avoiding situationsas
the one in Figure 7(c). At the end of the procedure we have
transformed any set of partitions{P ′j}m

j=1 into the following
set

{[Dk −Qj , Dk)}m
j=1, (32)

with Qj ≥ Zj(Dk). However the interference experienced
on the partition of Eq. (32) cannot exceed the interference
on the partition of Eq. (31). In fact, for any partitionP ′j of
Eq. (32), if we reduce the supplied resource by an amount
ε then for one lengthL′x decreasing byε, there is a length
L′x−1 increasing byε, as shown in Figure 8. Hence this
transformation cannot reduce the interference. Since this
transformation leads to the set of partitions of Eq. (31), the
Theorem is proved. 2

Finally, the following theorem provides a sufficient
schedulability condition.

P ′
1

P ′
2

P ′
3

P ′
4

Z1(Dk)
Z2(Dk)

Z3(Dk)
Z4(Dk)

Dk

ε

Figure 8. Reducing the allocated time.

Theorem 3 A task setΓ = {τi}n
i=1 is schedulable by the

algorithmALG on aMSF platform modeled by{Zj}m
j=1, if

∀k = 1, . . . , n Ck + I
ALG

k ≤ Dk (33)

where theI
ALG
k is computed from Eq. (30), assuming the

lengths{Lℓ}m
ℓ=0 equal to

L0 = Dk − Z1(Dk)
Lℓ = Zℓ(Dk)− Zℓ+1(Dk)

Lm = Zm(Dk).
(34)

Proof The schedulability condition simply checks if the
relative deadline of each taskτk is large enough to accom-
modate the worst-case computation time ofτk together with
the interferenceIk imposed by other tasks. The amount of
interference follows from Theorem 1, upper bounding the
workloadWk using Equations (26), (27), or (29).

For any jobτk,i, from the definition of supply function,
we can say that every VPνj provides an amount of resource
Qj ≥ Zj(Dk) that is distributed by some unknown partition
over the interval[rk,i, rk,i + Dk). Thanks to Theorem 2,
if τk,i is schedulable on a set of partitions that allocate
Zj(Dk) at the end of the interval[0, Dk), then it is schedu-
lable on any set of partitions that allocateQj ≥ Zj(Dk) in
any way.

Since the lengths of Eq. (34) are derived assuming this
time partition (see also Figure 8), the theorem follows.2

6 Conclusions

In this paper we proposed to abstract a parallel machine
as a set of virtual processors, each implemented through
a resource reservation mechanism described by a supply
function. The proposed approach is useful to design parallel
real-time applications independently of the actual platform
and of the specific server used to implement the reservation.

A sufficient schedulability test has also been presented
to guarantee the feasibility of real-time applications under
global EDF, global fixed priority algorithms and generic
work-conserving schedulers.

In the future we plan to implement the proposed abstrac-
tion on existing open source operating systems. Moreover,
from the theoretical point of view, we plan to tighten the re-
sults by relaxing some pessimistic assumptions that we had
to introduce to simplify the analysis.

9

Proc. of the 15th IEEE Int. Conf. on Embedded and Real-Time Computing Systems and Applications, Beijing, China, August 24-26, 2009 (Best Paper).



Acknowledgements The authors wish to thank Sanjoy
Baruah for his insightful comments. We also like to thank
the anonymous reviewers of a previously submitted version
for their detailed comments, which helped to improve the
quality of this paper.

References

[1] L. Abeni and G. Buttazzo. Resource reservation in dynamic
real-time systems.Real-Time Systems, 27(2):123–167, July
2004.

[2] L. Almeida, P. Pedreiras, and J. A. G. Fonseca. The FTT-
CAN protocol: Why and how.IEEE Transaction on Indus-
trial Electronics, 49(6):1189–1201, Dec. 2002.

[3] J. H. Anderson and A. Srinivasan. Early-release fair schedul-
ing. In Proceedings of the12th Euromicro Conference on
Real-Time Systems, pages 35–43, Stockholm, Sweden, June
2000.

[4] T. P. Baker. Multiprocessor EDF and deadline monotonic
schedulability analysis. InProceedings of the24th IEEE
Real-Time Systems Symposium, pages 120–129, Cancun,
Mexico, Dec. 2003.

[5] S. Baruah and J. Goossens. The EDF scheduling of sporadic
task systems on uniform multiprocessors. InProceedings of
the 29th Real-Time Systems Symposium, 2008, pages 367–
374, Dec. 2008.

[6] S. K. Baruah, N. K. Cohen, G. Plaxton, and D. A. Varvel.
Proportionate progress: a notion of fairness in resource allo-
cation.Algorithmica, 15(6):600–625, June 1996.

[7] M. Bertogna, M. Cirinei, and G. Lipari. Schedulability anal-
ysis of global scheduling algorithms on multiprocessor plat-
forms. IEEE Transactions on Parallel and Distributed Sys-
tems, 2008.

[8] J. Bruno, J. Brustoloni, E. Gabber, B. Ozden, and A. Silber-
schatz. Disk scheduling with quality of service guarantees.
Multimedia Computing and Systems, 1999. IEEE Interna-
tional Conference on, 2:400–405 vol.2, Jul 1999.

[9] G. C. Buttazzo, G. Lipari, L. Abeni, and M. Caccamo.Soft
Real-Time Systems: Predictability vs. Efficiency. Springer,
2005.

[10] Z. Deng and J. w.-s. Liu. Scheduling real-time applications
in open environment. InProceedings of the18th IEEE Real-
Time Systems Symposium, pages 308–319, San Francisco
(CA), U.S.A., Dec. 1997.

[11] A. Easwaran, M. Anand, and I. Lee. Compositional analysis
framework using edp resource models. InProceedings of
the28th IEEE International Real-Time Systems Symposium,
pages 129–138, Tucson, AZ, USA, 2007.

[12] X. Feng and A. K. Mok. A model of hierarchical real-time
virtual resources. InProceedings of the23rd IEEE Real-Time
Systems Symposium, pages 26–35, Austin, TX, U.S.A., Dec.
2002.

[13] L. J. Flynn. Intel halts development of 2 new microproces-
sors.The New York Times, May 2004.

[14] S. Funk, J. Goossens, and S. Baruah. On-line schedulingon
uniform multiprocessors. InProceedings of the22nd IEEE
Real-Time Systems Symposium, London, United Kingdom,
2001.

[15] P. Holman and J. H. Anderson. Group-based pfair schedul-
ing. Real-Time Systems, 32(1–2):125–168, Feb. 2006.

[16] T.-W. Kuo and C.-H. Li. Fixed-priority-driven open envi-
ronment for real-time applications. InProceedings of the
20th IEEE Real-Time Systems Symposium, pages 256–267,
Phoenix, AZ, U.S.A., Dec. 1999.

[17] T.-W. Kuo, K. Lin, and Y. Wang. An open real-time environ-
ment for parallel and distributed systems. In20th Interna-
tional Conference on Distributed Systems, pages 206–213,
2000.

[18] J.-Y. Le Boudec and P. Thiran.Network Calculus, volume
2050 ofLecture Notes in Computer Science. Springer, 2001.

[19] H. Leontyev and J. H. Anderson. A hierarchical multipro-
cessor bandwidth reservation scheme with timing guaran-
tees. InProceedings of the20th Euromicro Conference on
Real-Time Systems, pages 191–200, Prague, Czech Repub-
lic, July 2008.

[20] G. Lipari and E. Bini. Resource partitioning among real-
time applications. InProceedings of the15th Euromicro
Conference on Real-Time Systems, pages 151–158, Porto,
Portugal, July 2003.

[21] C. W. Mercer, S. Savage, and H. Tokuda. Processor capacity
reserves: Operating system support for multimedia applica-
tions. InProceedings of IEEE International Conference on
Multimedia Computing and Systems, pages 90–99, Boston
(MA), U.S.A., May 1994.

[22] M. Moir and S. Ramamurthy. Pfair scheduling of fixed and
migrating periodic tasks on multiple resources. InProceed-
ings of the20th IEEE Real-Time Systems Symposium, pages
294–303, Phoenix, AZ, U.S.A., Dec. 1999.

[23] A. K. Mok, X. Feng, and D. Chen. Resource partition for
real-time systems. InProceedings of the7th IEEE Real-
Time Technology and Applications Symposium, pages 75–
84, Taipei, Taiwan, May 2001.

[24] A. K. Parekh and R. G. Gallager. A generalized processor
sharing approach to flow control in integrated services net-
works: the single-node case.IEEE/ACM Transactions on
Networking, 1(3):344–357, June 1993.

[25] I. Shin, A. Easwaran, and I. Lee. Hierarchical schedul-
ing framework for virtual clustering multiprocessors. In
Proceedings of the20th Euromicro Conference on Real-
Time Systems, pages 181–190, Prague, Czech Republic, July
2008.

[26] I. Shin and I. Lee. Periodic resource model for compo-
sitional real-time guarantees. InProceedings of the24th

Real-Time Systems Symposium, pages 2–13, Cancun, Mex-
ico, Dec. 2003.

[27] D. Stiliadis and A. Varma. Latency-rate servers: A gen-
eral model for analysis of traffic scheduling algorithms.
IEE/ACM Transactions on Networking, 6(5):611–624, Oct.
1998.

[28] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. K. Baruah, J. E.
Gehrke, and C. G. Plaxton. A proportional share resource
allocation algorithm for real-time, time-shared systems.In
Proceeding of the17th IEEE Real Time System Symposium,
pages 288–299, Washington, DC, U.S.A., Dec. 1996.

10

Proc. of the 15th IEEE Int. Conf. on Embedded and Real-Time Computing Systems and Applications, Beijing, China, August 24-26, 2009 (Best Paper).


