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Abstract

The question whether preemptive systems are better than
non-preemptive systems has been debated for a long time,
but only partial answers have been provided in the real-time
literature and still some issues remain open. In fact, each
approach has advantages and disadvantages, and no one
dominates the other when both predictability and efficiency
have to be taken into account in the system design. In par-
ticular, limiting preemptions allows increasing program lo-
cality, making timing analysis more predictable with respect
to the fully preemptive case.

In this paper, we integrate the features of both preemptive
and non-preemptive scheduling by considering that each
task can switch to non-preemptive mode, at any time, for
a bounded interval. Three methods (with different complex-
ity and performance) are presented to calculate the longest
non-preemptive interval that can be executed by each task,
under fixed priorities, without degrading the schedulability
of the task set, with respect to the fully preemptive case. The
methods are also compared by simulations to evaluate their
effectiveness in reducing the number of preemptions.

1 Introduction

The primary goal of a real-time system is to guarantee
the schedulability of the task set on the processing plat-
form so that each task completes its execution within its
deadline. Since the pioneering work of Liu and Layland
[20], a lot of work has been done in the area of real-time
scheduling to analyze and predict the schedulability of the
task set under different scheduling policies and several task
models. Although the Earliest Deadline First (EDF) algo-
rithm is optimal on a uniprocessor in terms of schedulability
[10], other fixed priority schedulers, such as Rate Mono-
tonic (RM) or Deadline Monotonic (DM), are widely used
in real-time embedded systems, because they are simpler to
implement in current operating systems and are character-
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ized by a lower run-time overhead. A comprehensive com-
parison of RM against EDF can be found in [9].

The question whether enabling or disabling preemption
during task execution has been investigated by many au-
thors under several points of view and it is not trivial to
answer. In fact, there are several advantages and disad-
vantages to be considered when adopting a non-preemptive
scheduler, which depend on the particular application re-
quirements to be achieved. In particular, the following is-
sues must be taken into account.

• In many practical situations, such as I/O scheduling or
communication in a shared medium, either preemption
is impossible or prohibitively expensive.

• Preemption destroys program locality and affects the
cache behavior, making the execution times more dif-
ficult to characterize and predict [17, 21, 22, 23].
Usually, the preemption overhead is ignored in the
scheduling analysis, leading to imprecise results.

• The mutual exclusion problem is trivial in non-
preemptive mode, since it naturally guarantees the ex-
clusive access to shared resources.

• In control applications, the input-output delay and jit-
ter are minimized for all tasks when using a non-
preemptive scheduling discipline, since the interval be-
tween start time and finishing time is always equal to
the task computation time [8]. This simplifies the tech-
niques for delay compensation in the control design.

• Non-preemptive execution allows using stack sharing
techniques [1] to save memory space in small embed-
ded systems with stringent memory constraints [12].

• A general disadvantage of the non-preemptive disci-
pline is that it may reduce schedulability. In fact, a
non-preemptive section of code introduces an addi-
tional blocking factor in higher priority tasks that can
be taken into account with the same guarantee methods
used for resource sharing protocols. In fixed priority
systems, however, there are particular cases in which
non-preemptive execution improves schedulability (an
example is shown below).
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• In non-preemptive systems there is no least upper
bound on the processor utilization below which the
schedulability of any task set can be guaranteed. This
can easily be shown by considering a set of two pe-
riodic tasks,τ1 andτ2, with prioritiesP1 > P2 and
utilization Ui = ǫ, arbitrarily small. If C2 > T1,
C1 = ǫT1, andT2 = C2/ǫ, the task set is unschedula-
ble, although having an arbitrarily small utilization.

The general problem of finding a feasible schedule with a
non-preemptive scheduling algorithm (including those that
allow inserted idle time) is intractable (i.e., NP-hard in the
strong sense) [16]. When restricting to work conserving al-
gorithms that cannot insert idle times, EDF is still optimal
under the non-preemptive case. For concrete fixed prior-
ity task systems, preemptive scheduling does not dominate
non-preemptive scheduling. Table 1 illustrates a set of peri-
odic tasks (with relative deadlines equal to periods) that can
be scheduled under non-preemptive RM, but is unfeasible
under preemptive RM1.

Comp. time Period Arrival time
Task1 2 4 0
Task2 3 6 0

Table 1. A concrete task set that can be sched-
uled under non-preemptive RM, but not under
preemptive RM.

To take advantage of non-preemptive execution without
losing the benefits of preemptions, in this paper we consider
a limited preemption model, in which a preempted job is not
required to surrender the processor immediately. Instead,it
may switch to non-preemptive mode and continue to ex-
ecute for a certain period without being preempted. The
maximum length of the non-preemptive intervalQi is com-
puted to preserve the schedulability of the original (fully
preemptive) task set. At runtime, if the remaining execution
time of the running job is less than or equal to the maximum
length of the non-preemptive region, the job can complete
execution without being preempted.

In particular, the addressed problem can be stated as fol-
lows:

Given a set ofn preemptive periodic tasks that
is feasible under a fixed priority assignment, find
the longest non-preemptive region of lengthQi

for each taskτi, so thatτi can continue to exe-
cute forQi units of time in non-preemptive mode,
without violating the schedulability of the origi-
nal system.

The algorithm for computing the length of such an interval

1Notice that, under a generic periodic or sporadic model, thetask set
is unfeasible, as can be seen by delaying the first instance ofTask1 by an
arbitrarily small instant.

is implemented off line, so the method does not introduce
extra overhead at runtime.

1.1 Related work
Preemption related problems have received consider-

able attention in the real-time community. Jeffay, Stanat
and Martel [16] showed that non-preemptive scheduling
of concrete periodic tasks is NP-Hard in the strong sense,
and presented a necessary and sufficient condition for the
schedulability of non-preemptive periodic tasks under non-
idling EDF. A comprehensive schedulability analysis of
non-preemptive systems has been done by George, Rivierre
and Spuri [14], however, the authors assumed that each task
is either completely non-preemptive or fully preemptive.

Fixed priority with deferred preemption has been pro-
posed as a viable alternative by Burns [7]. According to this
model, preemption can only occur at some given points in
the task code (preemption points), so it is “deferred” when
occurring before those points. In this way, each job can
be split into several chunks, equal to the number of pre-
emption points plus one. This model represents a flexible
trade off between the two extreme cases, which can be con-
trolled by the number of preemption points inserted in the
code. The author analyzed this model using the response
time approach but did not address the problem of comput-
ing the longest non-preemptive regions that keep the task
set schedulable. Bril et al. [6] corrected the response time
analysis showing some critical situations that may occur in
the presence of non-preemptive regions. In particular, the
authors illustrated that the largest response time does not
necessarily occur in the first job, after the critical instant.
Lehoczky [18] addressed the same problem in the fully pre-
emptive fixed priority scheduling when relative deadlines
are larger than their respective periods, and introduced the
level-i busy period to perform the analysis. The same sit-
uation may occur when tasks are scheduled with varying
execution priority [15].

A different approach for limiting preemptions in fixed
priority systems, based on the concept of preemption
thresholds, was proposed by Wang and Saksena [25]. This
method allows a task to disable preemption up to a specified
priority, which is called preemption threshold. Each task is
assigned a regular priority and a preemption threshold, and
it is allowed to preempt only when its priority is higher than
the threshold of the preempted task.

Dobrin and Fohler [11] proposed a method to reduce
the number of preemptions under fixed priority schedul-
ing. They adopt the idea of reassigning attributes to the
task (e.g., swapping the priorities or forcing the jobs to be
released simultaneously), and create artifact tasks for the in-
stance to solve the inconsistency. However, this algorithm
introduces significant computation complexity and requires
a large amount of memory.

Baruah and Chakraborty [3] analyzed the schedulability
of the non-preemptive recurring task model and showed that
there exists polynomial time approximation algorithms for
both preemptive and non-preemptive scheduling. Buttazzo
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and Cervin [8] used the non-preemptive task model to re-
duce jitter. Ramaprasad and Mueller [21, 22] considered
the effects of preemptions on the worst-case execution time
(due to the cache behavior) and evaluated how this affects
task response times.

Baruah [2] analyzed the problem of deferred preemp-
tions under dynamic priority scheduling, where tasks are
scheduled by EDF. The demand bound function is used to
determine the largest non-preemptive regions into which
each task can be broken up.

In this paper, we also consider the problem of deferred
preemptions with the objective of determining the largest
non-preemptive regions within each task. The main differ-
ence between [2] and our work is that tasks are scheduled
based on fixed priorities and extensive simulations are pre-
sented to evaluate the proposed methods.

The rest of the paper is organized as follows. Section
2 presents the system model and the terminology adopted
throughout the paper. Section 3 introduces the analysis
adopted to derive the results. Section 4 describes an exact
method for computing the longest non-preemptive regions
and also proposes two approximate approaches for simpli-
fying the computation. Section 5 discusses some possible
usages of the achieved results and illustrates a concrete ex-
ample. Section 6 presents some simulation results aimed
at comparing the proposed approaches. Finally, Section 7
states our conclusions and future work.

2 Terminology and assumptions

We consider a setT = {τ1, τ2, . . . , τn} of n periodic or
sporadic tasks that have to be executed on a uniprocessor
under fixed priority scheduling. A taskτi, 1 ≤ i ≤ n, is de-
fined by a worst-case execution requirementCi, a relative
deadlineDi and a period (or minimum inter-arrival time)Ti

between two consecutive releases (Di ≤ Ti). Task can be
scheduled by any fixed priority assignment and are indexed
by a decreasing priority, meaning thatτ1 is the highest pri-
ority task.

Tasks can be preempted, but contain a set of non-
preemptive regions (NP regions) where preemption is dis-
abled and deferred until the end of the region. We define
two kinds of non-preemptive regions models:

• Floating Non-Preemptive regions. With this model,
there is no information on the position of the NP region
inside the task code. The only available information
concerns the maximum length that NP regions may
have inside each task. This model has been adopted
for instance in [2] for EDF scheduling.

• Fixed Non-Preemptive regions. With this model, the
exact location of each NP region is known, so that the
schedulability analysis can potentially take advantage
of it, as done in [6, 7].

It is worth noting that the first model is more constrain-
ing in terms of schedulability, meaning that a feasible task

set with floating NP regions is also feasible when the NP
regions are located in fixed positions. In this paper, all the
results are derived assuming the floating model, which is
more general, since it does not require to assume specific
knowledge on the location of the NP regions.

The main objective of this work is to compute for each
task the longest (floating) non-preemptive region that pre-
serves the schedulability with respect to the fully preemp-
tive case. The following notation is used throughout the
paper:

qi denotes the duration of the longest non-preemptive re-
gion of taskτi.

Qi denotes the maximum value ofqi that preserves the fea-
sibility of the task set with respect to the fully preemp-
tive case.

Bi denotes the blocking time of taskτi due to the non-
preemptive regions of lower priority tasks.

Utot denotes the total utilization of the task set, that is, the
sum of all tasks utilizations:

Utot =

n
∑

i=1

Ci/Ti.

3 Schedulability analysis

To determine whether a given taskτi is schedulable, we
first need to identify its critical instant, that is the worst-
case activation pattern that leads to the largest possible re-
sponse time forτi. For a set of fully preemptive sporadic
tasks scheduled by a fixed priority algorithm, it has been
proved [20] that the critical instant of taskτi occurs when
it is synchronously activated with all higher priority tasks,
and all jobs are released as soon as possible (according to
the minimum interarrival time). Given an interval of length
t starting in a critical instant, we define therequest bound
function RBF(τi, t) as the maximum cumulative execution
request that could be generated by jobs ofτi within the con-
sidered interval. In [19], it has been shown that

RBF(τi, t) =

⌈

t

Ti

⌉

Ci. (1)

The cumulative execution request of a taskτi and all
higher priority tasks over an interval of lengtht is therefore
bounded by:

Wi(t) =

i
∑

j=1

RBF(τj , t). (2)

The maximum response time in the fully preemptive case
is given by the smallest timet∗ for which Wi(t

∗) = t∗. A
necessary and sufficient schedulability test is derived in [19]
checking whether for every taskτi there exists a valuet ≤
Di such thatWi(t) ≤ t. The inequality does not need to be
evaluated at everyt ∈ (0, Di], but only at those values oft
at whichRBF has a discontinuity, i.e.,{t ∈ [Ci, Di] | t =
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k · Tj , k ∈ N and ∀Tj, j ≤ i}. Moreover, Bini and
Buttazzo further reduced the number of points to be checked
to the following set [4]:

T S(τi)
.
= Pi−1(Di) (3)

wherePi(t) is defined by the following recurrent expres-
sion:

{

P0(t) = {t}

Pi(t) = Pi−1

(⌊

t
Ti

⌋

Ti

)

∪ Pi−1(t).

The above setT S(τi) is referred to as thetesting set
for taskτi. The size ofT S(τi) is pseudo-polynomialin the
parameters of the task set [4]. In the remainder of this paper,
T S(τi) is used to compute the longest NP region for each
task.

In the presence of non-preemptive regions, an additional
blocking factorBi must be considered for each taskτi,
equal to the longest NP region belonging to lower priority
tasks. Therefore, the maximum blocking time thatτi may
experience is:

Bi = max
k>i

{qk}. (4)

The schedulability analysis in the presence of block-
ing factors has been extended by Bini and Buttazzo in [4],
where Theorem 4 can be restated as follows by considering
floating NP regions:

Theorem 1. A task setT with floating NP regions is
schedulable with a fixed priority algorithm if and only if
∀τi ∈ T there existst ∈ T S(τi) such that

Wi(t) + Bi ≤ t. (5)

Notice that condition (5) is necessary and sufficient for
guaranteeing the schedulability when considering floating
NP regions, while it becomes only sufficient when the re-
gions are fixed. The result of Theorem 1 can be used to
determine the maximum amount of blocking a taskτi can
tolerate without missing any of its deadlines. This amount
will be called theblocking toleranceof taskτi and will be
denoted withβi. Thus,

βi = max
t∈T S(τi)

{t − Wi(t)}. (6)

Computingβi with Equation (6) requires the evaluation
of all points in the testing setT S(τi), and has therefore
pseudo-polynomial complexity. Figure 1 illustrates a sam-
ple task set, showing howt − W3(t) varies as a function
of time. The maximum value of this function, that is the
blocking toleranceβ3, is also shown. Notice thatβ3 does
not correspond to the last point inT S(τ3) (i.e., the task
deadline), but it is achieved at an intermediate point.

t-W3(t)

τ1

τ2

τ3

-
3
∑

i=1

Ci

β3

D3
t0

Figure 1. An example for illustrating the block-
ing tolerance of a task.

4 Longest Non-Preemptive regions

Starting with a fully preemptive task setT , which is
schedulable with a fixed priority algorithm, we show how to
determine for each taskτi the largest possible NP regionQi

preserving system schedulability. Being taskτ1 the highest
priority task, it cannot be preempted, hence its longest NP
region can be arbitrarily large2 without making the system
unschedulable:

Q1 = ∞. (7)

The next theorem shows how to deriveQi for the other
tasks.

Theorem 2. The maximum possible length of any NP re-
gion of taskτi, 2 ≤ i ≤ n, which guarantees feasibility is
given by

Qi = min{Qi−1, βi−1}. (8)

Proof. If qi is the length of the longest NP region of taskτi,
the maximum blocking time that a taskτk can experience is
given by

Bk = max
i>k

{qi}.

Hence, ifβk is the blocking tolerance ofτk, we must have
that:

Bk ≤ βk

that is
max
i>k

{qi} ≤ βk

which can be written as
∧

i>k

(qi ≤ βk)

2Note that the actual NP region length is limited by the task worst-case
execution time, butQi is derived without considering such a constraint to
obtain a more compact formula.
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which is also equivalent to

qi ≤ min
k<i

{βk}

Thus, the maximum value forqi is

Qi = min
k<i

{βk}. (9)

Now, we notice that

min
k<i

{βk} = min{ min
k<i−1

{βk}, βi−1}

and since
Qi−1 = min

k<i−1
{βk}

we have that
Qi = min{Qi−1, βi−1}

which proves Equation (8).
To prove that theQi values returned by Equation (8) are

alsotight for each2 ≤ i ≤ n, consider a situation in which
τi can execute non-preemptively for(Qi + ǫ), whereǫ is an
arbitrarily small value. Letτb be the task with the small-
est blocking tolerance among all tasks with higher priority
thanτi. From Equation (9), it follows thatQi = βb. Now,
consider the particular arrival sequence in which all tasks
τ1, . . . , τb are released synchronously at timet, with all later
jobs released as soon as possible, andτi starts executing at
time

(

t − ǫ
2

)

in non-preemptive mode for(Qi + ǫ) time-
units. In this case,τb is blocked for

(

Qi + ǫ
2

)

=
(

βb + ǫ
2

)

,
which is larger than its blocking toleranceβb. Therefore,τb

will miss its deadline at time(t+Db), proving the tightness
of Equation (8).

There can be situations in which the computedQi is
greater than the worst-case execution timeCi. In these
cases, taskτi can execute in non-preemptive mode for the
whole execution time.

4.1 Simplified computation of blocking tolerances

As mentioned in Section 3, computing the blocking tol-
erances using Equation (6) has a pseudo-polynomial com-
plexity. A simpler but suboptimal solution can be derived by
skipping some points in the testing set, so deriving a lower
blocking tolerance. Considering that functiont − Wi(t)
tends to increase with time (as illustrated in Figure 1), we
can use the task deadline as a promising testing point for
estimating the blocking tolerance:

βD
i = max{0, Di − Wi(Di)}. (10)

For task systems having deadlines equal to periods and
scheduled with Rate Monotonic, another simplified method
can be found using the utilization test proposed by Liu and

Layland in [20]. According to this test, a taskτi is guaran-
teed to meet its deadlines if:

i
∑

k=1

Ck

Tk
+

Bi

Ti
≤ Ulub(i)

where
Ulub(i) = i(21/i − 1).

Hence,τi feasibility is guaranteed under RM if

Bi ≤ Ti

[

Ulub(i) −

i
∑

k=1

Uk

]

.

Thus, using the Liu and Layland feasibility test, the task
set is still guaranteed to be schedulable if each taskτi can
tolerate the following blocking time:

βLL
i = max

{

0, Ti

[

Ulub(i) −

i
∑

k=1

Uk

]

}

. (11)

In Section 6, the pessimism introduced by using such sim-
plified tolerances will be experimentally evaluated with re-
spect to the exactβi values.

5 Considerations and illustrative example

Once the maximum lengthQi of the NP region has been
computed off line for each task, such a result can be used in
several ways. Possible options are presented below.

• Exploit NP regions for simplifying the access to shared
resources (by encapsulating critical sections into NP
regions), so avoiding the implementation of com-
plex concurrency control protocols, like PCP [24] or
SRP [1];

• Partition each task into a set of non-preemptive chunks
of length no larger thanQi, by inserting a number of
preemption points in the source code in opportune po-
sitions, with the objective of reducing the number of
preemptions and making the estimation of worst-case
execution time more predictable with respect to the
fully preemptive case [13];

• Execute a task normally, and switch to non-preemptive
mode as soon as a higher priority task arrives. In this
way, the preemption can be delayed as much as pos-
sible (that is, byQi time-units), further reducing the
average number of context switches.

• Place a NP region at the end of the task code. In this
way, the response time of the task is reduced, since the
effect of higher priority jobs arriving at the end of the
task execution is postponed until the task completes its
execution.
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The selection of the strategy to adopt depends on the par-
ticular context and is left as a design choice. However, it is
worth noting that, when a NP region is located in the last
portion of the task code, the analysis can be refined, as done
in [6, 7]. In fact, the task response time can potentially be
reduced because the higher priority jobs that arrive whenτi

is executing non-preemptively the last chunk of code do not
cause interference, allowing for a larger blocking tolerance.

Nevertheless, the analysis turns out to be rather compli-
cated, as shown in [6]. In fact, the worst-case response time
of a taskτi is not necessarily given by the first job ofτi

when it is released synchronously with all other higher pri-
ority tasks, because the last NP region of the first job of
τi might delay the execution of other tasks in a way that
causes a larger interference on later jobs ofτi. We call this
phenomenon “Bril’s effect”, from the name of the author
who first identified it. Due to this effect, the computation of
a tight blocking tolerance for each task is not so straightfor-
ward.

5.1 Example

We now present a simple concrete example on a set of
four periodic tasks. Relative deadlines are assumed to be
equal to periods to compare the effectiveness of all the three
proposed methods. Task set parameters, as well as the re-
sults obtained from each method, are reported in Table 2.
Notice that all three methods use the result of Theorem 2
to compute the longest NP regionQi of each task, and the
only difference is in the way the blocking tolerance is com-
puted. In the following, theExact method refers to the
one using Equation (6),Approx D refers to the one us-
ing Equation (10), andApprox LL refers to the one using
Equation (11).

Task set Exact Approx D Approx LL
C T β Q βD QD βLL QLL

τ1 29 85 56 ∞ 56 ∞ 56 ∞
τ2 14 92 42 56 20 56 30 56
τ3 29 127 13 42 12 20 7 30
τ4 30 925 - 13 - 12 - 7

Table 2. Task set parameters and results.

For the highest priority taskτ1, all three methods pro-
duce the same values forQ andβ, hence theQ value for
τ2 is also the same. However, the blocking toleranceβ2 is
different under the three methods, In particular, notice that
theExact method produces the largest blocking tolerance
for τ2 (as expected), whereas theApprox LL method out-
performsApprox D. For taskτ3, the situation is different,
sinceApprox D outperformsApprox LL. For taskτ4, β4

is left empty sinceτ4 is the lowest priority task and cannot
be blocked by the other tasks in the system.

This simple example shows that theExact method out-
performs the other two at the cost of a pseudo-polynomial
complexity. Both simplified approaches haveO(n) com-

plexity, but no one dominates the other for all the tasks. In
the next section, the three methods are better evaluated un-
der different conditions through extensive simulations.

6 Simulations results

In this section, we present some simulation experiments
we performed on synthetic task sets to compare the effec-
tiveness of the proposed approaches in reducing the number
of preemptions and the length of NP regions. NP regions are
assumed to be floating inside the task code, and each task
switches to non-preemptive mode forQi units of time once
a higher priority task arrives.

We considered feasible task sets consisting ofn peri-
odic tasks with given total utilizationUtot. Tasks were syn-
chronously activated at timet = 0 and the total simulation
time was set to 5 million units of time. For each point in the
graph, the result was computed by taking the average over
1000 runs. In particular, the following steps were used to
generate a task set:

1. The UUniFast algorithm presented by Bini and But-
tazzo [5] was used to generate a set ofn tasks with to-
tal utilization equal toUtot and individual utilizations
Ui uniformly distributed in [0,1].

2. Each computation timeCi was generated as a ran-
dom integer uniformly distributed in a given interval
[Cmin, Cmax], and thenTi was computed asTi =
Ci/Ui. The reason for generatingTi from Ci is that
round-up errors have less influence, sinceTi is bigger
thanCi, and to avoid generating tasks withCi = 1,
which by nature cannot be preempted.

3. The relative deadlineDi was generated as a random
integer in the range [Ci +0.8 · (Ti−Ci), Ti], or it was
set toTi when testing theApprox LL method.

4. Each generated task set was verified to be feasible, and
unfeasible sets were discarded.

6.1 Experiment 1

In the first experiment, we compared theExact method
andApprox D against the fully preemptive case by moni-
toring the average number of preemptions in all runs (each
lasting 5 million units of time), as a function of the total uti-
lization and for different number of tasks. In particular, the
total utilization was varied from 0.1 to 0.9 with step 0.1, and
the number of tasks was set to 4, 8, 12, and 16, respectively.
In this case, each relative deadlineDi was generated as a
random integer in the range [Ci + 0.8 · (Ti −Ci), Ti]. The
results are shown in Figure 2.

As clear from the graphs, both algorithms are able to re-
duce the average number of preemptions significantly, with
respect to the fully preemptive case, and the advantage of
theExact method overApprox D can only be appreci-
ated for total utilizations higher than 0.7. Thus, for work-
loads smaller than 0.7, it is not worth paying a higher com-
plexity for reducing the number of preemptions. Viceversa,
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(b) Number of tasks = 8
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(c) Number of tasks = 12
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(d) Number of tasks = 16

Figure 2. Average number of preemptions when D < T .

for high workloads (Utot > 0.8) the higher complexity of
theExact method can be justified, since preemptions can
still be reduced up to 50% with respect toApprox D.

The reason for having a better performance at low uti-
lizations is that tasks have more slack, thus many of them
can execute completely non-preemptively (Qi ≥ Ci).
Moreover, the performance of both algorithms improves as
the number of tasks increases. This can be explained in a
similar way, since tasks with lowUi have more slack, re-
sulting in larger NP regions.

The average number of preemptions experienced by each
individual task under the different methods was also moni-
tored and it is reported in Figure 3 forUtot = 0.9 (in fact,
theExact method andApprox D have very close perfor-
mance at relatively low utilizations).

Notice that high priority tasks can achieve a larger im-
provement compared with lower priority tasks, as they can
reduce the number of preemptions to a larger degree. This
can be explained by noting that the{Q} sequence is non-

increasing, as can be easily seen from Equation (8). Finally,
both methods have similar performance for high priority
tasks, whereas theExact method can still reduce the num-
ber of preemptions up to 50% with respect toApprox D,
especially for low priority tasks.

6.2 Experiment 2

In a second experiment, task sets were generated with
relative deadlines equal to periods in order to compare the
performance of all the three approaches (that is, also includ-
ingApprox LL). In this case,n was set to 10 and the total
utilization Utot was varied from 0.1 to 0.9 (notice that all
task sets were verified to be feasible, even for utilizations
exceeding the Liu and Layland bound). Simulations with
different number of tasks were also performed, but the re-
sults are not shown here, because they exhibited a similar
performance.

To better illustrate the differences between each curve,
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Figure 4 reports the ratios of the average number of pre-
emptions with respect to the fully preemptive case. As
can be seen, theExact method achieves the best perfor-
mance, andApprox D outperformsApprox LL, but the
differences can only be appreciated for high total utiliza-
tions (Utot > 0.7).

Figure 5 reports the preemption ratios for each task,
whenUtot = 0.7. Notice that, sinceτ1 is never preempted
(even in the fully preemptive case), the ratio is not defined
for i = 1, so the curve starts fromi = 2. Experiments
with lower utilizations were also performed, but they are
not reported here, since all the three methods exhibited a
similar behavior for every task. Notice howApprox LL
deteriorates for low priority tasks (i > 7), compared with
the other two methods. This can be explained by observing
that the Liu and Layland utilization bound for 10 tasks is
only slightly higher than 0.7, thus not so much slack can be
exploited byApprox LL for the NP regions.

6.3 Experiment 3
In a third experiment, we monitored the length of the NP

regions computed by each method under different condi-
tions. The results are illustrated in Figure 6, which plots the
average ratioQi/Ci for each task and for different work-
loads. SinceQ1 is set to infinity (see Equation (7)), the
curves start fromi = 2. It is interesting to observe that,
for Utot ≤ 0.7 the average ratioQi/Ci produced by all
the three methods was greater than one, meaning that, in
the average, most tasks executed entirely non preemptively.
For Utot = 0.9, we can see that most of the higher prior-
ity tasks executed non preemptively (Qi/Ci ≥ 1), whereas
lower priority tasks were preempted to preserve schedula-
bility. However, note that theQi/Ci ratio resulting from
theExact method is always greater than 0.5, even for the
lowest priority task, meaning that schedulability can be pre-
served with a single preemption point (in the average).
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Figure 4. Average preemption ratios when n =
10 and D = T .
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Figure 3. Average number of preemptions for
each task when Utot = 0.9 and D < T .
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Figure 5. Average preemption ratios for each
task when D = T and Utot = 0.7.

6.4 Experiment 4

As a final test, we monitored the average number of pre-
emptions for each task instance and for different workloads.
Results are reported in Figure 7. As expected, the number of
preemptions experienced by a job gradually increases by re-
ducing its priority, and the difference among the three meth-
ods is not significant forUtot ≤ 0.7.

It’s worth noting that, when the task set utilization ex-
ceeds the Liu and Layland bound,Approx LL starts dete-
riorating for lower priority tasks, especially forτ9 andτ10,
whose behavior tends to be similar to the one of the fully
preemptive case.

For higher utilizations (Utot = 0.9), we note that both
the Exact method andApprox D have similar perfor-
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Figure 6. Average value of Q over C when D = T .
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Figure 7. Average number of preemptions for each task instan ce when D = T .

mance for high priority tasks, whereas, for lower priority
tasks, theExact method can still achieve more than 50
percent improvement compared toApprox D.

7 Conclusions

In this paper, we considered the problem of limiting the
preemptions under fixed priority scheduling, and proposed
three methods for computing the longest non-preemptive re-
gion within each task that preserves the schedulability of the
task set (with respect to the fully preemptive case). The first
method, based on exact feasibility analysis, has a pseudo-
polynomial complexity and is able to find the maximum
possible NP region for each task that preserves schedula-
bility. The other two methods are less precise, since they
use two different sufficient feasibility tests to decrease the
complexity of the computation. Notice, however, that for

static task sets with fixed number of tasks, the longest NP
regions can be computed off line, so the higher complexity
of the exact method is not payed during runtime.

The contribution of this paper is two-fold. First, we as-
sumed a limited preemption model that integrates the bene-
fit of both non-preemptive and fully-preemptive scheduling
to increase predictability without losing schedulability. Sec-
ond, we proposed three different methods for computing the
longest NP region of each task and performed a set of ex-
periments to evaluate the proposed approaches. Simulation
results showed that the number of preemptions can be sig-
nificantly reduced without losing the task set schedulability.

As a future work, we plan to apply the limited preemp-
tion model to aperiodic servers and exploit the longest non-
preemptive region for providing a better estimate of pre-
emption costs due to cache misses.
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