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Abstract—Power dissipation has constrained the perfor-
mance boosting of modern computer systems in the past
decade. Dynamic power management has been widely applied
to change the system (or device) state dynamically to reduce
the power consumption. This paper explores how to effectively
reduce the energy consumption to handle event streams with
hard real-time guarantees. We adopt Real-Time Calculus to
describe the event arrival and resource service by arrival curves
and service curves in the interval domain, respectively. We
develop online algorithms to adaptively control the power mode
of the device, postponing the processing of arrival events as
late as possible. Profited from the worst-case interval-based
abstraction, our algorithms can on one hand tackle arbitrary
event arrivals (even with burstiness) and on the other hand
guarantee hard real-time requirements in terms of both timing
and backlog constraints. We also present simulation results to
demonstrate the effectiveness of our algorithms.

Keywords: Power Management, Real-Time Event
Streams, Real-Time Calculus, Real-Time Interface.

I. INTRODUCTION

Power dissipation has been an important design issue
in a wide range of computer systems in the past decade.
Power management with energy efficiency considerations is
not only useful for mobile devices for the improvement on
operating duration but also helpful for server systems for
the reduction of power bills. Dynamic power consumption
due to switching activities and static power consumption
due to the leakage current are two major sources of power
consumption of a CMOS circuit [12]. For micrometer-scale
semiconductor technology, the dynamic power dominates the
power consumption of a processor. However, for technology
in the deep sub-micron (DSM) domain, the leakage power
consumption is comparable to or even more than the dy-
namic power dissipation.

This paper explores how to apply dynamic power man-
agement (DPM) to reduce the energy consumption while
satisfying the real-time constraints. We consider devices
with active, standby, and sleep modes with different power
consumptions, in which a controller decides when to change
the power modes of devices. Intuitively, the device can be
switched to the sleep mode to reduce the power consumption
when it is idle. This switching operation, however, has two
concerns. On one hand, the sleep period should be long

enough to recuperate the mode-switch overhead. On the
other hand, to cope with the burstiness of event arrivals, the
reserved time for serving the burst events must be sufficient
to prevent deadline violation of events and overflow of the
system backlog when activating the device again later on.

To resolve these two concerns, we propose online al-
gorithms that are applicable for the controller. We apply
Real-Time Calculus [20] to predict future event arrival and
Real-Time Interface [21] for the schedulability analysis.
Specifically, we try to be optimistic to handle events only
when they really arrive. Our algorithms adaptively predict
the next moment for mode switch by considering both histor-
ical and future event arrivals, and procrastinate the buffered
and future events as late as possible without violating the
timing and backlog constraints for the given event streams.
To demonstrate the performance of the proposed approach,
several case studies are explored, in which the results reveal
the effectiveness of our approach.

The rest of this paper is organized as follows: In the next
section, we review the related work in the literature. Section
III provides system models. Section IV presents a set of new
routines which will be used later on. Section V presents our
proposed algorithms for one event stream, while Section VI
copes with multiple event streams. Simulations results are
presented in Section VII. Section VIII concludes this paper.

II. RELATED WORK

Dynamic power management (DPM) can be applied to
control the change of system mode to consume less leakage
power, e.g., to a sleep mode. For systems with the sleep
mode, Baptiste [2] proposes an algorithm based on dynamic
programming to control when to turn on/off the system for
aperiodic real-time events with the same execution time. For
multiple low-power modes, Augustine et al. [1] determine
the mode that the processor should enter for aperiodic real-
time events and propose a competitive algorithm for online
use. Swaminathan et al. [18, 19] explore dynamic power
management of real-time events in controlling shutting down
and waking up system devices for energy efficiency. To
aggregate the idle time for energy reduction, Shrivastava
et al. [17] propose a framework for code transformations.
Leakage-aware scheduling has also been recently explored
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on dynamic voltage scaling (DVS) platforms, such as [3,
4, 11, 12, 13]. The basic idea behind the above results is
to execute at some speed (mostly at the critical speed) and
control the procrastination of the real-time events as long as
possible so that the idle interval is long enough to reduce
the energy consumption.

Most of the above approaches require either precise infor-
mation of event arrivals, such as systems with periodic real-
time events [3, 4, 11, 12, 13] or aperiodic real-time events
with known arrival time [1, 2, 10]. However, in practice,
the precise information of event arrival time might not be
known in advance since the arrival time depends on many
factors. When the precise information of event arrivals is
unknown, to our best knowledge, the only known approach
is to apply the online algorithms proposed by Irani et al.
[10] and Augustine et al. [1] to control when to turn on
the system. However, since the online algorithms in [1, 10]
greedily stay in the sleep mode as long as possible without
referring to incoming events in the near future, the resulting
schedule might cause an event to miss its deadline.

To model such irregular events, Real-Time Calculus, ex-
tended from Network Calculus [7], was proposed by Thiele
et al. [20, 25] to characterize events with arrival curves. The
arrival curve of an event stream describes the upper and
lower bounds of the number of events arriving to the system
for a specified interval. Therefore, schedulability analysis
can be done based on the arrival curves of event streams.
In [15], Maxiaguine et al. apply Real-Time Calculus within
the DVS context and compute a safe frequency at periodical
intervals with predefined length to prevent buffer overflow
of a system. Chen et al. [5] explore the schedulability for
on-line DVS scheduling algorithms when the event arrivals
are constrained by a given upper arrival curve. In contrast
to these closest approaches, this paper focuses on DPM.
In a recent work [9], we study periodic DPM, finding the
best on-off period with respect to energy saving by offline
algorithms. In this paper, we propose online algorithms. The
adaptation points are dynamic and adaptively vary according
to the actual arrivals of events. Furthermore, we provide
solution on multiple event-stream scenarios where event
streams with different periods can be tackled with earliest-
deadline-first scheduling.

III. SYSTEM MODELS AND PROBLEM DEFINITION

Fig. 1 illustrates a block diagram of our system where a
device is managed by a controller. The controller could be
the operating system where the device is an I/O peripheral
device, for instance. Events of different streams, e.g. Si,
arrives to the controller and must be served on the device.
We assume that the controller has a global backlog to buffer
events before they are processed. When an event is buffered,
it is put to the backlog until it is fetched to the device
for processing. The backlog size is Q, hence buffering
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Figure 1: The abstract model of our DPM problem.
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Figure 2: Example for the state transit of a device, where
the tuple one each transit is the timing overhead and energy
overhead.

more than Q events incurs a backlog overflow causing a
controller failure. To schedule events of different streams in
the backlog, we consider the earliest-deadline-first (EDF)
[14], scheduling by which the device executes the event
with the earliest deadline among all events in the backlog.
Parameters α, D, and βG will be introduced next.

A. Power Model

The device has three power consumption modes, including
active, standby, and sleep modes. The power consumption
in the sleep mode is Pσ . To serve an event, the device
must be in the active mode with power consumption Pa,
in which Pa > Pσ . Once there is no event to serve, the
device can enter the sleep mode. However, switching from
the sleep mode to the active mode takes time, denoted by
tsw,on, and requires additional energy overhead, denoted
by Esw,on. To prevent the device from frequent mode
switches, the device can also stay in the standby mode. The
power consumption Ps in the standby mode, by definition,
is less than Pa and is more than Pσ . In this paper, we
assume that switching between the standby mode and the
active mode has negligible overhead, compared to the other
switches, which is the same as the assumption in [26, 27].
Moreover, switching from the active (also standby) mode to
the sleep mode takes time, denoted by tsw,sleep, and requires
additional energy overhead, denoted by Esw,sleep. Fig. 2
illustrates the state diagram of these three modes.

B. Event Model

This paper focuses on events that arrive to the controller
irregularly. To model such events, we adopt the arrival curves
based on Real-Time Calculus [20]. Specifically, a trace of
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ᾱu(Δ)
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Figure 3: Examples for arrival curves for: (a) periodic events
with period p, (b) events with minimal inter-arrival distance
p and maximal inter-arrival distance p′ = 1.5p, and (c)
events with period p, jitter j = p, and minimal inter-arrival
distance d = 0.4p.

an event stream can conveniently be described by means of
a cumulative function R(t), defined as the number of events
seen on the event stream in the time interval [0, t). While any
R always describes one concrete trace of an event stream,
a tuple ᾱ(Δ) = [ᾱu(Δ), ᾱl(Δ)] of upper and lower arrival
curves provides an abstract event stream model, providing
bounds on admissible traces of an event stream. The upper
arrival curve ᾱu(Δ) provides an upper bound on the number
of events that are seen in any time interval of length Δ, while
the lower arrival curve ᾱl(Δ) analogously provides a lower
bound. Please refer to [20] for a detailed discussion.

The concept of arrival curves unifies many other common
timing models of event streams. For example, a periodic
event stream can be modeled by step functions ᾱu(Δ) =⌊

Δ
p

⌋
+ 1 and ᾱl(Δ) =

⌊
Δ
p

⌋
. For a sporadic event stream

with minimal inter arrival distance p and maximal inter
arrival distance p′, the upper and lower arrival curve is
ᾱu(Δ) =

⌊
Δ
p

⌋
+ 1, ᾱl(Δ) =

⌊
Δ
p′

⌋
, respectively. Moreover,

for an event stream with period p, jitter j, and minimal
inter arrival distance d, the upper arrival curve is ᾱu(Δ) =
min{

⌈
Δ+j

p

⌉
,
⌈

Δ
d

⌉}. Fig. 3 illustrates arrival curves for the
above cases. For details, please refer to [20].

Analogously to the cumulative function R(t), the concrete
availability of the device can be described by a cumulative
function C(t), that is defined as the number of available
resources, e.g., processor cycles or bus capacity, in the time
interval [0, t). Analogous to arrival curves that provide an
abstract event stream model, a tuple β(Δ) = [βu(Δ), βl(Δ)]
of upper and lower service curves then provides an abstract
resource model. The upper and lower service curve provides
an upper and lower bound on the available resources in any
time interval of length Δ.

Note that an arrival curve ᾱi(Δ) specifies the (upper-
bounded or lower-bounded) number of events of event
stream Si for every time interval Δ, while a service curve
β(Δ) specifies the (upper-bounded or lower-bounded) avail-
able amount of time for execution for every time interval Δ.
Therefore, the arrival curve ᾱu

i (Δ) (respectively, ᾱl
i(Δ)) has

to be transformed to the arrival curve αu
i (Δ) (respectively,

αl
i(Δ)) to indicate the amount of computation time required

for the arrived events in intervals. Suppose that the execution
time of an event of event stream Si is wi. Then, the
transformation can be done by αu

i = wiᾱ
u
i , αl

i = wiᾱ
l
i and

back by ᾱu
i = αu/wi, ᾱl

i = αl/wi. In the case of variable
workloads, workload curves [16] can be applied.

Moreover, to satisfy the real-time constraint of event
stream Si, the response time of an event in event stream
Si must be no larger than its specified relative deadline Di,
where the response time of an event is its finishing time
minus its arrival time. The arrival time of an event ei,j of
event stream Si is characterized by its arrival time Ai,j . The
execution time of ei,j is wi and its absolute deadline Di,j

is Ai,j + Di.

C. Historical Information

As dynamic power management is a dynamic process
depending on event arrival, scheduling decisions are made
on-line. To predict the number of events in the near future,
we consider a past history of event arrivals. For example,
if we have already observed burstiness recently, one can
predict that in the near future only sparse events will
arrive due to the constraint on the arrival curve. To have
a more precise prediction, it would be good to have an
infinitely long history, but this is not practical for system
implementation. In this paper, we assume that we have only
a fixed-size history window, in which the history length is
at most Δh. That is, at time instant t′, we can only refer to
the events arrived in [t′ −Δh, t′].

We use Hi(Δ, t′) to denote the accumulated number of
events of stream Si arriving in time interval [t′ − Δ, t′).
Since the history window is Δh, by definition, Hi(Δ, t′)
is Hi(Δh, t′) for any Δ > Δh. Therefore, if Ri(t) is the
accumulated number of events of stream Si arriving in [0, t),
we have:

Hi(Δ, t′) =

(
Ri(t′) − Ri(t −Δ), if Δ ≤ Δh;

Ri(t
′) − Ri(t

′ − Δh), otherwise.
(1)

D. Problem Definition and Approach Overview

This paper explores how to effectively minimize the
energy consumption to serve a set S of event streams under
real-time and backlog constraints. Clearly a device should
not be turned to sleep if there are events in the backlog for
execution. To decide whether the device should be turned
to the sleep mode, we need to know whether the sleeping
period is long enough. If the sleeping period is too short, the
mode switching overhead Esw = Esw,on + Esw,sleep might
be more than the energy saved by turning the device to the
sleep mode. Therefore, we know that there is a break-even
time Esw

Ps−Pδ
such that if the sleeping time is shorter than

this break-even time, turning the device to the sleep mode
is not worthwhile. Moreover, the timing overhead for mode
switches must be considered. Therefore, for brevity, the
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Figure 4: The control flow of our approach.

following break-even time TBET will be used for deciding
whether we should switch to the sleep mode:

TBET = max

j
tsw,on + tsw,sleep ,

Esw

Ps − Pδ

ff
.

In general, we have to decide when to turn a device to
the active mode to serve events from a sleep mode, and
when to turn it back to the sleep mode for reducing energy
consumption. Therefore, we have to deal with deactivation
scheduling decisions and activation scheduling decisions to
switch safely and effectively. The overview of our approach
is illustrated in Figure 4.

For deactivation scheduling decisions, when the device is
in the active mode and there is no event in the backlog, we
have to decide whether the device has to change to the sleep
mode instantly or it should keep in the on mode for a while
for serving the next incoming event (We assume the device
switches between active and standby modes automatically).
For brevity, for the rest of this paper, time instants for
deactivation scheduling decisions are denoted by t�.

On the other hand, for activation scheduling decisions,
when the device is in sleep mode and there is an event
arriving or the sleep interval set by the controller expires,
we have to decide whether the device has to change to active
mode instantly to serve events, or it should remain in sleep
mode for a while to aggregate more events for processing, so
preventing unnecessary mode switches. For brevity, for the
rest of this paper, time instants for deactivation scheduling
decisions are denoted by t⊥.

We say that the scheduling decision is feasible if it is
always possible to meet the timing and backlog constraints
for any event traces constrained by the arrival curve. An al-
gorithm is feasible if it always generates feasible scheduling
decisions.

IV. ANALYSIS BASED ON REAL-TIME CALCULUS AND

REAL-TIME INTERFACE

In this section, we review the known results of Real-Time
Calculus and Real-Time Interface, based on which we derive
new results of bounded delay backlog constraint and future
prediction with history information.

A. Bounded-Delay Function

For event streams described by Real-Time Calculus, one
can apply Real-Time Interface [21] to verify whether a
system can provide guarantee output service βG(Δ). Corre-
spondingly, to guarantee that all events in an event stream,

αu
1 (Δ)

βA(Δ) = αu
1 (Δ −D1)

bdf(Δ, τ∗)τ∗

Q · w1

δ∗
D1

Δ

Figure 5: An example for the bounded delay function for
event stream S1, in which only part of the upper arrival
curve αu

1 (Δ) is presented for simplicity.

e.g. Si, can be processed while respecting all timing con-
straints, the event stream demands a service bound βA(Δ).
To satisfy the required relative deadline Di, βA(Δ) can
be computed as βA(Δ) = αu

i (Δ − Di). To check the
schedulability of event stream Si in the system, the following
predicate has to be true:

βG(Δ) ≥ βA(Δ), ∀Δ ≥ 0. (2)

To guarantee feasibility, we could apply the bounded delay
function for constructing the βG. A bounded-delay function
bdf(Δ, τ) is constrained by suffering at most τ unit of time
without service providing, in which

bdf(Δ, τ) = max
˘
0, (Δ − τ)

¯
, for Δ ≥ 0. (3)

Moreover, the longest delay τ∗ for providing service guar-
antee βA(Δ) is as follows:

τ∗ = max
˘
τ : bdf(Δ, τ) ≥ βA(Δ), ∀Δ ≥ 0

¯
. (4)

If the backlog has a finite length Q, directly applying
(4) will cause the backlog overflow in the case that Q ·
wi < supΔ{αu

i (Δ) − bdf(Δ, τ∗)}. Therefore, to prevent
the backlog overflow, we have to reduce the longest bounded
delay τ∗ by δ∗ which is defined as

δ∗ = max
˘
0, min{δ : αu

i (Δ) − bdf(Δ, τ∗ − δ) ≤ Q · wi,∀Δ}¯
. (5)

Based on the above analysis, we state the following
lemma.

Lemma 1: Given τ∗ and δ∗ from (4) and (5) with τ∗ −
δ∗ ≥ TBET , at any moment t� for making deactivation
scheduling decisions when the device is in the active mode
without any event in the backlog, it is feasible to deactivate
the device from time t� to t�+(τ∗−δ∗), such that no event
of the stream S1 will miss its deadline.

Proof: Based on the known results from Real-Time
Interface [21], we sketch the proof here. The service demand
βA of Si can be computed as αu

i (Δ−Di) and bdf (Δ, τ∗)
can be seen as the minimal βG that fulfills (2). To satisfy
the backlog constraint, τ∗−δ∗ can be seen as a right shift of
the guarantee output service βG, which provides additional
amount of service to prevent the backlog overflow.

Proceedings of the 30th IEEE Real-Time Systems Symposium (RTSS 2009), Washington D.C., December 2-4, 2009.



Figure 5 depicts an example for the above analysis for the
case of a single stream S1. We For multiple event streams,
we present results for EDF scheduling in Section VI. Note
that to compensate the time overhead for a mode-switch,
the device has to be activated tsw,on earlier. For brevity, we
omit this by intention for the rest of the paper.

B. Future Prediction with Historical Information

As shown in Section III, historical information can help
improving the prediction of future event arrival. To know
how events will arrive in the future, Hi(Δ, t′) defined in (1)
can be applied to αi(Δ) to calculate the maximal number
of events of event stream Si that will arrive in the future.
Specifically, suppose that at time t′, the maximal number of
events of stream Si that will arrive in time interval [t′, t′ +
Δ), denoted as ᾱu

i (Δ, t′), can be bounded by

ᾱu
i (Δ, t′) ≤ inf

λ≥0

˘
ᾱu

i (Δ + λ) − Hi(λ, t′)
¯
. (6)

Lemma 2: Equation (6) holds for any time instant t′.
Proof: This comes directly from Equation (6).

The amount of computation time αu
i (Δ, t′) requested by

stream Si based on the historical information is thereby

αu
i (Δ, t′) ≤ wi · ᾱu

i (Δ, t′). (7)

V. ADAPTIVE ALGORITHM FOR ONE EVENT STREAM

In this section, we present our holistic approach to mini-
mize energy consumption. The assumption of our approach
is that the scheduling decision is always feasible when a
device receives full service, i.e., when the device never
turns to sleep mode. For simplicity, we consider only one
event stream, says S1. We first present how to deal with
deactivation of scheduling decisions and then propose two
methods for the activation of scheduling decisions. The
extension to multiple event streams under EDF scheduling
is presented in the next section.

A. Deactivation Scheduling Decisions

The History-Aware Deactivation (HAD) algorithm ana-
lyzes whether the device should be turned to the sleep mode
from an active mode. The principle is to deactivate the device
only when energy saving is possible. As we have discussed
in Section III-D, deactivate scheduling decisions are only
needed while the device is in the active or standby mode
and there is no new arrival of events, as well as no event in
the backlog. Suppose that t� is such a time instant.

Turning the device instantly at time t� to the sleep mode
does not always help. The reason is that we pay overheads
for mode switching. In the case there are events arriving
in the very near future, the device has to be activated
again to process these events. If the energy saving obtained
from the short sleep period cannot counteract this switching

overhead, the mode switching only introduces additional
energy consumption. Therefore, the first step for the HAD
algorithm is to identify whether there will be definitely an
event coming in the near future by speculating the upper
arrival curve, as well as the history. The earliest time tε
after time t� for the next event arrival can be calculated by
the following equation:

tε ← min
t>t�

t such that ᾱu
1 (t− t�, t�) > 0, (8)

where the derivation of ᾱu
1 (tε − t�, t�) is defined in (6).

Equation (8) can be implemented by applying the inverse
function of arrival curve αu

1 in Real-Time Calculus Tool-
box [24].

If tε − t� is larger than the break-even time TBET , we
could greedily turn the device to the dormant mode. Other-
wise, we have to be a little bit careful, because switching
the device on when the first future event arrives has counter
effect. In this case, energy saving can only be obtained
by procrastinating the process of these future events after
t� + TBET . To guarantee that the procrastination will not
cause any deadline missing, we apply the bounded-delay
function in Section IV to calculate the maximally postponed
period. Specifically, we first calculate the worst-case arrival
curve α̂u

1 (Δ, tε) after time tε by applying (7). Therefore, by
applying the bounded delay function similarly in (4) and (5),
we know that

τ� = max
˘
τ : bdf(Δ, τ) ≥ αu

1 (Δ − D1, tε)
¯
, (9)

δ� = max
˘
0, min{δ : αu

1 (Δ, tε) − bdf(Δ, τ� − δ) ≤ Q · w1, ∀Δ}¯
.

(10)
Based on this construction, turning the device to the sleep

mode at time t� and activating it again at time tε +τ�−δ�

will not cause constraint violations. If τ�− δ� + tε− t� is
larger than TBET , we turn the device to the sleep mode at
time t�; otherwise, we do not turn the device to the sleep
mode. The above analysis leads to following theorem:

Theorem 1: The HAD algorithm guarantee a feasible
scheduling upon a deactivation decision at any time t� for
one event-stream system, if the device provides full service
from time tε + τ� − δ� on.

Proof: We prove this theorem by contradiction. At any
time instance t� at which the HAD algorithm decides to
deactivate the device, the latest activation time to prevent
constraint violations is tε + τ� − δ�. Suppose at a later
time t� + λ, the deadline of an event which comes within
the interval [t�, t� + λ) is missed. We denote the number
of events arrived within this interval as Φ. Because of the
deadline missing, the service demand Φ·w1 in this interval is
larger than our constructed service supply bdf (λ, τ� − δ�)
which actually bounds the service demand of the maximum
number of events that can arrival, i.e., w1 · ᾱu

1 (λ, t�). The
inequality Φ > ᾱu

1 (λ, t�) contradicts to the definition in (6)
and Lemma 2. Therefore, the theorem holds. For the case
of backlog constraint, similar proof can be constructed.
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Algorithm 1 HAD deactivation

Input: α1(), H1(), Δh, Q, TBET , and t�

Output: decision to deactivate the device
1: find tε by (8);
2: if tε − t� > TBET then
3: return true;
4: else
5: compute τ� and δ� by (9) and (10);
6: if τ� − δ� + tε − t� > TBET then
7: return true;
8: end if
9: end if

10: return false;

As a result, the HAD algorithm reduces the number of
mode switches to save energy consumption. The pseudo
code of the HAD algorithm is depicted in Algorithm 1.

B. History-Aware Activation

When to activate a device needs more intelligence. The
idea is to aggregate as many arrived events as possible
for each activation not only to reduce the standby period,
but also to minimize the number of mode switches. In
this paper, we develop two algorithms, called worst-case-
greedy (WCG) algorithm and event-driven-greedy (EDG)
algorithm, for deciding when to activate the device to the
active mode for event processing. The WCG algorithm
decides the earliest time when the device should change
to the active mode for event processing, such that all the
events will meet their timing and backlog constraints. The
EDG algorithm computes the latest time that the device must
be activated to satisfy the timing constraint. The difference
between these two algorithms is the following:

• Algorithm WCG conservatively assumes worst-case
event arrivals and decides the earliest time to activate
the device. If the worst case does not occur, the
predicted time is too early, hence the device is kept
in the sleep mode for a longer period, and the next
activation moment is recomputed.

• Algorithm EDG optimistically considers the least event
arrivals and decides the latest time to activate the
device. Upon the arrival of each new event before the
predicted time, the algorithm reevaluates the scheduling
condition and decides whether the predicted activation
time needs to shift earlier.

Once the controller decides to keep the device in the sleep
mode, it has to setup an alarm to wake up the device.

Therefore, there are two cases to be considered for ac-
tivation. The activation scheduling decision must be done
either at time instants of event arrivals or alarm arrivals. We
identify these two cases by event arrival and alarm arrival
at time instant t⊥, in which the device is in the sleep mode.

For brevity, we denote the set of unfinished events in the
backlog at time t⊥ as E1(t⊥), which is maintained by the
controller. Suppose that the events in E1(t⊥) are indexed
as e1,1, e1,2, . . . , e1,|E(t⊥)| from the earliest deadline to the
latest deadline, where |E1(t⊥)| is the number of events.
Note that although the absolute deadline D1, j for every
event in the backlog does not change, the related deadline
is not D1 anymore. It varies according to related distance
from t⊥. To accurate model the service demand for those
events in the backlog, we define backlog demand curve for
time t⊥ as

B1(Δ, t⊥) =

(
j − 1, D1, j − t⊥ < Δ ≤ D1, j+1 − t⊥;

|E1(t⊥)|, Δ > D1, |E1(t⊥)| − t⊥ (11)

where D1, 0 is defined as t⊥.

1) Worst-Case-Greedy (WCG) Activation: When an event
comes at time t⊥, we have two cases depending on the
backlog status. If there already exist some events in the
backlog, it is not necessary to switch the device to the active
mode at t⊥. This is because keeping the device in the sleep
mode does not violate the timing and backlog constraints
before the previously computed alarm arrives. In the case of
no event in the backlog, we have to setup the first alarm to
decide the earliest time we have to activate the device by:

βA(Δ) = αu
1 (Δ − D1, t⊥), (12)

τ⊥ = max
˘
τ : bdf(Δ, τ) ≥ βA(Δ)

¯
, (13)

δ⊥ = max
˘
0, min{δ : αu

1 (Δ, t⊥) − bdf(Δ, τ⊥ − δ) ≤ Q · w1, ∀Δ}¯
.

(14)

Therefore, the WCG algorithm simply sets the wakeup alarm
at time τ⊥−δ⊥ if τ⊥−δ⊥ > 0; otherwise, we have to wake
up the device right at time t⊥.

Then, the next question is whether the controller has
to wakeup the device at time t⊥ when the wakeup alarm
arrives. Indeed, if the worst-case burst arrives, we have to
activate the device immediately; otherwise, the device can
still be kept in the sleep mode. We again apply the bounded-
delay function to evaluate how long we can still keep the
device in the sleep mode as follows:

βA(Δ) = αu
1 (Δ −D1, t⊥) + w1 · B1(Δ, t⊥), (15)

τ⊥ = max
˘
τ : bdf(Δ, τ) ≥ βA(Δ)

¯
, (16)

δ⊥ = max
n

0, min{δ : αu
1 (Δ, t⊥) − bdf(Δ, τ⊥ − δ)

≤ `
Q − |E(t⊥)|´ · w1, ∀Δ}

o
. (17)

The constructed βA in (12) and (15) bounds the future ar-
rival events and the derived δ from (14) and (17) guarantees
the backlog constraint, which lead to following theorem:

Theorem 2: The WCG algorithm guarantees a feasible
scheduling upon an activation decision at any wakeup alarm
t⊥ for one event-stream system, if the device provides full
service from time t⊥ on.

We omit the proof due to the similarity to Theorem 1.
The WCG algorithm is effective in the sense that it greedily

Proceedings of the 30th IEEE Real-Time Systems Symposium (RTSS 2009), Washington D.C., December 2-4, 2009.



Algorithm 2 WCG activation

procedure event arrival at time t⊥:
1: if the arrival event is the only one in the backlog then
2: compute τ⊥ and δ⊥ by (13) and (14);
3: if τ⊥ − δ⊥ > 0 then
4: set the wakeup alarm at time t⊥ + τ⊥ − δ⊥;
5: else
6: wakeup the device;
7: end if
8: end if

procedure alarm arrival at time t⊥:
1: compute τ⊥ and δ⊥ by (16) and (17);
2: if τ⊥ − δ⊥ > 0 then
3: set the wakeup alarm at time t⊥ + τ⊥ − δ⊥;
4: else
5: wakeup the device;
6: end if

extends the sleep period as long as the device is schedulable.
It is efficient as well when the event arrival pattern is close
to the worst case scenario, where the reevaluation of the
wakeup alarm does not take place often. The number of
reevaluation is bounded by αu

1 (D1 − w1).
2) Event-Driven-Greedy (EDG) Activation: In contrast to

the WCG algorithm which predicts the earliest activation
time, the EDG algorithm predicts the latest one. The idea
of the EDG algorithm is to compute the latest moment by
assuming the least case event arrival scenario in the future.
This decision is refined upon the event arrivals, unlike the
WCG algorithm where reevaluation takes place when each
wakeup alarm arrives.

On the arrival of an event e1, j at time t⊥, we choose the
latest possible moment t′ = t⊥ +D1−w1 for processing as
the reference point to compute the alarm time for e1, j . At
this time t′, the service demand includes a) the possible burst
from t′ on, which is bounded by ᾱu

1 (Δ, t′), b) the backlog
until t⊥, and c) the estimated least event arrival between
[t⊥, t′), constrained by ᾱl

1(Δ).
To compute a precise ᾱu

1 (Δ, t′), we first revise the
historical information H1(Δ, t′) by advancing the time from
t⊥ to t′ such that least events come after t⊥. We denote such
a trace by H ′(Δ, t′), in which

H′
1(Δ, t′) =

8><>:
ᾱl

1(ε) − ᾱl
1(ε − Δ), if Δ < ε,

H1(Δ, t⊥) + ᾱl
1(ε), if ε < Δ < Δh − ε,

H1(Δh − ε, t⊥) + ᾱl
1(ε), otherwise,

(18)

where ε = t′ − t⊥ for abbreviation. The H ′
1 can be seen

as the concatenation of the historical information H1 until
t⊥ and the time inversion of ᾱl

1 in the interval [0, ε). The
worst-case arrival curve after time t′ with the new historical
information H ′

1 is

ᾱu
i (Δ, t′) ≤ inf

λ≥0

˘
ᾱu

i (Δ + λ) −H′
i(λ, t′)

¯
. (19)

Algorithm 3 EDG activation

procedure event arrival at time t⊥:
1: calculate τ⊥ and δ⊥ at time t′ by (18–23);
2: if τ⊥ − δ⊥ > 0 then
3: new wakeup alarm t⊥new ← t′;
4: else
5: new wakeup alarm t⊥new ← t′ − (τ⊥ − δ⊥);
6: end if
7: new wakeup alarm t⊥new ← min{t⊥new, t⊥old}

procedure alarm arrival at time t⊥:
1: wakeup the device;

Similarly, αu
1 (Δ, t′) = w1 · ᾱu

1 (Δ, t′).
The corresponding backlog demand curve that encapsu-

lates the estimated least arrival events within the interval
[t⊥, t′) is

B′
1(Δ, t′) =

(
j − 1, D1, j − t′ < Δ ≤ D1, j+1 − t′;
E, Δ > D1, E − t′,

(20)

where E = |E1(t⊥)| + ᾱl
1(ε), ε = t′ − t⊥, and D1, 0 is

defined as t⊥.

With the refined historical information and backlog de-
mand, we can again apply the bounded-delay function to
find the next wakeup alarm for event e1, j :

βA(Δ) = αu
1 (Δ − D1, t′) + w1 · B′

1(Δ, t′), (21)

τ⊥ = max
˘
τ : bdf(Δ, τ) ≥ βA(Δ)

¯
, (22)

δ⊥ = max
n
0, min{δ : αu

1 (Δ, t′) − bdf(Δ, τ⊥ − δ)

≤ `
Q − |E(t⊥)| − ᾱl

1(ε)
´ · w1, ∀Δ}

o
. (23)

If τ⊥ − δ⊥ > 0, the wakeup alarm remain unchanged.
Otherwise, the new wakeup alarm is set to the minimum of
the old one and t′+τ⊥−δ⊥. Note that at the first execution
of the EDG algorithm, the wakeup alarm can be simply set to
t⊥+D1−w1. In this way, the new wakeup alarm computed
by (18)–(23) bounds all the worst cases, which leads to the
following theorem:

Theorem 3: The EDG algorithm guarantees a feasible
scheduling upon an activation decision at any wakeup alarm
t⊥ for one event-stream system, if the device provides full
service from time t⊥ on.

We omit the proof here due to the similarity to Theorem 1.
The EDG algorithm is effective in the sense that it greedily
refines the latest alarm arrival time and preserves the longest
possible sleep period. The EDG algorithm is efficient as well
when the worst-case event arrival seldom occurs, because
the number of reevaluation is the number of events actually
arrived. The pseudo code of the EDG algorithm is depicted
in Algorithm 3.
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VI. MULTIPLE EVENT STREAMS

This section presents how to extend our algorithms to
cope with multiple event streams. We focus on EDF schedul-
ing [14] in this work. Note the refined history curve (18), the
backlog curve (11) and its refinement (20) can be applied
to individual streams. In the rest of this section, we denote
them as H ′

i, Bi, and B′
i for event stream Si, respectively.

Suppose that there are N event streams where N ≥ 2.
From [22], the total service demand for all N streams can
be bounded by the sum of their arrival curves:

βA ≥
NX

i=1

αu
i (Δ − Di). (24)

Based on this result, we refine our algorithms.

First we investigate the evaluation of the bounded delay τ .
For the HAD algorithm, because there is no backlog for each
evaluation, the related deadline for each event ei, j in every
stream Si remains Di. Therefore, (9) can directly apply the
total demand services from (24):

τ� = max
˘
τ : bdf(Δ, τ) ≥

NX
i=1

αu
i (Δ −Di, tε)

¯
(25)

The same refinement applies to (12) and (13) of the WCG
algorithm.

In the case of (15) and (16) of the WCG algorithm, the
backlogs of different streams needs to be considered. We
apply the backlog demands fro all streams thereof:

βA(Δ) =
NX

i=1

`
αi(Δ − Di, t⊥) + wi · Bi(Δ, t⊥)

´
. (26)

The same applies to (21) and (22) of the EDG algorithm.

Now we consider the backlog constraint δ. Besides the
sum of all arrival curves, the constraint in (10) additionally
needs to consider events with the longest execution time,
i.e., maxi∈N{wi}. Therefore, it is revised as

δ� = max
n
0, min

˘
δ :

NX
i=1

αu
i (Δ) − bdf(Δ, τ� − δ)

≤ Q ·max
i∈N

{wi}, ∀Δ
¯o

. (27)

The same revision applies to (14) of the WCG algorithm.

The backlog constraint in (17) is more complex, because
the backlog is not empty and contains events from different
streams. The remaining capacity of the backlog is

max
i∈N

{wi} · Q −
|E(t⊥)|X

j=1

NX
i=1

xi,j · wi (28)

where xi,j = 1, ∀j for Stream Si, otherwise 0. Therefore,
it is revised as

δ⊥ = max
n

0, min{δ :
NX

i=1

αu
i (Δ, t⊥) − bdf(Δ, τ⊥ − δ)

≤ max
i∈N

{wi} · Q −
|E(t⊥)|X

j=1

NX
i=1

xi,j · wi}
o

. (29)

Table I: Event stream setting according to [8, 9, 23].
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

p (msec) 198 102 283 354 239 194 148 114 313 119
j (msec) 387 70 269 387 222 260 91 13 302 187
d (msec) 48 45 58 17 65 32 78 - 86 89
w (msec) 12 7 7 11 8 5 13 14 5 6

Table II: Power profiles for devices according to [6].
Device Name Pa (W) Ps (W) Pσ (W) tsw (S) Esw (mJ)

Realtec Ethenet 0.19 0.125 0.085 0.01 0.8
Maxstream 0.75 0.1 0.05 0.04 7.6

IBM Microdrive 1.3 0.5 0.1 0.012 9.6
SST Flash 0.125 0.05 0.001 0.001 0.098

The last revision is (23) of the EDG algorithm, where the
estimated future events of all streams need to be counted.
Therefore it is revised as

δ⊥ = max
n
0, min{δ :

NX
i=1

αu
i (Δ, t′) − bdf(Δ, τ⊥ − δ)

≤ max
i∈N

{wi} · Q −
|E(t⊥)|X

j=1

NX
i=1

xi,j · wi −
NX

i=1

αl
i(ε)}

o
. (30)

VII. PERFORMANCE EVALUATIONS

This section provides simulation results for the proposed
adaptive dynamic power management schemes. All the re-
sults are obtained from a simulation host with Intel 1.6 GHz
processor and 1 GB RAM. The simulator is implemented in
MATLAB and applies MPA and RTS tools from [24].

A. Simulation Setup

We take the event streams studied in [8, 9, 23] for our
case studies. Table I presents the parameters for generating
the arrival curves defined in Section III-B, where w is the
worst-case execution time of an event. The relative deadline
Di of an event stream Si is defined by a deadline factor
χ, i.e., Di = χ ∗ pi. To compare the impact of different
algorithms, we simulate traces with a 10sec time span. The
traces are generated by the RTS tools [24] and conformed
to the arrival curve specifications. The history window Δh

is 200msec and the backlog size Q is 5. In our simulations,
we adopt the power profiles for four different devices in [6],
as presented in Table II.

In this work, we evaluate two schemes, i.e., WCG-HAD
and EDG-HAD. For comparison, two other power manage-
ment schemes presented in [9], i.e., a periodic scheme (OPT)
and a naive event-driven scheme (ED), are depicted as well.
The OPT scheme repeatedly applies an on-off period with
fixed length which is optimally computed off-line. The ED
scheme turns on the device whenever an event arrives and
turns off when the device becomes idle.

We simulate different scenarios with one event stream and
multiple event streams. Due to space limitation, we only
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Figure 6: Average idle power consumption for stream S5 (a)
and S8 (b) with χ = 1.6.

report the results for considering (a) one stream and (b)
10 streams where all the 10 event streams in Table I are
scheduled with EDF scheduling. Since all the schemes have
the same energy consumption for event processing, we only
report the average idle power which is computed as the total
idle energy consumption divided by the time span of the
simulated trace.

B. Simulation Results

Firstly, we show the effectiveness of the proposed WCG-
HAD and EDG-HAD schemes comparing to the OPT and
the ED schemes. Fig. 6 shows the average idle power for
streams S5 and S8 in Table I, subjected to the four devices
specified in Table II. As shown in the figure, both our
proposed schemes outperform the offline-computed periodic
OPT scheme as well as the pure event-driven ED scheme
for all cases. On average, 35% of the average idle power is
saved with respect to the OPT scheme.

We also outline how the average idle power changes when
the relative deadlines of events vary. Fig. 7 and Fig. 8
compare the four schemes by varying the deadline factor χ.
In Fig. 7, a system with one event stream (S1 in Table I) is
simulated. Fig. 8 considers scenarios with all the 10 event
streams in Table I with EDF scheduling. As these two figures
shown, our online schemes again outperform the other two.
Another observation is that the OPT scheme can achieve
good results only when the relative deadline is large or event
arrival is dense. On the contrary, our online schemes can
tackle cases for both short relative deadline and sparse event
arrival. The reason is that our online schemes consider the
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Figure 7: Average idle power consumption of different
deadline settings for event stream S1 on Realtek Ethernet.
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Figure 8: Average idle power consumption of the 10-stream
scenario for Realtek Ethernet with EDF scheduling.

actual arrivals of event, resulting in a more precise analysis
of the scheduling decision. Note that ideally our two online
schemes, i.e. WCG-HAD and EDG-HAD should produce
identical results, because the WCG and EDG algorithms
should converge to the same mode-switch moment, given
a same trace. The deviation depicted in these two figures is
due to the refinement of the relative deadlines for the events
in the backlog.

Secondly, we demonstrate the efficiency of the proposed
schemes by reporting the computation time for each iter-
ation. We depict the computation time for activation and
deactivation separately: WCG-HADon and WCG-HADoff

represent the computation time for the WCG-HAD scheme
to compute the turning on and the next turning off instants,
respectively, while EDG-HADon and EDG-HADoff represent
the computation time that the EDG-HAD scheme requires
to compute the turning on and the next turning off instant,
respectively. Fig. 9 shows the relation of the computation
time and the deadline factor for the scenario of the 10 event
streams case in Fig. 8. As shown in the figure, both schemes
require a small computation time and the increment for the
case of a longer relative deadline is considerably small,
which makes our algorithms applicable online.

VIII. CONCLUSION

This paper discussed how to apply dynamic power man-
agement to reduce energy consumption under hard real-time
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Figure 9: Computation time of WCG-HAD, and EDG-HAD
for Realtek Ethernet with EDF scheduling.

constraints. We considered systems (or devices) with active,
standby, and sleep modes with different power consump-
tions. For scheduling one event stream under hard real-
time constraints, we presented online algorithms to adap-
tively control the on/off of a device. Additions to multiple
events streams under EDF scheduling were also presented
by extending the Modular Performance Analysis [25]. To
demonstrate the performance of the proposed schemes, sev-
eral case studies were explored, in which the results reveal
the effectiveness of our approaches.
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