
1A-2

Adaptive Power Management for Real-Time Event Streams

Kai Huang, Luca Santinelli*, Jian-Jia Chen, Lothar Thiele, Giorgio C. Buttazzo*
Computer Engineering and Networks Laboratory, ETH Zurich, Switzerland

Email: {firstname.lastnamej wtik.ee.ethz.ch

* Real-Time Systems Laboratory, Scuola Superiore Sant'Anna of Pisa, Italy

* Email:{luca.santinelli.giorgiojOsssup.it

Abstract- Dynamic power management has become essential
for battery-driven embedded systems. This paper explores how
to efficiently and effectively reduce the energy consumption of a
device (system) for serving multiple event streams. Considering
two different preemptive scheduling, i.e., earliest deadline first
and fixed priority, we propose new method to adaptively control
the power mode of the device according to historical arrivals of
events. Our method can not only tackle arbitrary event arrivals
but also provide hard real-time guarantees with respect to both
timing and backlog constraints. Simulation results are presented
as well to demonstrate the effectiveness of our approach.

Keywords: Adaptive Power Management, Energy Mini­
mization, Real-Time Event Streams, Real-Time Calculus.

I. INTRODUCTION

Power management with energy efficiency considerations
has been an important design issue, especially for battery­
driven embedded devices to extend their battery life-time. Dy­
namic power consumption due to switching activities and static
power consumption due to the leakage current are two ma­
jor sources of power consumption of a CMOS circuit [9].
For micrometer-scale semiconductor technology, the dynamic
power dominates the power consumption of a processor. How­
ever, as the CMOS technology is scaling downward aggres­
sively to the deep sub-micron domain, the leakage power con­
sumption increases exponentially and is comparable to or even
more than the dynamic power dissipation.

This paper explores how to apply dynamic power manage­
ment (DPM) to reduce the energy consumption for hard real­
time embedded systems by changing the mode of a device. We
consider a device with active, standby, and sleep modes with
different power consumptions, and a controller decides when
to change the power mode of the device. Intuitively, the de­
vice can be switched to the sleep mode to reduce the power
consumption when it is idle. This switching operation, how­
ever, has two concerns. On one hand, the sleep period should
be long enough to recuperate the mode-switch overhead. On
the other hand, to cope with the burstiness of event arrivals, the
reserved time for serving the burst events must be sufficient to
prevent deadline violation of events and backlog overflow of
the system when activating the device again later on.

To cope with these two concerns, we propose online algo­
rithms in [7]. Trying to be optimistic for the controller, events
are handled only when they really arrive. Our algorithms adap­
tively predict the next moment for mode switch by considering
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both historical and future event arrivals, and procrastinate the
buffered and future events as late as possible. In this paper, we
extend the basic algorithms in [7] for multiple event streams
with different characteristics. In particular, a more realistic
backlog model is adopted, Le., distributed backlogs for each
event steam. We consider two different preemptive scheduling,
Le., earliest deadline first (EDF) and fixed priority (FP), and
develop means to guarantee the timing and backlog constraints
for the given event streams.

The rest of this paper is organized as follows: We review
the related work in the next section. Section III and IV present
our system model and basics of our analysis, respectively. We
present our solutions in Section V. Simulations results are pre­
sented in Section VI. Section VII concludes the paper.

II. RELATED WORK

Dynamic power management (DPM) with clock gating or
voltage gating can be applied to change the device power mode,
e.g., to a sleep mode, to consume less (static/leakage) power.
For devices with the sleep mode, Baptiste [2] proposes an algo­
rithm based on dynamic programming to control when to turn
on/off a device for aperiodic real-time events with the same
execution time. For multiple low-power modes, Augustine et
al. [1] determine the mode that a processor should enter for
aperiodic real-time events and propose a competitive algorithm
for online use. Swaminathan et al. [12] explore dynamic power
management of real-time events in controlling shutting down
and waking up system devices for energy efficiency. To aggre­
gate the idle time for energy reduction, Shrivastava et al. [11]
propose a framework for code transformations. By considering
platforms with both DPM and dynamic voltage scaling (DVS),
Chen and Kuo [3] propose to execute tasks at a certain speed
(mostly at the critical speed) and to control the procrastination
of real-time events. By turning the device to the sleep mode,
the execution of the procrastinated real-time events is aggre­
gated in a busy interval to reduce energy consumption. Heo
[6] et al. explore how to integrate different power management
policies in a server farm.

Most of the above approaches require either precise infor­
mation of event arrivals, such as periodic real-time events [3],
or aperiodic real-time events with known arrival time [2, 1, 8].
However, in practice, the precise timing information of event
arrivals might not be known in advance since the arrival time
depends on many factors. When the precise timing of event ar­
rivals is unknown, to our best knowledge, the only known ap­
proaches are to apply the online algorithms proposed by Irani
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Fig. 1: The abstract system model of the studied problem.

et al. [8] and Augustine et al. [1] to control when to tum on the
device. However, since the online algorithms in [1, 8] greed­
ily stay in the sleep mode as long as possible without referring
to incoming events in the near future, the resulting schedule
might make an event miss its deadline. Such algorithms are not
applicable for hard real-time systems.

To model such irregular events , Maxiaguine et al. [10] ap­
ply Real-Time Calculus within the DVS context and compute
a safe frequency at periodical interval with predefined length
to prevent buffer overflow of a system. Recently, Chen et
al. [4] explore the schedulability for online DVS scheduling al­
gorithms when event arrivals are constrained by a given upper
arrival curve. In contrast to these closest approaches, we focus
on DPM and our adaptation points are dynamic and vary ac­
cording to the actual arrivals of events. Furthermore, we focus
on multiple event-stream scenarios where event streams with
different periods can be tackled with both earliest-deadline-first
and fixed-priority scheduling.

III. SYSTEM MODELS AND PROBLEM DEFINITION

System Model We consider a device controlled by a controller
which handles event arrivals and controls the power mode of
the device to serve the arrived events. The device has three
power modes , namely active, standby, and sleep modes . The
power consumption in the sleep mode is Pa. To serve an event,
the device must be in the active mode with power consumption
Pa, in which Pa > Pa. Once there is no event to serve, the
device can enter the sleep mode. However, switching from the
sleep mode to the active mode and back takes time, denoted by
tsw ,on and tsw,s!eep, and incurs energy overhead, denoted by
Esw,on and Esw,s!eep, respectively. To prevent the device from
frequent mode switches, the device can also stay in the standby
mode. The power consumption P, in the standby mode, by
definition, is no more than Pa and is more than Pa. We assume
that switching between the standby mode and the active mode
has negligible overhead, the same assumption as in [17, 16].

Event streams with different properties arrive to the con­
troller. Suppose that there are N event streams in a given set S.
To buffer incoming events of each stream S, in set S, the con­
troller maintains a separate backlog of size Qi' Buffering more
than Qi events incurs a backlog overflow and causes a con­
troller failure. We assume that Qi is given. Deciding Qi for a
given global backlog constraint is not considered in this paper.
An abstract model of our system is shown in Fig. 1, where the
controller could be the operating system and the device could
be an I/O peripheral device, for instance. Parameters a, D, and
j3G in Fig. I will be introduced next.

Event Model To model irregular arrival of events, we adopt
the arrival curves a(6.) = [aU(6.),a!(6.)] from Real-Time
Calculus [13], in which ai(6.) and a~(6.) are the upper and
lower bounds on the number of arrival events for a stream S,
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in any time interval of length 6., respectively. For instance,
for an event stream with period p, jitter j, and minimal in­
ter arrival distance d, the upper arrival curve is aU (6.) =
min{ r"":t1'r%-1}. The concept of arrival curves unifies

many other timing models of event streams. Analogous to ar­
rival curves that provide an abstract event stream model, a tu­
ple j3(6.) = [j3u (6.) , j3! (6.)] defines an abstract resource model
which provides an upper and lower bounds on the available re­
sources in any time interval 6.. Please refer to [14] for details.

Note that an arrival curve ai (6.) specifies the number of
events of stream S, whereas a service curve j3(6.) specifies
the available amount of time for execution, for interval length
6.. Therefore, ai(6.) has to be transformed to ai(6.) to indi­
cate the amount of computation time required for the arrived
events in intervals. Suppose that the execution time of any
event in stream S, is Wi . The transformation can be done
by ai = wiai, a~ = wia~ and back by ai = aU/wi,
a~ = a! /Wi thereof. Moreover, to satisfy the real-time con­
straint, the response time of an event in event stream S, must
be no more than its specified relative deadline Di , where the
response time of an event is its finishing time minus the arrival
time of the event. On the arrival of an event of stream S, at
time t, the absolute deadline is t + D i .

Problem Definition This paper explores how to effectively
minimize the energy consumption to serve a set S of N event
streams by DPM . Intuitively, energy saving can be obtained
by a) turning the device to the sleep mode when no event to
process, and b) staying at the sleep mode as long as possible.
However, switching from/to the sleep mode incurs overhead.
As a result, there is a break-even time TB E T defined as:

{
E sw , on + E sw , sleep }

max t sw , on + t sw , slee p, P
s

_ P/j .

In the case of a sleeping interval is shorter than TB E T , the
mode-switch overhead is more than the energy consumption
of staying in the standby mode. Turning the device to the sleep
mode, therefore, is not worthwhile. Prolonging the sleep mode,
on the other hand, might make current and future events violate
their timing constraints or incur backlog overflow.

We say that a scheduling decision is feasible if it is always
possible to meet the timing and backlog constraints for any
event traces constrained by an arrival curve. An algorithm is
feasible if it always generates feasible scheduling decisions.

Therefore, the problem studied in this paper is to decide a
feasible schedule for a) when to turn the device from the sleep
mode to the active mode to serve events , and b) when to turn
the device to the sleep mode to reduce the energy consumption.

IV. REAL-TIME CALCULUS BASICS

To compute a safe interval for putting the device to sleep, we
apply Real-Time Calculus [13] and Real-Time Interface [14].
Within this context, the device is said to provide guarantee out­
put service j3G (6.). Correspondingly, a stream S, requests ser­
vice demand j3A(6.). For instance, to satisfy the required re­
lated deadline D i , the service demand j3A(6.) of stream S, is

f3A (~) = ai(~ - D i ) . (1)

To obtain a feasible scheduling of stream S, on the device, the
condition j3G (6.) :2: j3A (6.) has to be fulfilled.
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V. ADAPTIVE DYNAMIC POWER MANAGEMENT

Bounded Delay We construct (30 (.6.) by a bounded delay
function bdf(.6. , r) which is defined as no service provided for
at most r units of time:

Event-Driven Activation The Event-Driven-Greedy (EDG)
algorithm computes the latest time that the device must be acti-

Fig. 3: The control flow of our approach.

A. Approach Overview

Our adaptive DPM scheme deals with deactivation schedul­
ing decisions and activation scheduling decisions to decide
mode switches safely and effectively. The control flow of our
approach is illustrated in Fig. 3. For deactivation scheduling
decisions, when the device is in the active mode and there is
no event in the backlog, we develop an algorithm to decide
whether the device has to change to the sleep mode instantly
or it should keep in the standby mode for a while for serving
incoming events in the near future. For the rest of the paper,
time instants for deactivation decisions are denoted by tT •

For activation scheduling decisions, when the device is in the
sleep mode and there is an event arriving or the sleep interval
set by the controller expires, we use two different algorithms
to decide whether the device has to change to the active mode
instantly to serve events, or it should remain in the sleep mode
for a while to aggregate more events to prevent from unnec­
essary mode switches. Time instances for activation decisions
are denoted as t.1. for the rest of the paper.

B. Systems with One Event Stream
History-Aware Deactivation The History-Aware Deactivation
(HAD) algorithm analyzes whether the device should be turned
to the sleep mode from the active mode. The principle is to
deactivate the device only when energy saving is possible. In
the case of only one event stream 8 1, a safe sleep interval of a
feasible scheduling is obtained by r" - 8*, applying at(.6., t T)
defined in (6) to (3) and (4). If this interval is larger than T B ET,
the device is switched to the sleep mode at time t T .

Worst-ease-Greedy Activation The Worst-Case-Greedy
(WCG) algorithm decides the earliest time when the device
should change to the active mode for event processing. It
conservatively assumes worst-case event arrivals and decides
the earliest time to activate. If the worst case does not occur,
the device is kept in the sleep mode for a longer period and
an new activation moment is computed. The WCG algorithm
works in a time-driven manner. Each time the predicted
wakeup time t.1. comes, the wakeup decision is reevaluated
based on the actually arrived events. We use the following
formulas to derive the new wakeup time:

,BA(b.) = a¥ (b. - D 1 , t.L) + B1(b. , t.L), (8)

T.L = maxj r : bdf(b.,T) :2: ,BA(b.) }, (9)

0.L = max [o, min{o : a¥(b., t.L) - bdf(b., T.L - 0)

::; (Ql -IEl(t.L)I) · WI, "lb. }} . (10)

If r.1. - 8.1. is larger than 0, the device can remain in the sleep
mode and the next wakeup prediction is set to t.1. + r.1. - 8.1. .

Note that the first wakeup time is set to the arrival of the first
event after the device is turned to the sleep mode. In this case,
B 1(.6. , t) in (8) is 0 and E 1 (t ) in (10) is 0 by definition.

(2)bdf(b. , T) = max{O, (b. - T)}, Vb.:2: o.

t>

Fig. 2: An example of the bounded delay function for stream 8 1,

in which only part of the upper arrival curve ay (.6.) is presented
for simplicity.
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Moreover, the longest delay r* for providing a service guaran­
tee for a given demand (3 A(.6. ) is defined as:

T* = maxj r : bdf(b. ,T) :2: ,BA(b.), Vb.:2: o}. (3)

To prevent a backlog of size Qi from overflow, this -r" needs
to be reduced by 8* which is defined as

0* = max {o, min{o : ar (b.) - bdf(b. ,T* - 0) ::; Qi . Wi, "lb. }} . (4)

With the computed t" and 8*, if r" - 8* is larger than the
break-even time TBET, we can safely turn the device to the
sleep mode while guaranteeing a feasible scheduling. Figure 2
depicts an example for the above analysis for one event stream.

Future Prediction with Historical Information As the
scheduling decision is made online and depends on the actual
arrivals of events, we keep the track of event arrivals in the past
as a history. If a burstiness has been observed recently, one
could predict that in the near future only sparse events will ar­
rival due to the constraint of the arrival curve. Suppose t is the
current time and Ri(t) is the accumulated number of events of
stream S, in interval [0, t) . .6.h is the history window of the
controller, in which historical information for only .6.h time
units is retained . We define at time t the history curve as

Hi(b. , t) = {Ri(t) - R;(t - b.) , if b. ::; b.
h

, (5)
Ri(t) - Ri(t - b.h) , otherwise .

The maximal future event arrivals a f(.6., t) in the near future
from time t to t + .6. is thereby bounded by

a r(b. , t) < inf {ar(b. +.\) - Hi(>' , t)} . (6)
- A~O

Analogously, we denote at time t the set of unfinished events
of S, in the backlog Qi as Ei(t). Suppose that those events in
Ei(t) are indexed as ei, 1, ei,2, ... , e i ,IEi(t)1 from the earliest
to the latest deadline, where IEi(t)1 is the number of events in
the backlog and D i,j is the absolute deadline of event ei ,j ' We
can model the service demand for those events in the Ei(t) as

Bi(b. , t) = Wi' {( j- 1) , D i , j - t < b. ::; D i,Hl - t , (7)
IEi(t)l , b. > D i , IEi(t)1 - t ,

in which D i,o is defined as t for brevity.

In this section, we present our online power management
scheme. Subsection V.A presents an overview of our scheme
and Subsection V.B sketches the solution for systems with one
event stream as illustration. In Subsection V.C, we present in
details our solution for multiple event streams with earliest­
deadline-first (EDF) and fixed-priority (FP) scheduling.

9
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Fig. 5: Total service demand calculation for FP and EDF
scheduling .

,BL I(~ , t') = ak_l (~ - Dk-I, t') + Bk_l (~ , t') , (24)

,BL I (~' t') = ak_l(~ ' t')

- (Qk-l -IEk_l(t.1)I- aLl (t' - t.1)) . Wk- l, (25)

ak-l (~, t') = Wk- l . ( inf {ak-l (~+ A) - Hk-l (A, t')}) . (26)
>- 2:0

By applying (23) for k = N - 1, N - 2, . . . ,2, the service
demand 13i of stream 8 1 is derived.

Based on this approach, the computed service demand for
the highest priority stream 8 1 can be also seen as the total ser­
vice demand 13{;,tal for stream set S under the fixed-priority

fixed-priority (FP) scheduling . Note that the refinements of the
history curve and backlog demand in (11) and (12) can be ap­
plied to individual stream, denoted as HI and BI for briefness.

FP Scheduling For fixed-priority scheduling , without loss of
generality, the event streams 81, 8 2 , •.• ,8N are ordered ac­
cording to their priorities, where the priority of stream S, is
higher than that of 8k when k > i . Streams can thereby be
modeled as an ordered chain according to their priorities and
a lower priority stream can only make use of the resource left
from a higher priority stream. To compute the service demand
of a higher priority stream, a backward approach is applied by
considering the service demand from the directly lower priority
stream, as shown in Fig. 5 (a). The service demand of stream
8N at time t' = t1. + D l - WI is

,BN (~ ' t') = max{,B~(~, t') , ,B~ (~, t')} , where (17)

,B~ ( ~, t') = aJ:.,(~ - DN , t') + B~(~, t') , (18)

,B~ (~ , t') = aJ:.,(~, t')

- (QN -lEN (t.1)1 - alv(t' - t.1)) . WN , (19)

aJ:., (~, t') = WN . ( inf {aJ:.,(~ + A) - HN(A, t')}) . (20)
>- 2:0

To derive 13i , we have to compute the service bounds
13iv-1' 13iv - 2 ' . . . ,132, sequentially. Suppose that 13k has been
derived, the resource constraint is that the remaining service
curve should be guaranteed to be no less than 13k, Le.,

,BL I (~) 2: inf { ,B : ,Bk (~' t') = sup {,B(A) - ak_l (A, t')}} (21)
o::;>- ::;Ll.

By inverting (21), we can derive 13Ll as:

,BL I(~) = ,Bk (~ - A)+ a k- l (~- A, t ') (22)

where X= SUp{T : (3k(~ - T , t') = (3k (~' t')} .

To guarantee the timing constraint of event stream 8k-l , we
also know that 13k- l must be no less than its own demand.
Therefore, we know that

(3k- I (~) = max{,BLI(~) ' (3L I (~ ' t') , {3LI (~' t')} ,where (23)

history-awarefuture arrival: of

backlogged-aware and backlog-constrained demands : J3: ,J31

total service demand J3[),'al

Fig. 4: Computing flow for scenarios of multiple event streams.

bounded delay T from J3[),'al

individu al stream service demand J3i

vated to satisfy the timing constraint. It optimistically assumes
the least events and decides the latest turn-on time. The wakeup
decision is reevaluated upon each event arrival until the pre­
dicted wakeup time hits. If the predicted wakeup time hits, the
device has to be switched on immediately.

On the arrival of an event el , j at time t1., we choose the lat­
est processing time t' = t1. + D l - WI as the reference time
to compute the wakeup time. To precisely predict the bursti­
ness after time t', the historical arrival and the backlog demand
at time t' are redefined by appending the least event arrivals
within interval [t1. , t') constrained by ai(b) to those at time
t1.:

{
ai ( E) - ai (E - ~) ' ~ < E ,

H~(~,t')= HI(~,t.1)+ ai(E) , E <~ <~h_T, (1I)

HI(~h - E,t.1) + ai(E), otherwise,

B~(~, t') = WI ' {(j -1), DI ,j - t' < ~, ::; DI ,j+1 - t' ; (12)
E, ~ > D I ,£ - t ,

where 10 = t' - t1. and £ = lEI (t1.)1 +ai(E). With the refined
historical information and backlog demand, we can again apply
(2) to compute a new wakeup alarm for event elJ

af(~, t') = WI . ( inf {af (~ + A)- HI (A, t)}) , (13)
>- 2:0

,BA (~) = af(~ - DI, t') + B~(~ , t') , (14)

T.1 = max {T : bdf(~ , T) 2: ,BA (~) }, (15)

8.1 = max{O, min{8 : af(~,t') - bdf(~,T.1 - 8)

::; (QI - lEI (t.1)1 - ai (E)) . WI, \i~}} . (16)

If t1. + r1. - 81. is earlier than the previous prediction, the
predicted wakeup time is set to t1. + r1. - 81.. Otherwise, the
previous prediction remains .

With this approach, both DPM schemes, i.e., HAD-WCG
and HAD-EDG, provide feasible scheduling which guarantees
the deadline constraint of any event as well as the backlog con­
straint at any time for one event-stream system. The detailed
algorithms and the proofs are referred to [7].

C. Multiple Event Streams

To tackle multiple-stream scenarios, the key is to harness the
scheduling impact at every reevaluation of the mode-switch de­
cision. The basic approach is depicted in Fig. 4. Unlike sys­
tems with one event stream where the bounded delay is applied
directly to the service demand of a stream, we compute the in­
dividual service demand of every stream, denoted as 13; , then
derive the total service demand, denoted as 13{;,tal' according to
a given scheduling policy thereof. With the computed 13{;,tal'
the bounded delay is applied to calculate the feasible sleep in­
terval. This approach is affected for all HAD, WCG, and EDG
algorithms. Because of the similarity and limited space, we
present the solution for the EDG algorithm only. In this pa­
per, we provide solutions for earliest-deadline-first (EDF) and

10



scheduling. Therefore, the timing as well as backlog con­
straints for all streams in S can be guaranteed by the sleep
interval r" with which bdf(~, r*) bounds f3i:

7* = max{7 : bdf(~, 7) ~ /3i(~), V~ ~ a}. (27)

This leads to the following theorem:

Theorem 1 The r" obtained by (27) is afeasible sleep interval
at every reevaluation of the EDG algorithm and it guarantees
the backlog and timing constraints for all streams in Sunder
the fixed-priority scheduling, if the device provides again full
service after r" time unit.

EDF Scheduling For earliest-deadline-first scheduling, the to­
tal service demand I3fotal for all N streams can be bounded
by the sum of their service demands. The I3fotal computed in
this manner, however, is not sufficient to guarantee the backlog
constraint of any stream in S. When an event of a stream Sj
is happened to have the latest deadline, events in any stream of
S \ {Sj} will be assigned a higher priority. Sj will suffer from
backlog overflow.

To compute a correct service demand to satisfy the back­
log constraint for stream Sj, Sj has to be considered as the
lowest priority. Similar back-forward approach is applied, as
shown in Fig. 5 (b). Instead of tracing back stepwise, the ser­
vice demand needed for higher-priority streams is the sum of
all streams from S \ {Sj}. Again, we present the revision of
the EDG algorithm as an example. The service f3~ to guarantee
the lowest priority stream Sj should be more than the demand
13; of s; Le.,

N

/3~(~) ~ inf {/3 : /3;(~, t') = sup {/3(A) - L ai(A, t')}} (28)
o~,\~~ i=j=j

By inverting (28), we can derive f3~(~) as:
N

/3~(~) = /3;(~ - A, t') + L ai(~ - A, t') (29)
i=j=j

where A = sup{7 : /3; (~ - 7, t') = /3; (~, t')}, and

/3;(~, t') = max{/3;(~, t'), /3J(~, t')} (30)

where 13; and 13] are from (24) and (26). To guarantee the tim­
ing constraint of all higher-priority streams, we also know that
f3;,total must be no less than the demand of S \ {Sj} as well.
Therefore, we know that at time t' = tl.. + D j - Wj,

N

/3;,total(~) = max{/3~(~), L/3f(~, t')}, (31)
i=j=j

Applying (31) to each steam in S, the service demand for
each steam is computed. Because each stream could be the
lowest priority in the worst case, only the maximum of them
can be seen as the total service demand for stream set S. There­
fore, the timing and backlog constraints for S can be guaran­
teed by r" with which bdf(~, r*) bounds the maximum of
individual streams:

7* = maxj r : bdf(~,7) ~ n~{/3;,total(~)}' V~ ~ a}. (32)

This leads to the following result:

Theorem 2 The t" computed by (32) is afeasible sleep inter­
val at every reevaluation of the EDG algorithm and it guar­
antees the timing and backlog constrains for all streams in S
under EDF scheduling, ifthe device provides againfull service
after r" time unit.

11
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TABLE I: Event stream setting according to [7].
8 1 82 83 84 8 5 86 8 7 88 89 8 10

period (msec) 198 102 283 354 239 194 148 114 313 119
jitter (msec) 387 70 269 387 222 260 91 13 302 187
delay (msec) 48 45 58 17 65 32 78 - 86 89

w (msec) 12 7 7 11 8 5 13 14 5 6

VI. SIMULATION RESULTS

This section provides simulation results for the proposed
method. The simulation is implemented in MATLAB using
the RTCIRTS toolbox [15] and runs on a simulation host with
Intel 1.6 GHz processor and 1 GB memory.

Simulation Setup We take the stream set studied in [7] for
our case studies. The relative deadline D, of an event stream
S, is defined by a deadline factor x, Le., D, = X * Pi. Ta­
ble I describes the parameters for generating the arrival curves
of this stream set, where W is the worst-case execution time.
We simulate scenarios of controlling an IBM Microdrive de­
vice, the power profiles of which is depicted in Table II. To
trigger our simulation, we apply two traces with a time span
of lOsec, denoted as RU and R l , imitating bursting and sparse
event-arriving cases. Both RU and R l are generated by the RTS
toolbox and compliant to arrival curve specifications.

We evaluate two schemes to control the device, Le., the
HAD-EDG and the HAD-WCG, applying both the EDF and
the FP scheduling. Since all the schemes have the same en­
ergy consumption for event processing, we report the average
idle power consumption which computed as the quotient of the
sum of all the mode-switch overhead and the leakage energy
consumption for the whole trace period divided by the time
span of the trace. We also report the computation expense of
these two schemes subject to different scheduling and traces.
Due to the space limit, we plot the results for the EDF and FP
scheduling within the same figures for all cases.

Simulation Result Firstly, we show the impact of our schemes
according to different X and backlog sizes. Due to the simi­
larity, we only present the HAD-WCG scheme for trace RU

and HAD-EDG scheme for trace Rl • As shown in Fig. 6, the
HAD-EDG and the HAD-WCG schemes reduce the average
idle power consumption as X and backlog size increases for
both RU and R l cases. The reason is that we can procrastinate
later the arrived events and accumulate more to process for each
activation of the device with larger X and backlog size. Both
schemes are effective for the EDF and FP scheduling. Note that
ideally the results of the two schemes should provide a same re­
sult for the same scheduling and trace. The deviation depicted
in Fig. 6 is caused by the bounded delay approximation.

Secondly, we show the impact of our algorithms to the con­
troller. Fig. 7 shows the number of reevaluation of activation
decision within the 10sec time span and Fig. 8 depicts the av­
erage computation time for each reevaluation. From Fig. 7, we
can notice that the activation of the EDG algorithm is varied ac­
cording to the traces while the WCG algorithm is affected heav­
enly by the deadline. Due to constraint of this stream set, the
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where (a) and (b) apply traces RU and Rl, respectively.
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Fig. 7: Number of activations according to the deadline factor

X, where (a) and (b) apply traces RU and Rl , respectively.

EDG algorithm cannot outperform the WCG algorithm. But in

other cases where events come sparsely, the EDG will perform

better than the WCG algorithm.

The average computation expensive of each reevaluation is

depicted in Fig. 8. From the figure, we can conclude that our

algorithms are efficient for both traces. The computation ex­

penses of each activation and deactivation pair for all cases

are within the range of millisecond and are acceptable to the

task set in Table I. In general, the EDG algorithm and EDF

scheduling are more expensive than the WCG algorithm and

FP scheduling, respectively, which are confirmed with the def­

inition in Section V. Another observation is that the computa­

tion expense is not neglectable for this stream set, which might

harm the computation for the feasible sleep period. There are

also means to tackle this problem, for instance, setting the com­

putation overhead as a safe margin for the computed sleep pe­

riod or putting the reevaluation itself as the highest priority

events of the system. We do not elaborate them here, since

they are not the focus of this paper.

This paper explores how to apply dynamic power manage­

ment to reduce the leakage power consumption for hard real­

time embedded systems pertaining to both timing and backlog

constraints. We propose algorithms to adaptively control the

power mode of a device (system) based on the actual arrival

of events, tackling multiple event streams with irregular event

arrival patterns under both earliest deadline first and fixed prior­

ity preemptive scheduling. proof-of-concept simulation results

demonstrate the effectiveness of approaches.
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