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Abstract—Limited preemption scheduling has been intro- preemption occurs and on the number of preemptions
duced as a viable alternative to non-preemptive and fully- experienced by the task [18], [12], [1].
preemptive scheduling when reduced blocking times need to 4) Bus contention cost. It is due to the Front Side Bus
coexist with an acceptable context switch overhead. To adhie (FSB) conflicts caused by the extra memory accesses

this goal, preemptions are allowed only at selected pointsfo
the code of each task, decreasing the preemption overhead é&n
simplifying the estimation of worst-case execution paranters.

Unfortunately, the problem of how to place these preemption

due to cache misses. In fact, whenever data are not
found in the cache, they have to be fetched from RAM,
using the FSB. Hence, contentions can occur when the

points is rather complex and has not been solved. FSB is used by I/O peripheral devices through a DMA
In this paper, a method is presented for the optimal transfer [21], [20].
placement of preemption points under simplifying conditians, These effects are not negligible at all, and may con-

namely, a fixed preemption overhead at each point. We will  tripute to a great share of the overall worst-case execution
prove that if our method is not able to produce a feasible {jime (WCET). To overcome such problems, some authors
schedule, then no other possible preemption point placemeén ;yestigated limited preemption models that can be used
(including non-preemptive and fully preemptive schedulirg) to reduce the negative effects of context switches, while
can find a schedulable solution. The presented method is .~ .- 9 . .
general enough to be applicable to botfEpF and Fixed Priority ~ liMiting the amount of blocking due to non preemptive
scheduling, with limited modifications. regions [29], [26], [8], [2], [32]. From another side, other
authors extended the schedulability analysis of preemptiv
scheduling to take context switch overhead into account
I. INTRODUCTION [11], [33]. The problem of selecting preemption points in

. L order to improve the schedulability of the system has been
In safety-critical applications, the use of advanced real'preliminarily considered in [13] and [17].

time scheduling techniques is significantly limited by the™ |nqeeqd, such a problem is not easy to solve in an optimal
difficulty of finding tight estimations of worst-case exeiont 4y since it is characterized by a circular dependency. In
parameters. To simplify the problem, most theoreticallt8Su ¢5¢¢ \when considering the context switch overhead in the
on sche_dulabmty analysis have been derived assuming &chedulability analysis, the WCET of a task becomes a
preemption cost equal to zero. Under such an ideal casgynction of the number of preemptions it might be subject
preemptive scheduling is often more efficient than NONy,: byt the number of preemptions depends on its turn by
preemptive scheduling, because of the additional blockinga \WCET of the task—the longer a task executes, the more
time that can be introduced by the non-preemptive executiof il be preempted—complicating the analysis.
of lower priority tasks. In practice, however, preemptions |, this paper we will show how to deal with such circular
can introduc.e a s_ignificant run?ime_overhead and may caus§ependency, when a limited preemption model with fixed
high fluctuations in task execution times, therefore dég@d reemption points is adopted. The advantage of this model is
system predictability. In particular, the following type$  hat it is in line with the current practice adopted in cafic
costs must be taken into account at each preemption:  gofware development [8], so that the derived results can
1) Scheduler cost. It is due to the time taken by the be applied to real applications. We will present a method
scheduling algorithm to suspend the running taskfor automatically selecting the most suitable preemption
insert it into the ready queue, switch the context, andooints in the code of each task in order to guarantee the
dispatch the new incoming task. schedulability of the system. The analysis will consider on
2) Pipeline cogt. It is due to the time taken to flush the one hand the increased blocking caused by non-preemptive
processor pipeline when the task is interrupted andections, and on the other hand the beneficial reduction of
the time taken to refill the pipeline when the task isthe preemption overhead. We will prove that the proposed
resumed. algorithm is optimal when each preemption point is assumed
3) Cacherelated cost. It is due to the time taken to to produce an identical overhead. Even if this assumption
reload the cache lines evicted by the preempting taskcould appear rather restrictive, we introduced it to egthbl
This time depends on the specific point in which the mathematical background for more complex models
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without violating the strict page limit of this submission. papers in the timing analysis domain (see [30] for a good
As preliminarily shown in [31], the presented analysis cansurvey). When a preemptive scheduler is adopted, a critical
be integrated with data collected by timing analysis toolsfactor in the estimation of a task’'s WCET is represented by
for the handling of more realistic models with a variable the Cache-Related Preemption Delay (CRPD).
preemption overhead. In [9] and [22], two methods have been presented to inte-
The proposed approach is general enough to be applicabigate the classic Response Time Analysis with the penalties
to the most used scheduling algorithms, sucemsandrFP.  associated with CRPD, adding a fixed context-switch cost.
We will show how existing results on limited preemption A complex but more precise analysis considering common
scheduling can be extended and integrated under a commeets of data between preempting and preempted tasks has
notational model, in order to derive the necessary informabeen described in [16]. With a similar target, Staschetat
tion for the optimal placement of preemption points. To com-al. [28] provided safe estimations of the CRPD, analyzing
ply with more general requirements, we will also analyzethe intersection between the set wdeful data—locations
the case in which preemption points can be inserted only ahat might be accessed again by a preempted task-usmdd
a discrete number of points. This will allow our algorithm data—locations that might be accessed by the preempting
to deal with user-defined non-interruptible sections ofe;od task. The appropriate selection of preemption points for an
as well as avoid complex protocols for access to sharedasier computation of the CRPD has been addressed in [27].
resources. In fact, when it is possible to encapsulate each |n [23], a bound was provided on the Data Cache Related
critical section within a non-preemptive region, a taskl wil preemption Delay (D-CRPD), identifying additional data-
never be preempted while holding a lock, solving any mutuakache misses due to context switches. Response Time Anal-
exclusion problem in the access to shared resources.  ysis was then used to check the system schedulability, using
the derived bound on the worst-case execution times. This
) o ) ) bound was then refined in [24]. In a recent work [25], the
A. Non-Preemptive and Limited Preemption scheduling same authors extended the analysis to tasks having at most
Non-preemptiveeDbF scheduling has been studied by one non-preemptive region with a given position inside the
Jeffay et al. [14], who showed tha&DF is optimal even task code.
among non-preemptive work-conserving scheddltos pe- While most of the above works were based on systems
riodic and sporadic task sets. For these systems, an examtheduled with Fixed Priority, Jet al. [15] considered the
schedulability test with pseudo-polynomial complexitysva CRPD computation problem for systems scheduled with
provided. Moreover, it was shown that, for concrete petodi preemptiveeDF.
task systems scheduled by non-preemptive algorghfea-
sibility analysis is NP-hard in the strong sense. __ C. Improvements over previous works
Baruah and Chakraborty [3] analyzed the schedulability _ ) )
of non-preemptive task sets under the recurring task model, In this paper, we consider the problem of scheduling a
deriving polynomial time approximation algorithms for hot Set of real-time tasks consisting of a sequence of Non-
preemptive and non-preemptive scheduling. Preemptive Regions (NPR) separated by Preemption Points
Wang and Saksena [29] proposed a different approacfPP). The proposed method helps a designer in selecting
for limiting preemptions, in systems scheduled with.  the best preemption points, exploiting the available slack
Each task is assigned a regular priority and a preemptioift the system to reduce the number of preemptions of
threshold, and it is allowed to preempt only when its priorit SOme selected tasks, without imposing too much blocking
is higher than the threshold of the preempted task. This worRn higher priority tasks. The final objective is to achieve a
has been later improved by Regehr in [26]. feasible .schedule when the task set is not feaS|bIe_ in non-
Burns [8] extended the response time analysis to verify th@reemptive mode (due to high blocking times), nor in fully
schedulability of fixed priority tasks with fixed preemption Preemptive mode (due to the high overhead).
points. His work has been later improved by Bril et al. [7].  As shown in [32], [4], limited preemption schedulers can
Baruah introduced limited preemption scheduling forsignificantly reduce the total number of preemptions with
EDF [2], computing the maximum amount of time for which respect to fully preemptive algorithms. This happens bseau
a task may execute non preemptively without missing anyhe allowed non-preemptive execution length of a task is
deadline. Yaoet al. [32] extended Baruah’s work to fixed often larger than or comparable to that task’s executiog.tim
priority systems. However, existing theoretical results on limited preeiopti
_ scheduling [2], [4], [32] have been derived neglecting the
B. Preemption overhead cost of preemptions. Integrating these results with the pre
The problem of finding a correct WCET estimation for emption overhead is not so straightforward, since compgutin
real-time task sets has been considered in many differenhe maximum lengths of the non-preemptive regions requires
L _ o o _ the knowledge of worst-case execution times, which in
A scheduling algorithm is work-conserving if the procesgdmever  ,rn are significantly influenced by the number of context

idled when a task is ready to execute. Note that is not optimal among itch In thi h h to deal with h
general non-preemptive schedulers (including non worseoving ones). switches. In this paper, we show how to deal with such a

2A concrete periodic task is a periodic task that comes witassigned ~ Cifcular dependency, proposing an iterative algorithnt tha
initial activation. considers both problems at the same time. Earlier attempts

Il. RELATED WORK
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to reduce context switching overhead delaying preemptionbeing completelycold after any context switch. In other
have been presented in [13] and [17]. words, we do not take advantage of the positive cache
The rest of the paper is organized as follows. In Seceffects due to the subsequent execution of concurrent tasks
tion Ill, we will present the adopted system model andaccessing similar sets of data, nor to the limited number of
terminology. Section IV describes a schedulability anialys cache evictions performed by a preempting job with reduced
for task sets scheduled with limited preemptionrF or FP.  footprint (smaller than the cache size).
In Section V, we will show an algorithm to achieve the These restricting assumptions will be removed in a future
schedulability of a task set with a proper placement ofwork, where less pessimistic estimations of the CRPD wiill
preemption points inside each task’s code. In Section VI, wéde considereéd Before complicating the model, this paper
will present some considerations on the proposed methodntends to presents the preliminary results that are needed
The effectiveness of this method will be evaluated througtor a more thorough analysis.
a set of simulations, shown in Section VII. Finally, we will L
draw our conclusions in Section VIII. A. Worst-case execution times
The worst-case execution tim@; of a taskr; is the
[1l. SYSTEM MODEL largest amount of processor time a job f might need
to successfully complete its execution. To perform a pre-
ise schedulability analysis, this parameter must include
| overhead costs identified in the introduction, and can
be expressed as the sum of the net computation fifne
(achieved when all accessed data are always in the cache)

We consider a set of n periodic and sporadic real-
time tasks that are scheduled on a single processor usi
either a fixed priority algorithmAp) or Earliest Deadline
First (EDF) [19]. Each taskr; is defined by a worst-case
execution requirement;, a period, or minimum interarrival |

plus such penalties.

time, T;, and a relative deadlind); < T;. Each task . . .
In particular, the maximum number of cache misses a task

generates an infinite sequence of jobs, with the first job . in th : i0 is denoted b
arriving at any time and successive job-arrivals separatedf may €Xperience in the worst-case scenario 1S denoted by

max 1 1 1
by at leastT; time units. The utilizationU; of task r; is pi*, and |t_|sbequal to thefmaxmlmdm TjuThber' oftr:nemcl)ry
defined asC;/T;. The total utilizationU of task setr is accesses a job af; may pertorm. Indeed, this 1S the only
the sum of the utilizations of all tasks in We assume that bound that can be given when no information is available
tasks are ordered by decreasing priorities in tmecase, on the adopted scheduler, nor on the tasks concurrently

and by increasing relative deadlines in ther case, i.e., scheduled W'thr.i' . L
Vi|0<i<mn:Di < D Tasks are either supposed to When a particular scheduler is assumed, the estimation

be independent, or their critical sections are assumed to b%f_ t’?he real U“mber of cgchefmlssref may be refltnei.nWe call
entirely contained within a non-preemptive region pi th€ maximum number of cacheé mISSes a tasknay

Each job ofr; consists of a sequence gfnon-preemptive experience using a given scheduling algorithm. For inganc

chunks of code. Preemption is allowed only between chunk3§\’ith preempiiveEDF or FP it has been shown [10] that the

, . ; . 4 number of preemptions on a job of taskis bounded by
?gsirf?sr'tggng{gg%r)éprletlerzgtiog ? g?ti-pr;]hd ci:tguvr\;lgrgtf_ the number of higher priority jobs that can be released in
7 1,7 —v="" —J =rv

5 ) ! ; .
case execution time by ;. The maximum chunk length for [0, D;)°, decreasing the number of potential cache misses in
max ’ the worst-case. When; is executed non-preemptively,

7i IS q"™ = max{q; ; }7_;. i P i
The ry footprirt £, of a taskr; is the cumulative has _the smaII.est possible valu#®. Hence, the following
tgelat|on holds:

size of the individual memory locations accessed by a jo
of 7; during its execution. A task repeatedly accessing the
same set of data will have a smaller footprint than a task Note thaty; depends on the numbgy of non-preemptive
accessing multiple different memory locations. regions in whichr; is divided. The smallep;, the fewer

We assume the processor can take advantage of a dedire cache misses experienced hy In fact, each context
cated cache, of sizé, from which recently used data and switch might evict the cache locations commonly accessed
instructions can be loaded. We say that a cache is “cold” iby two subsequent chunks. To understand that, consider the
it does not contain any useful data; otherwise, the cache isxample shown in Figure 1, where the memory accesses of
“hot”. A cache that is always hot is referred to as an “idealthe first two chunks of a task; are shown. The first chunk
cache”. The cache miss penalty due to the time taken tfpads into the cache the memory locations corresponding to
load data from the main memory to the cache is denoted, b andc. When the second chunk starts executing after
by ~. To simplify the analysis, we assume this value toa potential preemption, another task might have overwritte
be the same for every memory location accessed by eache cache content, evicting data commonly accessedj py
task in the set. Moreover, we ignore any timing anomalyand §; ». Therefored; »’s first accesses ta andc should
in the cache behavior, assuming each miss increases the accounted as misses. To clarify which misses are due to
observed execution time by. Finally, we assume the cache a possible preemption and which are not, we distinguish

pyt < pp <

3As critical sections are typically very short [6], they aikely to be 4Some insights of this future work can be found in [31]
accommodated inside a non-preemptive region. When thistigrue, some 5See [11], [28], [24], [33] for tighter bounds in the numberpemp-
shared resource protocol needs to be adopted. tions.



Proc. of the 22nd Euromicro Conference on Real-Time Systems (ECRTS 10), Brussels, Belgium, July 6-9, 2010.

Chunk | Code | Hit/Miss and reformulating the results derived in [32] (fep) and

access(g) ' in [2], [4] (for EDF), under a common notational model.
5 ggggzzg Cg : For the feasibility analysis unde&r, we use theequest
3,1 . . . .
access( a) H bound function RBF;(a) in an intervala, defined as
access(c) H a
access(a) E RBF;(a) = {—-‘ C;.
access(d) I T;
0i,2 gggg:zggg E Under EDF, the analysis is carried out by thdemand
access( d) H bound function DBF;(a) in an intervala, defined as
a—D;
Figure 1. Example of cache accesses: (H) cache Hit, (I)nisitimiss, DBFi(a) o (1 + { T; J) Ci.
(E) Extrinsic miss.
Moreover, we conventionally seD,,.; equal to the
Symbol | Description minimum between: (i) the least common multiplenf) of
i j-th chunk of taskr; Ty, Ts,...,T,, and (ii) the following expressidn
i Number of chunks of task; N
C WCET of 7; in presence of cache misses 1
CNP | WCET of 7; when it executes non-preemptively max (Dn’ U Z Ui - max (0’ Ti - Dl)) :
E; WCET value with an ideal cache i=1

¢i; | WCET of chunké; ; _ The largest blocking; that a task; might experience is
% Largest non-preemptive execution of given, under bottrp and EDF, by the length of the largest

Mff,;x \,\/,lvg;?rtnﬁarﬁiin;mg% (;ﬂlcggggbﬁrgssceﬁ;ﬁzl ers non—p.reempnve chunk belonging to tasks with index higher
P | s value whenr; executes non-preemptively thana: D
L Cache size B; = i<%1<a§+1{% 2 (2)
F; Memory footprint of taskr; -
v Cache miss penalty where ¢’ = 0 by definition. Summarizing the results
o Penalty due to load/store the task state presented in [32], [2], [4], the next theorem derives a
™ Penalty due to pipeline invalidation schedulability condition under limited preemptions, f®
n(x) 1/0 induced delay forr cache misses and EDE.

Figure 2. Notation used throughout the paper. Theorem 1. A task set 7 is schedulable with limited pre-

emption EDFor FPif, forall i |1 <i <mn,

betweenintrinsic and extrinsic cache misses. A miss is ) ,
e VR R ; 1SS B; < i, )
intrinsic if it occurs independently of the preemption,. i.e
when a task accesses a memory location for the first timeyhere, under Fp, 3; is given by
or when the miss is caused by a self-evicfioAn extrinsic
miss is instead due to evictions caused by preempting tasks. Ep
: : ; : = - RBF;(a) 4)

As already mentioned in the introduction, there are also B aefA}llng_ a Z j )
other kinds of penalties associated to each preemptiam, lik - J<i
the scheduler cost, the pipeline costr, and the FSB con- with
tention cost)(u;). Since there arg; non-preemptive chunks, . _ < i
the total number of times a job of may be preempted is A={kTj keN, 1<j<n},
(p; — 1). Hence, the overall worst-case execution timeof whereas, under EDF, 3; is given by
results to be

Ci = Ei+ypi+ (m+0)(pi = 1) +n(ps). (1) BEPF = min a— Y DBF;(a)p, (5)
. . D;<a<D;
In the next sections, we will present a method to decrease a€A|Dia<Dita TiET

this value by minimizing the numbet of preemption points .
inside the code of each task resulting in a smaller number with A={kT,+D;, keN, 1<j<n)
of cache misseg;. =kl Uy, Re R, L=sj=n;g.
For convenience, all notations are summarized in Figure 2. The following theorem presents a different schedulability
IV. SCHEDULABILITY ANALYSIS condition, expressed in terms of a boufdd on the longest

. . - . non-preemptive region;"** of each taskr.
In this section, we present a unified analysigbf andrp P P 910 b

scheduling under the limited preemption model, extending

"The expression may in general be exponential in the parasnefe
6A sdf-eviction is an eviction performed by the task itself. This can 7; however, it is pseudo-polynomial if the system utilizatits a priori
happen whenever the task footprint is larger than the caidee s bounded from above by a constant less than one.
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Theorem 2. A task set 7 is schedulable with limited pre-
emption EDF or FPif, forall k |1 <k <n+1,

g™ < Qe = min {6}, (6)
where [3; is given by Equation (4) in the FpP case, and by
Equation (5) in the EDF case.

Proof: A sufficient schedulability condition can be
obtained combining Theorem 1 with Equation (2):

/\ (i<%1<a§+1{q£wx} = ﬁi) '

1<i<n

Therefore, if the test of Theorem 2 fails, it means that the
task set is not schedulable with limited preemptimF.

UnderFp, instead, the test is necessary and sufficient only
when no information is available on the location of each non-
preemptive region, as in the “floating” NPR model adopted
in [32]. When instead the position of the (last) NPR of
each task is known—i.e., under the “fixed” NPR model—
the theorem is only sufficient. An exact test could be derived
significantly complicating the analysis, adopting teclueis|
described in [7].

V. PROPOSED APPROACH
As explained in Section lll, limiting preemptions may

The inner inequality can be rewritten as a system of inequalsignificantly reduce the number of cache misses — so

ities, as follows:

A N @ <8)

1<i<n \i<k<n+1

Rewriting the system of inequalities,

A | A @=<p)),

1<k<n+1 \1<i<k
which is equivalent to

< c @™ < mi ;
VE|l<k<n+1l: ¢g*< 1213k{51},
proving the theorem. [ ]
Note that the definition of), can be rewritten in the
following iterative form (starting with@Q, = o0), for all
1<k<n+1:

Qr = min{Qx—_1, Bx—1}. (7)

that p; << p* — as well as the negative effects of
context switches, with a beneficial effect on the worst-case
timing behavior. On the other side, limiting preemptions
increases the blocking delay on higher-priority jobs, fags
jeopardizing the task set schedulability.

In this section, we present a method for placing preemp-
tion points inside the code of each task. In particular, the
number and the position of preemption points will be derived
as a function of the task parameters and the major sources
of overhead, with the objective of improving the task set
schedulability.

The algorithm starts by analyzing the feasibility of the
task set when preemption is disabled. If the task set is not
schedulable in non-preemptive mode, the algorithm searche
for preemption points that generate a feasible schedule, if
there exists one.

A. Worst-case parameters computation

From Equations (4) and (5) it is clear that the value of
B; depends on the worst-case execution tinigs which

We hereafter prove that the sufficient schedulability con-are significantly influenced by the number of cache misses

dition of Theorem 2 is also necessary un@er. Suppose
the test fails. Consider @, for which condition (6) evaluates
to false, i.e.,

max : 1
> min 1 — min a — E DBF;(a
(e i<k {ﬁl} a€A|D1<a<Dy rer j( )
J

Consider the point* € A that minimizes the RHS of the
above inequality. Theny*** > a* — 3 . DBF;(a"), and

g™ + ) DBF;(a*) > a*. (8)

T;ET
Consider a situation in which:

« all tasks with relative deadline< o*(< D) start
synchronously at = 0;

« task 7, enters its largest NPR of length** an
arbitrarily small amount of time before= 0. Sincery
is the only task executing befote= 0, it will always
be possible to build such a situation.

In the above conditions, the total demand(na*) is equal

of each taskr;. From Equation (1), it is possible to see
thatC; has a fixed component (equal f) and a variable
component that depends on the total number of preemptions
and cache misses. While intrinsic cache misses cannot be
avoided by any scheduling policy, extrinsic cache misses
can be reduced adopting a scheduling policy that decreases
the number of preemptions. However, large non-preemptive
regions increase blocking delays; hence finding the best
preemption points (PPs) analytically is rather difficultied

to the interdependencies between PPs and worst-case exe-
cution times, as well as between extrinsic cache misses and
data reusing patterns among different sections of code. To
simplify the problem, we assumed each PP in a tasko
cause a fixed overheag.

Under this assumption, we present a method that opti-
mally exploits the schedulability test of Theorem 2 to sklec
the PPs inside the code of each task in order to achieve
a schedulable condition. The proposed algorithm can be
summarized as follows:

« The algorithm starts with no preemption points for each
task, i.e., settingy; = 1 and ¢** = CNF, Vi, where

2

to the LHS of Equation (8). Therefore, the total demand CNP is the worst-case execution time of when it

exceeds the length of the interval, leading to a deadlins.mis

executes non-preemptively. This value can be found
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INSERTPP(T)
Initialize: {g™ «— CNP} |, 2% — 0,
{p;i — 1}, andQ; < oo.
1 for (@ : 1<i<mn)
2 Ci — CNP + (p; — 1)&
3 Computegs; using Equation (4) or (5);
4 Qi+1 — min{Qy, 5}
5 it (g7 > Qiy1)
6 if (PPLACE(Q;+1,7+ 1) =fal se)
7 return (I nf easi bl e)
endfor
8 return (Feasi bl e)

PRLACE(Qx, k)

Let & be the preemption overhead of, 1<k<n
and§, 41«0

if (Qr < &) return fal se

Place a PP im, at Q and after every@; — &x).

pk&’VQk fk—‘+1

QO = Qu
return (true)

abrh W NPEF

Figure 3. Algorithm for the optimal placement of PPs.

using timing analysis tools [30], without needing to take

into account preemptions.

e Then, 3; is computed by Equations (4) or (5) for
increasing indexes, that is, starting frgfn. Note that
B; depends only on th€’; of tasks with indexeg < i
(when computing3; in the EDF case,DBF;(a) = 0 for

all j > 4), given by CT* + (p; — 1)&;.

e Then, thl is computed fromB,<; using Theorem 2.
o If Q;41 is smaller than the maximum non-preemptive
region of 7,1, procedure PPACE(Q;t1,7 + 1) is
invoked to place the least number of PPs7in; to
guaranteez;;* < Q1. This is achieved by placing
a first PP afterQZH time-units of (non-preemptive)
execution from the beginning af, ;. To account for
the preemption overhead, further PPs are placed after

(Q;1+1 — &i41) time-units, until the end of the code.

o If PPLACE(Q;+1,7 + 1) returns false, the algorithm
stops, declaring the task set infeasible. The failing
because, i) < &, then the execution time available
to 7 is entirely dedicated to the preemption overhea

« When all@Q; values have been successfully checked, th
algorithm returns, having guaranteed the schedulabilit

condition of PRACE(Qy, k) is

of the task set.

éagy fortask&l, ..
)ﬁmd INSERTPP(T(J)) so that there is no change in afy,

Theorem 3. Procedure INSERTPP(7) is correct.

Proof: If the procedure succeeds, eagh will be larger

than or equal to the maximum non-preemptive regjpf*
of each taskry,i < k < n, and, > Q.11 > 0. Note
that, both in theeDF and in theFp cases, thes; value
computed at line 3 of the algorithm depends only @n
values withj < ¢ (as well as on deadlines and periods, which
cannot change). Since none of these values may change in
the next iterations (because PPs are inserted only into the
code of tasksy;), all 8;, and therefore&),, 1, are correctly
computed. By Theorems 1 and 2, the correctness of the
procedure is assured. [ ]

Having proved the correctness oiderTPP(7), we now
show that the PP placement is optimal unger scheduling,
meaning that if the algorithm fails, then any other possible
PP placement leads to an unfeasible schedule.

Theorem 4. Procedure INSERTPP(7) is optimal under EDF.

Proof: Suppose, by contradiction, there is a feasi-
ble task setr for which procedure NSERTPPF(7) fails.
Then, there is at least one task for which procedure
PPR.ACE(Qy, k) fails. Let 7, be the task with the smallest
index for which the procedure falls and I8t be the value
that minimizesQy, i.e.,i = argmln —1{B;}. As previously
mentioned, 3; is a functlon of the worst-case execution
times, deadlines and periods of all tasks;. While the
latter values D, andTj;) are fixed, the execution times;
may vary for different placements of PPs in the code of each
task 7;. Note thatg; is a decreasing function of afl'’;<;.
We now prove by induction that procedureSERTPPF(7)
allows finding the smallest valu€s;<;, among PP allocation
strategies that are feasible. Thereforerifs feasible, the
largest possibles; is found with INSERTPP(7). If such a
value is too small (or even negative), so that no PP placement
can be found for a tasky., to satisfy ¢gi*** < §;, then
this latter condition will be violated by any other possible
strategy, since it cannot lead to a larggr Therefore,r is
not feasible, reaching a contradiction.

Base case: Independently of the number of PPs, task
71 IS always executed non-preemptively, both ungieand
under EDF. Note that procedureNISERTPP(7) does not
insert any PP inr, leading to the smallest possible value

1.
Inductive step: Let j < i. Assume NSERTPP(7U—1))
obtained the schedulability of the reduced taskrsét?) =
{71,...,7j—1}, minimizing the worst-case execution times
C1,...,Cj—1. We will prove that NSERTPP(7()) obtains
as well the schedulability of the set’) = 701 u {7;},
m|n|m|2|ng C;. Itis easy to see that the PP allocation strat-
,Tj—1 is the same forNSERTPP(7(7—1))

gex, for 1 < k < j — 1. SincerU~Y was schedulable,
the schedulab|llty ofr) can be obtained, by Theorem 2,

The pseudo-code of the algorithm is summarized inif ¢*** < @Q; = min{f;<;}. By the inductive hypothesis,
Figure 3. We hereafter prove the correctness of procedurthe procedure obtains the largest possible values for each

INSERTPP(7) in deriving a schedulable condition. Then, we Bi<; (sinceCy, ...

will show the optimality of the adopted method.

,C;—1 are minimized). Hence, no other
possible PP aIIocat|0n for tasks 70U~ can result in
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a larger Q; = min{fB<;}. Since Q; is a tight bound  scpp acE L
on the maximum NPR length in thedDF case, procedure (@, F)

PRLACE(Q;, j) places the least possible number of PPs to €t & be the preemption overhead of, 1<k <n

;. Since we assumed that each PPrpfcauses the same and¢, 1 — 0. Let BB; be the length of thé-th BB
overhead;, procedure PEACE(Q);, j) obtains the smallest than.n executes non preemptively.
possibleC;, proving the statement. [ ] Initialize: j «— 1; C «— BBy — &;.

Note that the optimality of procedures$ERTPP(7) de- 1 if (Qr < Ag) return fal se
pends on (i) the tightness of th€@; bounds computed 2 for BB; in {BB,, BBs,...}

with Equation (6), and (ii) the assumption on the identical 3 C—C+ BB;

preemption overheads of the PPs of each task. Regardingi if (C+ &> Qp)

the first point, as we explained in Section IV, condition (6) 5 Place a PP before theh BB
is necessary and sufficient only in tlE®F case. In therp 6 j=j+1

case, instead, condition (6) is tight only when the floating - C — BB,

NPR model is adopted. Otherwise, a larger boghdcould endfor

be derived considering the exact location of the last NPR 8 ppj

of 7. However, this would imply a much more complex
analysis, which is beyond the scope of this p&per
Regarding point (ii), the assumption on the preemption10
cost of each PP might be relaxed, using a more complex
timing analysis that considers data reusing patterns énsidFigure 4. Algorithm for the insertion of PPs in a task, so thatg;** <
the code of each task. Tighter estimations of the preemptiof+ is safisfied.
costs might be derived in this way, leading to an improved
placement of PPs [31]. Moreover, the worst-case execution ] ] S
time of each task could be further reduced ana|yzing hov\branph n the execution tree of a taSk, COﬂSlderlng the data
many PPs can effectively cause a preemption. If a tgsk and instructions accessed along each path. _
has a smallg; value, all lower priority tasks will have _ To simplify the problem, we will assume a set of Potential
frequent PPs. However, they cannot be preemptedr,by Preemption Points (PPP) be given, each one separating
more than once ever{; time units. Therefore, it may the execution of two consecutive non-preemptive chunks,
happen that most PPs won't lead to a preemption. To accouf@lled Basic Blocks (BB), forming a serial chain of BBs for
for this fact, the worst-case execution time of a taskat  €ach task. Each loop, conditional branch, critical section
line 1 of procedureNSERTPR(7) can be replaced by tighter Or non-preemptable section of code can be accommodated
expressions, derived adapting techniques from [28], [24]inside a BB. Smaller preemption overheggdscan be found
[25] to the limited preemption scheduling model adoptedinserting each PPP between sections of code that access
in this paper. few common memory locations. We define thenimum
Again, we believe these are very interesting problem, thagxecution granularity A, as the maximum “execution dis-
we intend to address in a future work. In the current papertance” between any two consecutive PPPs, including the
we instead assumed a fixed overhead for all preemptioRreemption delay. _
points of each task. We will show in our simulations that this Procedure DSCPRLACE(Qy, k), whose pseudocode is
assumption is not overly pessimistic, since the number ofhown in Figure 4, can be used instead of.REE(Qx, k)
inserted PPs is typically very small, even for heavily lahde When a set of PPPs is given. The procedure will try

systems, resulting in rather long non-preemptive regions. t0 minimize the number of PPPs that will be used for
the insertion of an actual Preemption Point (PP), without

violating the condition on the blockinggf®* < Q).
To do that, subsequent basic blocks will be progressively
The placement of PPs inside each task’s code is subjeciombined, starting from the first one, as long as the worst-
to constraints such as atomic instructions, critical sesti case execution time of the resulting NPR, including the
and non-preemptable sections of code in general. Moreovepreemption delay;, is smaller tharQ,. When the addition
requiring a task to be decomposable into a sequence aff the next basic block would cause the resulting WCET to
non-preemptive chunks of execution can be a too strongxceedy;, a new NPR is initiated with this block, and a PP
assumption, since task systems are generally better mbdelés inserted immediately before it. Note that no preemption
by a tree structure with loops and branches. An optimabelay is accounted for the first NPR, sinBé3; is decreased
placement of PPs would then require to go through eachy &,. The procedure continues until all BBs have been
assigned to a NPR. The failing condition is when the allowed
8As explained in [7], when the exact length of the last NPR ofiskt Q) iS smaller than the minimum execution granularity.
7y, is fixed and known a priori, the worst-case response timerofis The only modification needed to proceduresERTPP is

not necessarily given by the first instanceqf after a critical instant. A ;
necessary and sufficient schedulability condition woukhtheed to check at line 6, where procedure BRCE should be replaced by

a large number of possible arrival times fgy, resulting in a much more D|SCPH-AC_E- ) ) ]
complex schedulability condition. See [7] for further dista As explained in Section IlI-A, the preemption delgy of

9 q;cnd.x — maxﬁ)il{qk,i}
return (true)

VI. CONSIDERATIONS
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each taskr, can be bounded byr + o), plus the CRPD, no overhead. Schedulability under NP was verified using the
which is a function of the number of extrinsic cache missegest of Theorem 2, with*>* = C, = CKP for each task
experienced by, when resuming its execution. For a fully 7. When considering FP with preemption cost, we used the
associative cache, such number cannot be larger than (i) theguation of classical response time analysis, adding a fixed
total number of memory locations accessedrpyequal to  cost for each preemption. As shown in [9], the response
its footprint F,, and (ii) the total number of cache lifes time of 7, is given by the smallest fixed point of:

equal toL. Every other memory access is either a hit, or an R
intrinsic cache miss, which is not due to preemptions. The Ry = Z {_’C-‘ (CJNP + cost) .
total overhead introduced by each preemption on a task i<k T;

can be therefore bounded b
Y As in the classical analysis, we iterated the above equation

§e =7+ o +ymin{Fy, L} +n(min{F, L}), (9) until either convergence was reached or the response time

wherer, ¢ and~ can be found with a timing analysis of exceeded the deadline.

; ; - : The preemption cost is a crucial parameter when evaluat-
the architecture, an can be derived using techniques . . -
described in [21], [zg](.)Although the above bgund is rqather'ng the effectiveness of the proposed LP policy. We selected

pessimistic, its effect on the final worst-case executioreti }216 ;;ngfe'{hgflgslijeflself(())frC:](;PSWep(?r:iquet?éa?yaﬁﬂﬁ)lxzslg% ;che
is often limited, since the number of preemption points isanpavionic svstem compliant o ARI%%—G@g(schedulin
typically very small, as shown in our simulations. y P 9

The complexity of the proposed approach is pseudopolypart(ijtions can be as small @sns). Considering the widely
nomial, both in theeEDpF and in therFpP case. The main use querPC processor MPC7410 (with/B two-way
complexity lies in finding good estimations of tH@™P associative L2 cache), it would take ab@ib s to reload _
values that are needed as inouts for roceduﬂERTﬁ’P the whole L2 cache [20]; hence, in such scenario, execution
Anyway, timing analysis toolg are rr?uch more eﬁicienttime increment due to cache interference could be as big as
in finding worst-case estimations of these non-preemptivg55£‘\8/é ﬁj?btn?viz)}ﬁ\‘/?vea?\ré%so%t%: '[]hoe\zlvar\]/zrrz tre‘ev\foa;iiggga
execution times, rather than when needing to consider 8°° <=0 0 9

. . . i i — NP
preemptive situation. execution timeCi" = 37, Ci'F /n. _ _
The results are shown in Figure 5. The first three his-
VII. EXPERIMENTAL RESULTS tograms show the cases with= 10 tasks and aost of,

In this section, experimental results are presented basd§spectively,5% (a), 10% (b) and20% (c). As it is clear
on simulations. Randomly generated task sets were used fg°m the plotted graphs, NP and FP-without-cost policies
evaluate the effectiveness of the proposed limited-préigmp are not affected by a variation of the preemption cost. The
policy (procedure NSERTPP) in comparison with non- Superiority of LP_ policy over FP-with-cost is evident _under
preemptive and fully preemptive algorithms. We randomlya” three scenarios. Notice that the LP model a_chleves a
generated one thousand task sets and measured the effectipgtter schedulability ratio even when the preemption cost i
ness of each scheduling policy, analyzing the percentage @ 10w as5%. The performance of FP-with-cost deteriorates
schedulable task sets as a function of the system utilizatio Very quickly as the preemption cost increases, while LP is

More in detail, each task set was generated as follows. Th@lways close to the ideal case of FP w/o cost.
UUni Fast algorithm, described in [5], was used to generate In histogram (d), the preemption cost is setl@, as
each set ofn tasks with individual utilizations uniformly in (), while the number of tasks is increasedrto= 20.
distributed with a given total utilizatior/;,;. The non-  The performance of FP-with-cost slightly deterioratesilevh
preemptive WCETCNT was generated as a random integerLP improves in terms of percentage of schedulable task
value uniformly distributed in 0, 150], computingT}, as  Sets. This is expected, because when the number of tasks
T, = CNP /U, The relative deadlind, was generated as Increases, each task has a larger slack, hence it can eolerat
a random integer value within the rangél* +0.8- (T, — @ larger blocking. Therefore, less preemption points are
CNPY, Tyl. needed in the task code, resulting in a smaller overhead. A

Due to space reasons, we include here only the results fgmilar argument can be applied to non-preemptive schedul-
fixed priority scheduling. The simulations fepF are very ~ ing: larger slacks and smaller worst-case execution times
similar. We considered four fixed priority scheduling poli- Imply a larger tolerance to non-preemptive blocking.
cies: non-preemptive (NP), the proposed limited-preempti
policy (LPp) usinpg pr(ocet)jure ELREE fully preeF;nptivep VIII. CONCLUSIONS
without preemption cost (FP w/o cost) and fully preemptive We presented an efficient algorithm to obtain the schedu-
with preemption cost (FP with cost). Task sets schedutgbili lability of a task set in a real-time system scheduled with
under FP without cost was calculated by using the classicé#P or EDF, using the limited preemption model. A proper
response time analysis, settitg, = CR", for all tasks number of preemption points is placed inside the code
71 € 7. It represents an (ideally) optimal scenario for fixed-of each task, in order to guarantee the feasibility of the
priority, since it has the minimum possible blocking, with task set, reaching an optimal compromise between small

9Tighter bounds can be found for set-associative or diregpmd caches. LOhttp://www.arinc.com/
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Figure 5.

blocking times and reduced preemption overhead. The pos-

Total Utilization

(d) n = 20, cost40%

Percentage of schedulable task sets vanyiagd the preemption cost.
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