
Partitioning parallel applications on multiprocessor reservations

Giorgio Buttazzo, Enrico Bini, Yifan Wu
Scuola Superiore Sant’Anna, Pisa, Italy
Email: {g.buttazzo,e.bini,y.wu}@sssup.it

Abstract—A full exploitation of the computational power
available in a multi-core platform requires the software to
be specified in terms of parallel execution flows. At the same
time, modern embedded systems often consist of more parallel
applications with timing requirements, concurrently executing
on the same platform and sharing common resources. To
prevent reciprocal interference among critical activities, a
resource reservation mechanism is highly desired in the kernel
to achieve temporal isolation.

In this paper, we propose a general methodology for par-
titioning the total computing power available on a multi-core
platform into a set of virtual processors, which provide a pow-
erful abstraction to allocate applications independently of the
physical platform. The application, described as a set of tasks
with precedence relations expressed by a directed acyclic graph,
is automatically partitioned into a set of subgraphs that are
selected to minimize either the overall bandwidth consumption
or the fragmentation of the partition (expressed by the so-called
“λ-factor” in uniform multiprocessor scheduling).

I. INTRODUCTION

Multi-core architectures provide an efficient solution to
the problem of increasing the processing speed with a
contained power dissipation. However, analyzing multi-core
systems is not trivial, and the research community is still
working to produce new theoretical results or extend the well
established theory for uniprocessor systems developed in the
last 30 years. Also, fully exploiting the computational power
available in a multi-core platform requires new programming
paradigms, which should allow expressing the intrinsic par-
allel structure of the applications in order to optimize the
allocation of parallel execution flows to different cores.

Moreover, the complexity of modern embedded systems
is growing continuously, and the software is often structured
in a number of concurrent applications, each consisting of
a set of tasks with various characteristics and constraints,
and sharing the same resources. In such a scenario, isolating
the temporal behavior of real-time applications is crucial to
prevent a reciprocal interference among critical activities.

Temporal isolation can be achieved through a Resource
Reservation technique [1], [2], according to which the CPU
processing capacity can be partitioned into a set of reserva-
tions, each equivalent to a virtual processor with reduced
speed. In particular, a reservation is a couple (Qk, Pk)
indicating that at most Qk units of time are available every
period Pk. This means that the virtual processor has an

This work has been partially supported by the ACTORS European project
under contract 216586.

equivalent bandwidth αk = Qk/Pk. The main advantage
of this approach is that an application allocated to a virtual
machine can be guaranteed in “isolation” (i.e., independently
of the other tasks in the system) only based on its timing
requirements and on the amount of allocated bandwidth.
In this way, overruns occurring in a task do not affect the
temporal behavior of the other tasks.

When moving to multiprocessor systems, however, the
meaning of reservations has to be revisited, and the research
community just started to address this issue. The most
natural abstraction of a multi-core platform is probably the
uniform multiprocessor model proposed by Funk, Goossens
and Baruah [3], where a collection of sequential machines
is abstracted by their speeds. In this paper, the authors also
showed that a set of tasks scheduled by global EDF (with
migrations) and requiring an overall bandwidth of 120% has
higher chances to be successfully scheduled upon two virtual
processors with bandwidth 100% and 20%, rather than on
other two with the same bandwidth of 60%. However, when
no task migration is allowed, packing the bandwidth into
full reservations is not always the best approach. In fact,
consider a periodic application Γ consisting of 5 tasks with
computation times 1, 1, 5, 6, 6 and period equal to 10
(deadline = period). In this case, the bandwidth required
by the application is UΓ = 190%, and a feasible schedule
can be found using 3 reservations, equal to 80%, 60% and
50%. However, no feasible solution exists if the bandwidth
is provided by two reservations equal to 100% and 90%.

Otero et al. [4] applied the resource reservation paradigm
to interrelated resources (processor cycles, cache space, and
memory access cycles) to achieve robust, flexible and cost-
effective consumer products.

Shin et al. [5] proposed a multiprocessor periodic resource
model to describe the computational power supplied by a
parallel machine. In their work, a resource is modeled using
three parameters (P, Q, m), meaning that an overall budget
Q is provided by at most m processors every period P .

Leontyev and Anderson [6] proposed a multiprocessor
scheduling scheme for supporting hierarchical reservations
(containers) that encapsulate hard and soft sporadic real-
time tasks. Recently, Bini et al. [7] proposed to abstract
a set of m virtual processors by the set of the m supply
functions [8], [9], [10] of each virtual processors. In this
paper we borrow such an abstraction of a virtual multi-
core platform. In all these works, however, the application is
modeled as a collection of sporadic tasks, and no precedence

Proc. of the 22nd Euromicro Conference on Real-Time Systems (ECRTS 10), Brussels, Belgium, July 6-9, 2010.

relations are taken into account.
A more accurate task model (generalized multiframe

task) considering conditional execution flows, expressed by
a Directed Acyclic Graph (DAG), has been proposed by
Baruah et al. [11]. However, multiple branches outgoing
from a node denote alternative execution flows rather than
parallel computations.

The problem of managing real-time tasks with precedence
relations was addressed by Chetto et al. [12], who proposed
a general methodology for assigning proper activation times
and deadlines to each task in order to convert a prece-
dence graph into timing constraints, with the objective of
guaranteeing the schedulability under EDF. Their algorithm,
however, is only valid for uniprocessor systems and does not
consider the possibility of having parallel computations.

Partitioning and scheduling tasks with precedence con-
straints onto a multiprocessor system has been shown to
be NP-Complete in general [13], and various heuristic al-
gorithms have been proposed in the literature to reduce the
complexity [14], [15], [16], but their objective is to minimize
the total completion time of the task set, rather than guar-
anteeing timing constraints under temporal isolation. One
category of such algorithms, called List scheduling [15],
[14], is based on proper priority assignments to meet the
application constraints. Another technique, called Critical
Path Heuristics [13], [16], was developed to deal with non-
negligible communication delays between tasks. The idea
is to assigns weights to nodes to reflect their resource
usage and to edges to reflect the cost of inter-processor
communication, and then shorten the length of the Critical
Path of a DAG by reducing the communication between
tasks within a cluster.

Collette et al. [17] proposed a model to express the
parallelism of a code by characterizing all possible durations
a computation would take on different number of processors.
Schedulability is checked under global EDF, but no prece-
dence relations are considered in the analysis.

Lee and Messerschmitt [18] developed a method to stati-
cally schedule synchronous data flow programs, on single or
multiple processors. Precedence relations are considered in
the model, but no deadline constraints are taken into account
and temporal protection is not addressed.

Jayachandran and Abdelzaher [19] presented an elegant
and effective algebra for composing the delay of applications
modeled by DAGs and scheduled on distributed systems.
However, they did not provide temporal isolation among
applications.

Fisher and Baruah [20] derived near-optimal sufficient
tests for determining whether a given collection of jobs
with precedence constraints can feasibly meet all deadlines
upon a specified multiprocessor platform under global EDF
scheduling, so partitioning issues and resource reservations
are not addressed.

Contribution of this work: In this paper, we propose
a method for allocating a parallel real-time application,

described as a set of tasks with time and precedence con-
straints, on a multi-core platform. To achieve modularity
and simplify portability of applications on different multi-
core platforms, we abstract the virtual platform by the Multi
Supply Function (MSF) [7]. The advantage of using the
virtual platform MSF is that, if the hardware platform is
replaced with another one with a different number of cores,
the set of reservations does not need to be changed, and
only the server mapping to physical processors has to be
done. Also, to be independent of a particular reservation
algorithm, a virtual processor reservation is expressed by a
bounded-delay time partition, denoted by the pair (α, Δ),
where α is the allocated bandwidth and Δ is the maximum
service delay. This method, originally proposed by Mok
et al. [21], is general enough to express several types of
resource reservation servers.

To better exploit the existing parallelism available in the
computing platform, the application precedence graph is
partitioned into a set of flows, each consisting of a subset
of tasks to be sequentially executed on a virtual processor.
For each flow, we determine its computational requirements
and compute the minimum server bandwidth needed for
executing it. Since the bandwidth requirements depend on
the specific partition, the proposed method can be used to
identify the partition that minimizes a given cost function
(e.g., the overall bandwidth consumption or the application
fragmentation).

Organization of the paper: The rest of the paper is
organized as follows. Section II presents the system model,
the terminology and the notation used throughout the paper,
and recalls some background concepts. Section III describes
the proposed method for selecting the optimal reservation
parameters and the algorithm for partitioning the application
into flows. Section IV illustrates some experimental results
to validate the proposed approach. Finally, Section V states
our conclusions and possible extensions for a future work.

II. SYSTEM MODEL AND BACKGROUND

A real-time application is modeled as a set of tasks
with given precedence constraints, specified as a Directed
Acyclic Graph (DAG). Note that the DAG represents a
description of the application considering the maximum
level of parallelism. This means that each task represents a
sequential activity to be executed on a single core. Tasks can
be preempted at any time and do not call blocking primitives
during their execution.

A. Terminology and notation

First, to shorten the expressions, we may denote
max{0, x} as (x)0. Moreover, throughout the paper we
adopt the following terminology.

Application Γ: it is a set of n tasks with given
precedence relations expressed by a Directed Acyclic Graph
(DAG). The application is sporadic, meaning that it is
cyclically activated with a minimum inter-arrival time T
(also referred to as period) and must complete within a

Proc. of the 22nd Euromicro Conference on Real-Time Systems (ECRTS 10), Brussels, Belgium, July 6-9, 2010.

τ1 τ2 τ3

τ4 τ5

Figure 1. A sample application represented with a DAG.

given relative deadline D, which can be less than or equal
to T . This allows asserting that only one instance of the
application is running at any time.

Task τi: it is a portion of code that cannot be paral-
lelized and must be executed sequentially. τi can be pre-
empted at any time and is characterized by a known worst-
case execution time Ci > 0. τi is also assigned a deadline
di and an activation time ai relative to the activation of the
first task of the application. The assignment of deadlines and
activation times is investigated in Section III-A. Tasks are
scheduled by EDF.

Precedence relation R: it is formally defined as a
partial ordering R ⊆ Γ×Γ. Notation τi ≺ τj denotes that τi

is a predecessor of τj , meaning that τj cannot start executing
before the completion of τi. Notation τi → τj denotes that
τi is an immediate predecessor of τj , meaning that τi ≺ τj

and
τi ≺ τk ≺ τj ⇒ (τk = τi or τk = τj).

Figure 1 illustrates an example of DAG for an application
consisting of five tasks, with execution times:

C1 = 4, C2 = 1, C3 = 5, C4 = 2, C5 = 3.

The entire application starts at time t = 0 and is periodically
activated with a period T = 20. We consider a relative
deadline D equal to the period.

In addition, we define the following notation:
Path P : it is any subset of tasks P ⊆ Γ totally ordered

according to R; i.e., ∀τi, τj ∈ P either τi ≺ τj or τj ≺ τi.
Execution time function C(·): it is a function C :

P(Γ) → R that, applied to any subset A of Γ, returns the
total execution time of the tasks in A:

∀A ⊆ Γ C(A) def=
∑
τi∈A

Ci.

Sequential Execution Time C s: it is the minimum time
needed to complete the application on a uniprocessor, by
serializing all tasks in the DAG. It is equal to the sum of all
tasks computation times:

Cs def= C(Γ).

For the application illustrated in Figure 1, we have C s = 15.
Parallel Execution Time Cp: it is the minimum time

needed to complete the application on a parallel architecture
with an infinite number of cores. It is equal to

Cp def= max
P is a path

C(P). (1)

F1

F2

τ1 τ2 τ3

τ4 τ5

Figure 2. Parallel flows in which the application can be divided.

F1

F2
τ1 τ2 τ3

τ4 τ5

Figure 3. An alternate parallel flow selection.

Notice that the application relative deadline cannot be less
than Cp, otherwise it is missed even on an infinite number
of cores. For the application in Figure 1, we have C p = 10.

Critical path (CP): it is a path P having C(P) = Cp.
Virtual processor VPk: it is an abstraction of a se-

quential machine achieved through a resource reservation
mechanism characterized by a bandwidth αk ≤ 1 and a
maximum service delay Δk ≥ 0.

Flow Fk: it is a subset of tasks Fk ⊆ Γ allocated on
virtual processor VPk, which is dedicated to the execution
of tasks in Fk only. Γ is partitioned into m flows.

Flow computation time CF
k : it is the cumulative com-

putation time of the tasks in flow Fk:

CF
k

def= C(Fk).

Dividing an application into parallel flows allows sev-
eral options, from the extreme case of defining a single
flow for the entire application (where no parallelism is
exploited/necessary and all tasks are sequentially executed
on a single core) to the case of having a flow per task
(maximum parallelism). The way in which flows are defined
may affect the total bandwidth required to execute the
application. Hence, we now address the problem of finding
the best partition of flows that minimizes the total bandwidth
requirements.

Intuitively, grouping tasks into large flows improves
schedulability, as long as each flow has a bandwidth less than
or equal to one. To better explain each step of the process,
we consider a reference application consisting of five tasks,
previously illustrated in Figure 1. For this example, we
divide the application in two flows, as illustrated in Figure
2. Notice that there can be several ways for selecting flows
in the same application. An alternative solution is shown in
Figure 3.

Proc. of the 22nd Euromicro Conference on Real-Time Systems (ECRTS 10), Brussels, Belgium, July 6-9, 2010.

B. Demand Bound Function

Since EDF is used as a scheduler, here we recall the
concept of demand bound function that is used to esti-
mate the amount of required computational resource. The
processor demand of a task τi that has activation time ai,
computation time Ci, period Ti, and relative deadline di, in
any interval [t1, t2] is defined to be the amount of processing
time gi(t1, t2) requested by those instances of τi activated
in [t1, t2] that must be completed in [t1, t2]. That is [22],

gi(t1, t2)
def=

(⌊
t2 − ai − di

Ti

⌋
−

⌈
t1 − ai

Ti

⌉
+ 1

)
0

Ci.

The overall demand bound function of a subset of tasks
A ⊆ Γ is

h(A, t1, t2)
def=

∑
τi∈A

gi(t1, t2)

where we made it depend on the beginning and the length
of the interval.

As suggested by Rahni et al. [23], we can use a more
compact formulation of the demand bound function that
depends only on the length t of the time interval [t1, t1 + t]:

dbf(A, t) def= max
t1

h(A, t1, t1 + t). (2)

C. The (α, Δ) server

Mok et al. [21] introduced the “bounded delay partition”
to describe a reservation by the bandwidth α and the delay
Δ. The bandwidth α measures the amount of resource that is
assigned to the demanding application, whereas Δ represents
the worst-case service delay.

Before introducing the α and Δ parameters, it is necessary
to recall the concept of supply function [9], [10], that
represents the minimum amount of time that a generic virtual
processor can provide in a given interval of time.

Definition 1 (Def. 9 in [21], Th. 1 in [9], Eq. (6) in [24]):
Given a virtual processor VPk, its supply function Zk(t) is
the minimum amount of time provided by the reservation
in every time interval of length t ≥ 0.

The supply function can be defined for many kinds of
reservations, as static time partitions [21], [8], periodic
servers [9], [10], or periodic servers with arbitrary dead-
line [24].

Given the supply function, the bandwidth α and the delay
Δ can be formally defined as follows.

Definition 2 (compare Def. 5 in [21]): Given VPk with
supply function Zk, the bandwidth αk of the virtual pro-
cessor is defined as

αk
def= lim

t→∞
Zk(t)

t
. (3)

The Δ parameter provides a measure of the responsiveness,
as proposed by Mok et al. [21].

Definition 3 (compare Def. 14 in [21]): Given VPk with
supply function Zk and bandwidth αk, the delay Δk of the

virtual processor is defined as

Δk
def= sup

t≥0

{
t − Zk(t)

αk

}
. (4)

If the (α, Δ) server is implemented through a periodic
server [9], [10] that allocates a budget Qk every period
Pk, we have a bandwidth αk = Qk/Pk and a delay
Δk = 2(Pk − Qk). In practice, however, a portion of the
processor bandwidth is wasted to perform context switches
every time a server is executed. If σ is the run-time overhead
required for a context switch, and Pk is the server period,
the effective server bandwidth can be computed as:

Bk = αk +
σ

Pk
.

Expressing Pk as a function of αk and Δk we have

Pk =
Δk

2(1 − αk)
.

Hence,

Bk = αk + 2σ
1 − αk

Δk
. (5)

From previous results [10], we can state that a subset
A is schedulable on the virtual processor characterized by
bandwidth α and delay Δ, if and only if:

∀t ≥ 0 dbf(A, t) ≤ α(t − Δ)0. (6)

III. PARTITIONING AN APPLICATION INTO FLOWS

This section describes the method proposed in this paper
to determine the optimal partition of an application into
flows. A sample partition is depicted in Figure 4.

dbf(F1, t) dbf(F2, t) dbf(F3, t)

VP1 VP2 VP3

F1

F2

F3

τ1

τ2
τ3

τ4

τ5

τ6

τ7

τ8
τ9

Figure 4. A sample partition into three flows.

The possible partitions into flows are explored through a
branch and bound search algorithm, whose details are given
later in Section III-C.

For a given partition (i.e., selection of flows), we first
transform precedence relations into timing constraints by
assigning suitable deadlines and activation times to each
task, as illustrated in Section III-A.

Once deadlines and activations are assigned, the overall
computational requirement of each flow Fk is evaluated

Proc. of the 22nd Euromicro Conference on Real-Time Systems (ECRTS 10), Brussels, Belgium, July 6-9, 2010.

for all (nodes without successors) set Di = D;
while (there exist nodes not set) {

select a task τk with all successors modified;
set dk = min

j:τk→τj

(dj − Cj);

}

Figure 5. The deadline assignment algorithm.

through its demand bound function and the parameters of
the corresponding virtual processor VPk are computed, as
explained in Section III-B.

Then, if the objective is to minimize the total bandwidth,
the overall bandwidth required by the entire partition is
computed by summing the bandwidths computed for each
flow using Equation (5) and, finally, the partition with the
minimum bandwidth is determined as a result of the branch
and bound search algorithm. A different metrics is also
presented in Section III-C to minimize the fragmentation
of the application.

A. Assigning deadlines and activations

Given a partition {F1, . . . , Fm} of the application into m
flows, activation times ai and the deadlines di are assigned to
all tasks to meet precedence relations and timing constraints.
The assignment is performed according to a method origi-
nally proposed by Chetto-Silly-Bouchentouf [12], adapted
to work on multi-core systems and slightly modified to
reduce the bandwidth requirements. The algorithm starts by
assigning the application deadline D to all tasks without
successors. Then, the algorithm proceeds by assigning the
deadlines to a task τi for which all successors have been
considered. The deadline assigned to such a task is

di = min
j:τi→τj

(dj − Cj) (7)

The pseudo-code of the deadline assignment algorithm is
illustrated in Figure 5.

For the application shown in Figure 1, considering that
the overall deadline is D = T = 20, by applying the
transformation algorithm, we get:

d3 = 20
d5 = 20
d2 = min(d3 − C3, d5 − C5) = min(15, 17) = 15
d4 = d5 − C5 = 17
d1 = min(d2 − C2, d4 − C4) = min(14, 15) = 14.

Activation times are set in a similar fashion, but we
slightly modified the Chetto-Silly-Bouchentouf’s algorithm
to take into account that different flows can potentially
execute in parallel on different cores. Clearly, τ i cannot be
activated before all its predecessors have finished.

Let τj be a predecessor of τi and let Fk be the flow
τi belongs to. If τj ∈ Fk , then the precedence constraint is
already enforced by the deadline assignment given in Eq. (7).

for all (nodes without predecessors) set ai = 0;
while (there exist nodes not set) {

select a task τk with all predecessors modified;
set ai = max {aprec

i , dprec
i }

}

Figure 6. The activation assignment algorithm.

Hence, it is sufficient to make sure that τi is not activated
earlier than τj . In general, we must ensure that

ai ≥ max
τj→τi,τj∈Fk

{aj} def= aprec
i . (8)

On the other hand, if τj /∈ Fk, we cannot assume that τj

will be allocated on the same physical core as τi, thus we
do not know its precise finishing time. Hence, τi cannot be
activated before τj deadline, that is

ai ≥ max
τj→τi,τj /∈Fk

{dj} def= dprec
i . (9)

In general, ai must satisfy both (8) and (9). Moreover a i

should be as early as possible so that the resulting demand
bound function is minimized [22]. Hence, we set

ai = max {aprec
i , dprec

i } . (10)

Notice that, since dprec
i depends on tasks belonging to other

flows, it can be aprec
i > dprec

i .
The algorithm starts by assigning activation times to root

nodes, i.e., tasks without predecessors. For such tasks, the
activation time is set equal to the application activation time
that we can assume to be zero, without loss of generality.
Then, the algorithm proceeds by assigning activation times
to a task for which all predecessors have been considered.
Figure 6 illustrates the pseudo-code of the algorithm.

Indeed, the transformation algorithm proposed by Chetto,
Silly, and Bouchentouf was designed to guarantee the
precedence constraints, regardless of the processor demand.
In fact it assigns deadlines as late as possible. However
activations may coincide with some deadline as well. If an
activation is too close to the corresponding deadline, then the
demand bound function can become very large. To address
this issue, in this work we propose an alternative deadline
assignment that reduces the processor demand of the flow by
distributing tasks deadlines more uniformly along the time
line. If Cp is the computation time of a critical path and U p

is defined as

Up =
Cp

D

we propose to assign task deadlines as follows:

di = min
j:τi→τj

(dj − Cj/Up) (11)

instead of according to Eq. (7).
Experimental results reported in Section IV show that

the modified assignment (referred to as Chetto*) is able
to achieve better performance with respect to the classical

Proc. of the 22nd Euromicro Conference on Real-Time Systems (ECRTS 10), Brussels, Belgium, July 6-9, 2010.

Chetto assignment, especially for applications with complex
precedence relations.

The following lemma shows that such a deadline as-
signment is sound, in the sense that all relative deadlines
are greater than the cumulative computation times of the
preceding tasks in a path.

Lemma 1: If each task τi of a path P is assigned a relative
deadline

di = min
j:τi→τj

(dj − Cj/Up)

where U p = Cp/D, then it is guaranteed that all the tasks
in P have relative deadlines greater than the cumulative
execution time of the preceding tasks, that is

di ≥
∑

τk∈P,τk≺τi

Ck.

Proof: Given any node τi, let τi+1, τi+2, . . . , τL be the
sequence of successors of τi such that τL is a leaf node
(hence dL = D) and

∀j = i, . . . , L − 1 dj = dj+1 − Cj+1/Up.

Then we have:

di = di+1 − Ci+1

Up
= D −

∑L
j=i+1 Cj

Up
.

If P is a path including τi, τi+1, . . . , τL, we can write:

di = D − C(P) − ∑i
j=1 Cj

Up
= D − C(P)

Up
+

∑i
j=1 Cj

Up

and since U p = Cp/D we have

di = D − C(P)
Cp

D +

∑i
j=1 Cj

Up
.

Since C(P) ≤ Cp for any P , and Cp ≤ D, we have:

di ≥
∑i

j=1 Cj

Up
≥

i∑
j=1

Cj .

Thus, the lemma follows.
For the application shown in Figure 1, we have that:

a1 = 0
D = T = 20

Cp = 10
Cs = 15

Up =
Cp

D
= 0.5

Hence, the proposed transformation algorithm (Eq. (11))
produces the following deadline assignment:

d3 = 20
d5 = 20
d2 = min(20 − 5/0.5, 20− 3/0.5) = min(10, 14) = 10
d4 = 20 − 3/0.5 = 14
d1 = min(10 − 1/0.5, 14− 2/0.5) = min(8, 10) = 8.

If, for example, we select the flows F1 = {τ1, τ2, τ3} and
F2 = {τ4, τ5}, the activation times result to be:

a1 = 0
a2 = 0
a3 = 0
a4 = d1 = 8
a5 = max(a4, d2) = max(8, 10) = 10

The demand bound functions of the two flows are derived
according to Equation (2) and are illustrated in Figure 7 and
Figure 8, respectively.

d1 d2 d3a0

20

5

2

4

6

8

10

t
0 10 15 20

8 10
dbf(F1, t)

Figure 7. Demand bound function of flow F1.

0 d5d4a4 a5

2

4

0 105

a

8 10 2014

2

4

6

10 1550 t

t

2

4

t

0 105 15

h(F2, a4, a4 + t)

h(F2, a5, a5 + t)

dbf(F2, t)

Figure 8. Demand bound function of flow F2.

B. Bandwidth requirements for a flow

Once activation times and deadlines have been set for all
tasks, each flow can be independently executed on different
virtual processors under EDF, in isolation, ensuring that
precedence constraints are met.

To determine the reservation parameters that guarantee
the feasibility of the schedule, we need to characterize
the computational requirement of each flow. By using the

Proc. of the 22nd Euromicro Conference on Real-Time Systems (ECRTS 10), Brussels, Belgium, July 6-9, 2010.

demand bound function defined in Equation (2) we have
that a flow F is schedulable on the virtual processor VP
characterized by bandwidth α and delay Δ if and only if:

∀t ≥ 0 dbf(F, t) ≤ α(t − Δ)0. (12)

Now the problem is to select the (α, Δ) parameters among
all possible pairs that satisfy Eq. (12). We propose to select
the pair that minimizes the bandwidth B used by the virtual
processor, as given by Eq. (5), which accounts for the cost
of the server overhead. Hence, the best (α ,Δ) pair is the
solution of the following minimization problem:

minimize α + ε
1 − α

Δ
subject to dbf(F, t) ≤ α(t − Δ)0, ∀t ≥ 0,

(13)

with ε = 2σ.
This problem has been shown [25] to have a very efficient

solution that exploits the convexity of the domain and the
quasiconvexity of the cost function. Hence we adopt the
solution proposed in [25].

C. The branch and bound algorithm

This section illustrates the algorithm used for selecting the
best partition of the application into flows. Two different ob-
jectives have been considered in the optimization procedure.

As a first optimization goal, we considered minimizing the
overall bandwidth requirement of the selected flows, that is

B =
m∑

k=1

Bk =
m∑

k=1

(
αk + 2σ

1 − αk

Δk

)
. (14)

Clearly, the number m of flows has to be determined as well.
As a second optimization goal, we considered minimizing

the fragmentation of a partition, defined as

β = max
k=1,...,m

∑m
i=k Bi

Bk
, (15)

where the bandwidths B1, . . . , Bm are assumed to be or-
dered by non increasing values. The selection of this metric
is inspired by the global EDF test on uniform multiproces-
sors [3]. In fact, in uniform multiprocessor scheduling, if
B1 ≥ B2 ≥ . . . ≥ Bm are the speeds of the processors, a
platform with a low value of β has higher chance to schedule
tasks due to the lower degree of fragmentation of the overall
computing capacity1.

To show the benefit of adopting the cost of Equation (15),
let us consider a virtual platform with m identical proces-
sors, each providing Bk = B/m. While the cost according
to Eq. (14) is B, hence independent of the number of virtual
processors, the cost according to Eq. (15) is m. It follows
that the minimization of β leads to the reduction of number
of flows in which the application is partitioned. Nonetheless,
the minimization of β also implicitly implies the selection

1Notice that in [3] the authors use λ = β − 1 to express the parallelism
of the platform.

of a partitioning with low overall bandwidth requirement B.
In fact we have that

B =
m∑

i=1

Bi ≤
∑m

i=1 Bi

B1
≤ max

k=1,...,m

∑m
i=k Bi

Bk
= β.

Hence β is also an upper bound of the overall bandwidth
B, and a minimization of β leads indirectly to the selection
of a low value of B as well.

The search for the optimal flow partition is approached
by using a branch and bound algorithm, which explores the
possible partitions by generating a search tree as illustrated
in Figure 9.

.........

1 3 22 31 2 31

21

1

1 2

2 312 31

Figure 9. The search tree.

At the root level (level 1), task τ1 is associated with flow
F1. At level 2, τ2 is assigned either to the same flow F1

(left branch) or to a newly created flow F2 (right branch).
In general, at each level i, task τi is assigned either to one
of the existing flows, or to a new created flow. Hence, the
depth of the tree is equal to the number n of tasks composing
the application, whereas the number of leaves of the tree is
equal to the number of all the possible partitions of a set of
n members, given by the Bell Number bn [26], recursively
computed by

bn+1 =
n∑

k=0

(
n

k

)
bk =

n∑
k=0

n!
k! (n − k)!

bk. (16)

To reduce the average complexity of the search, we use
some pruning conditions to cut unfeasible and redundant
branches for improving the run-time behavior of the algo-
rithm.

We first observe that if, at some node, there is a flow Fk

with bandwidth greater than one

Bk ≥
∑

τi∈Fk

Ci

T
> 1 (17)

then the schedule of the tasks in that flow is unfeasible, since∑
τi∈Fk

Ci > T ≥ D. (18)

Hence, whenever a node has a flow with bandwidth greater
than one, we can prune the whole subtree, since no feasible
partitioning can be found in the subtree. Moreover, the
pruning efficiency can be further improved by allocating
tasks by decreasing computation times, because this order

Proc. of the 22nd Euromicro Conference on Real-Time Systems (ECRTS 10), Brussels, Belgium, July 6-9, 2010.

allows pruning a subtree satisfying Eq. (17) at the highest
possible level.

The following lemma provides a lower bound on the
number of flows in any feasible partition:

Lemma 2: In any feasible partitioning, the number of
flows satisfies

m ≥
⌈

Cs

D

⌉
. (19)

Proof: In any feasible partitioning {F1, . . . , Fm}, we
have

C(Fk)
D

≤ 1. (20)

Adding equations (20) for all the flows, we have∑
k C(Fk)

D
=

Cs

D
≤ m

And since m is integer,

m ≥
⌈

Cs

D

⌉
.

Nonetheless, much of the complexity of the algorithm lies
in the horizontal expansion of the tree: in fact, the search tree
keeps adding possible new flows (at the rightmost branch)
even when the number of flows is higher than the parallelism
that can be possibly exploited by the application. Hence, we
prune a subtree when the number of flows exceeds a given
bound mmax. A tight value of mmax is not easy to find, hence
we adopted the following heuristic value:

mmax =
⌈
δ
Cs

D

⌉
(21)

where δ ≥ 1 is a parameter for tuning the size of the
search tree. A value of δ close to one allows a significant
improvement in terms of execution time, but at the price
of losing optimality. Larger values of δ permit reaching
optimality with reasonable execution times. As illustrated in
the next section, our simulation results show that the optimal
solution is often achieved with δ ≤ 2.

IV. EXPERIMENTAL RESULTS

To illustrate the effectiveness of the proposed search al-
gorithm, in this section we present a number of experiments
aimed at comparing the performance of the produced solu-
tion (in terms of number of flows and required bandwidth)
and the efficacy of the pruning rules (in terms of reducing
the number of steps).

In a first experiment, we considered the application shown
in Figure 4, consisting of n = 9 tasks with computation
times C1 = 2, C2 = 3, C3 = 5, C4 = 3, C5 = 4,
C6 = 3, C7 = 6, C8 = 5, and C9 = 6. From the DAG of
the application, it results that the sequential execution time
is Cs = 37 and the parallel execution time is C p = 12,
corresponding to the critical path P = {τ6, τ8, τ5}. Notice
that the ratio π = Cs/Cp provides an indication of the
maximum level of parallelism of the application. In this
example, we have π
 3.08. Clearly, when the application

deadline D is less than Cp, the schedule is infeasible on any
number of cores, whereas when D = C p = 12, the number
of cores cannot be less than 4 (see Lemma 2).

Figure 10 reports the bandwidth B required by the optimal
partition (including the context switch overhead σ), as a
function of the application deadline D (ranging from C p to
Cs), using the first optimization goal expressed by Eq. (14).
The figure also reports the minimum theoretical bound
Cs/D (without overhead) and the worst-case bandwidth
obtained by selecting one flow per task. Notice that the
solution found by the algorithm is always very close to the
ideal one and significantly better than the worst-case curve.

15 20 25 30 35
1

2

3

4

5

6

7

8

D (application deadline)

B
 (

to
ta

l b
an

dw
id

th
)

Worst−case
By Search (σ = 0.8)
By Search (σ = 0.4)
By Search (σ = 0)
Theoretical

Figure 10. Total bandwidth as a function of the application deadline.

Considering the second optimization goal, expressed by
the cost function reported by Eq. (15), Figure 11 reports the
optimal β achieved by the search algorithm, as a function
of the application deadline, for different values of σ.

15 20 25 30 35

1

1.5

2

2.5

3

3.5

4

D (application deadline)

β

σ = 0.8
σ = 0.4
σ = 0

Figure 11. β as a function of the application deadline.

The difference between the bandwidth achieved by the
second and the first optimization goal was also measured, but
it was never found larger than 0.12. Hence, in the following
experiments β was used as a performance metrics, since also

Proc. of the 22nd Euromicro Conference on Real-Time Systems (ECRTS 10), Brussels, Belgium, July 6-9, 2010.

aimed at reducing fragmentation among different cores.
To test the run-time behavior of the search algorithm and

the efficiency of the pruning rule, we ran another experi-
ment with a fully parallel application (i.e., no precedence
relations) with random computation times, generated with
uniform distribution in [1,10]. The application deadline was
set between Cp and Cs, with a value D = (Cp + Cs)/2.
The run-time behavior of the algorithm was monitored by
counting the number of steps for reaching a solution, as
a function of the number of tasks, for different values of
the pruning parameter δ. The results of this experiment are
shown in Figure 12, which clearly shows that a considerable
amount of steps are saved when small values of δ are used.
It is worth mentioning that using a small value of δ results
in negligible bandwidth loss. Intuitively, this can be justified
by considering that a high number of flows often requires a
high total B.

5 6 7 8 9 10

10
1

10
2

10
3

10
4

10
5

n (number of tasks)

N
um

be
r

of
 S

te
ps

Bell number
no pruning (δ = ∞)
δ = 2
δ = 1.5
δ = 1

Figure 12. Run-time of the algorithm as a function of n.

To investigate the effectiveness of the proposed method
for assigning deadlines (denoted as Chetto*), other two
tests were performed against the original Chetto’s method
(denoted as Chetto) and Simulated Annealing (denoted as
SA). An application with 16 tasks was generated, with
computation times uniformly distributed in [1,10]. The tasks
were connected with 25 precedences, giving C p = 27.6,
Cs = 87.7 and π
 3.18. The application deadline was set
to 42.

The first test was aimed at monitoring β as a function
of the complexity of the precedence graph, measured as
the number of the precedence links. At each step of the
simulation, a random precedence link in the application was
dropped, excluding those in the critical path, which was kept
during the whole simulation to keep U p constant. Then, the
optimal β was computed using the three deadline assignment
methods. Each point on the graph, was computed as the
average on 10 simulations (differing on the sequence of
random precedence link deletions). The result of this first test
are reported in Figure 13, which shows that β increases with
the number of precedence links. However, the β obtained by

Chetto* is smaller than that achieved by Chetto and close to
the value found by simulated annealing. Differences become
more significant as the number of precedence links increases.

5 10 15 20 25
2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

Number of precedences in the application

β

 Chetto
 Chetto*
 SA

Figure 13. β as a function of precedence number.

The second test was aimed at evaluating the gap between
Chetto* and SA, as a function of the application deadline. All
25 precedence links were kept, and the application deadline
was varied from 27.6 to 97.6 with steps of 2.5. The results
reported in Figure 14 show that the difference of β obtained
by Chetto* and SA is quite small, meaning that the proposed
deadline assignment method is close to the optimal deadline
assignment, and can be confidently used in practice.

30 40 50 60 70 80 90

1

1.5

2

2.5

3

3.5

4

D (application deadline)

β

Chetto*
SA

Figure 14. Comparison of Chetto* and SA.

V. CONCLUSIONS

This paper presented a general methodology for allocating
a parallel real-time application to a multi-core platform
in a way that is independent of the number of physical
cores available in the hardware architecture. Independence
is achieved through the concept of virtual processor, which
abstracts a resource reservation mechanism by means of two
parameters, α (the bandwidth) and Δ (the maximum service
delay).

Proc. of the 22nd Euromicro Conference on Real-Time Systems (ECRTS 10), Brussels, Belgium, July 6-9, 2010.

The major contribution of this work was the development
of an algorithm that automatically partitions the application
into flows, in order to meet the specified timing constraints
and minimize either the overall required bandwidth B or the
fragmentation β. The computational requirements of each
flow are derived through the processor demand criterion,
after defining intermediate activation times and deadlines for
each task, properly selected to satisfy precedence relations
and timing constraints.

As a future work, we plan to extend the virtual processor
allocation algorithm under high throughput requirements,
achieved through pipelined executions, possibly using the
methods in [19]. We also plan to integrate the proposed
technique in a graphical tool for supporting the design of
parallel real-time applications on multi-core platforms.

REFERENCES

[1] C. W. Mercer, S. Savage, and H. Tokuda, “Processor capacity
reserves for multimedia operating systems,” Carnegie Mel-
lon University, Pittsburg, Tech. Rep. CMU-CS-93-157, May
1993.

[2] L. Abeni and G. Buttazzo, “Resource reservation in dynamic
real-time systems,” Real-Time Systems, vol. 27, no. 2, pp.
123–167, Jul. 2004.

[3] S. Funk, J. Goossens, and S. Baruah, “On-line scheduling on
uniform multiprocessors,” in Proceedings of the 22nd IEEE
Real-Time Systems Symposium, London, United Kingdom,
Dec. 2001, pp. 183–192.

[4] C. Otero Pérez, M. Rutten, L. Steffens, J. van Eijndhoven,
and P. Stravers, “Resource reservations in shared-memory
multiprocessor SoCs,” in Dynamic and Robust Streaming
in and between Connected Consumer-Electronic Devices,
B. S. P. Research, Ed. Netherlands: Springer, 2006, ch. 5,
pp. 109–137.

[5] I. Shin, A. Easwaran, and I. Lee, “Hierarchical scheduling
framework for virtual clustering multiprocessors,” in Proceed-
ings of the 20th Euromicro Conference on Real-Time Systems,
Prague, Czech Republic, Jul. 2008, pp. 181–190.

[6] H. Leontyev and J. H. Anderson, “A hierarchical multiproces-
sor bandwidth reservation scheme with timing guarantees,” in
Proceedings of the 20th Euromicro Conference on Real-Time
Systems, Prague, Czech Republic, Jul. 2008, pp. 191–200.

[7] E. Bini, G. C. Buttazzo, and M. Bertogna, “The multy supply
function abstraction for multiprocessors,” in Proceedings of
the 15th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications, Beijing,
China, Aug. 2009, pp. 294–302.

[8] X. Feng and A. K. Mok, “A model of hierarchical real-time
virtual resources,” in Proceedings of the 23rd IEEE Real-Time
Systems Symposium, Austin, TX, U.S.A., Dec. 2002, pp. 26–
35.

[9] G. Lipari and E. Bini, “Resource partitioning among real-
time applications,” in Proceedings of the 15th Euromicro
Conference on Real-Time Systems, Porto, Portugal, Jul. 2003,
pp. 151–158.

[10] I. Shin and I. Lee, “Periodic resource model for compositional
real-time guarantees,” in Proceedings of the 24th Real-Time
Systems Symposium, Cancun, Mexico, Dec. 2003, pp. 2–13.

[11] S. K. Baruah, D. Chen, S. Gorinsky, and A. K. Mok,
“Generalized multiframe tasks,” Real-Time Systems, vol. 17,
no. 1, pp. 5–22, Jul. 1999.

[12] H. Chetto, M. Silly, and T. Bouchentouf, “Dynamic schedul-
ing of real-time tasks under precedence constraints,” Real-
Time Systems, vol. 2, no. 3, pp. 181–194, Sep. 1990.

[13] V. Sarkar, Partitioning and Scheduling Parallel Programs for
Multiprocessors. Cambridge, MA, USA: MIT Press, 1989.

[14] T. L. Adam, K. M. Chandy, and J. R. Dickson, “A comparison
of list schedules for parallel processing systems,” Communi-
cations of the ACM, vol. 17, no. 12, pp. 685–690, 1974.

[15] H. El-Rewini and T. G. Lewis, “Scheduling parallel program
tasks onto arbitrary target machines,” Journal of Parallel and
Distributed Computing, vol. 9, no. 2, pp. 138–153, 1990.

[16] Y. kwong Kwok, I. Ahmad, and I. Ahmad, “Dynamic critical-
path scheduling: An effective technique for allocating task
graphs to multiprocessors,” IEEE Transactions on Parallel
and Distributed Systems, vol. 7, pp. 506–521, 1996.

[17] S. Collette, L. Cucu, and J. Goossens, “Integrating job paral-
lelism in real-time scheduling theory,” Information Processing
Letters, vol. 106, no. 5, pp. 180–187, May 2008.

[18] E. A. Lee and D. G. Messerschmitt, “Static scheduling of
synchronous data flow programs for digital signal processing,”
IEEE Transactions on Computers, vol. 36, no. 1, pp. 24–35,
1987.

[19] P. Jayachandran and T. Abdelzaher, “Delay composition alge-
bra: A reduction-based schedulability algebra for distributed
real-time systems,” in Proceedings of the 29th IEEE Real-
Time Systems Symposium, Barcelona, Spain, Dec. 2008, pp.
259–269.

[20] N. Fisher and S. Baruah, “The feasibility of general task
systems with precedence constraints on multiprocessor plat-
forms,” Real-Time Systems, vol. 41, no. 1, pp. 1–26, 2009.

[21] A. K. Mok, X. Feng, and D. Chen, “Resource partition for
real-time systems,” in Proceedings of the 7th IEEE Real-Time
Technology and Applications Symposium, Taipei, Taiwan,
May 2001, pp. 75–84.

[22] S. K. Baruah, R. Howell, and L. Rosier, “Algorithms and
complexity concerning the preemptive scheduling of periodic,
real-time tasks on one processor,” Real-Time Systems, vol. 2,
pp. 301–324, 1990.

[23] A. Rahni, E. Grolleau, and M. Richard, “Feasibility analysis
of non-concrete real-time transactions with edf assignment
priority,” in Proceedings of the 16th conference on Real-Time
and Network Systems, Rennes, France, Oct. 2008, pp. 109–
117.

[24] A. Easwaran, M. Anand, and I. Lee, “Compositional analysis
framework using EDP resource models,” in Proceedings of
the 28th IEEE International Real-Time Systems Symposium,
Tucson, AZ, USA, 2007, pp. 129–138.

[25] E. Bini, G. Buttazzo, and Y. Wu, “Selecting the minimum
consumed bandwidth of an EDF task set,” in Proceedings
of the 2nd Workshop on Compositional Real-Time Systems,
Washington, DC, U.S.A., Dec. 2009.

[26] G. Rota, “The number of partitions of a set,” American
Mathematical Monthly, vol. 71, no. 5, pp. 498–504, 1964.

Proc. of the 22nd Euromicro Conference on Real-Time Systems (ECRTS 10), Brussels, Belgium, July 6-9, 2010.

