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Abstract

Limited preemption models have been proposed as a
viable alternative between the two extreme cases of fully
preemptive and non-preemptive scheduling. In particular,
allowing preemption to occur only at predefined preemp-
tion points reduces context switch costs, simplifies the
access to shared resources, and allows more predictable
estimations of worst-case execution times. Current results
related to such a model, however, exhibit two major defi-
ciencies: (i) The exact response time analysis has a high
computational complexity; (ii) The maximum lengths of the
non-preemptive regions was not completely investigated in
all possible scenarios.

In this paper, we address the problem of scheduling
a set of real-time tasks having fixed priorities and fixed
preemption points. In particular, under specific but not
restrictive assumptions we simplified the feasibility analy-
sis and proposed an efficient feasibility test. Finally, an
algorithm for computing the maximum length of fixed
non-preemptive regions for each task is described, and
some simulation experiments are presented to validate the
proposed approach.

I. Introduction

Since the pioneering work of Liu and Layland [20],
a lot of research has been done in the area of real-time
scheduling to analyze and predict the schedulability of
a task set under different scheduling policies and task
models. Most of the available results have been derived
under a fully preemptive model, where every task can be
suspended in any point and at any time, in favor of a
task with higher priority. When context switch overhead is
ignored in the analysis, as done in most scheduling papers,
the fully preemptive model is more efficient in terms
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of processor utilization, and allows better schedulability
results.

In practice, however, arbitrary preemptions can intro-
duce a significant runtime overhead and may cause high
fluctuations in task execution times, so degrading system
predictability. In particular, three different types of costs
need to be taken into account at each preemption [13]. A
scheduling cost is due to the time taken by the scheduling
algorithm to suspend the running task, insert it into the
ready queue, switch the context, and dispatch the new
incoming task. A Pipeline cost is due to the time taken
to flush the processor pipeline when the task is interrupted
and the time taken to refill the pipeline when the task is
resumed. A cache-related cost is due to the time taken to
reload the cache lines evicted by the preempting task. This
time depends on the specific point in which preemption
occurs and on the number of preemptions experienced by
the task [1], [13].

Moreover, to avoid unbounded priority inversion when
accessing shared resources, preemptive scheduling re-
quires the implementation of specific concurrency control
protocols, such as Priority Inheritance, Priority Ceiling
[24] or Stack Resource Policy [2], which introduce addi-
tional overhead and complexity, whereas non-preemptive
scheduling automatically prevents unbounded priority in-
version.

On the other hand, fully non-preemptive scheduling is
too inflexible for certain applications and could introduce
large blocking times that would prevent guaranteeing the
schedulability of the task set.

To overcome such difficulties, different scheduling ap-
proaches have been proposed in the literature to avoid ar-
bitrary preemptions and limit the length of non-preemptive
execution.

1) Fixed Preemption Points (FPP). According to this
model, each task is divided into a number of non-
preemptive chunks (also called subjobs) by inserting
predefined preemption points in the task code. If a
higher priority task arrives between two preemption
points of the running task, preemption is deferred
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until the next preemption point.
2) Floating Non-Preemptive Regions (NPR). Another

approach is to define for each taskτi a maximum
interval Qi in which the task can execute non-
preemptively. Since the mode switching is triggered
by the arrival time of higher priority tasks, which is
unknown a priori, in this model, the non-preemptive
regions have no fixed start time, and are considered
to be “floating” in the task code.

3) Preemption Thresholds. A different approach for
limiting preemptions is based on the concept of
preemption thresholds, proposed by Wang and Sak-
sena [27] under fixed priority systems. This method
allows a task to disable preemption up to a specified
priority, which is called preemption threshold. Each
task is assigned a regular priority and a preemption
threshold, and the preemption is allowed to take
place only when the priority of arriving task is higher
than the threshold of the running task. This work has
been later improved by Regehr in [23].

From a practical point of view, using fixed preemption
points allows achieving higher predictability. In fact, by
properly selecting the preemption points in the code, it is
possible to reduce cache misses and context switch costs,
therefore improving the estimation of preemption overhead
and worst-case execution times [13].

τ2

τ1

QQ

t1 t2

(a) Floating non-preemptive region case.

τ2

τ1

t1 t2

(b) Fixed preemption point case.

Fig. 1. Floating NPR model vs. FPP model.

a) Motivating example 1.:To better explain the
difference between the floating non-preemptive region and
the FPP model, let us consider a simple task set scheduled
by these two policies, as depicted in Figure 1. Tasks are
assigned fixed priorities andτ2 has the lowest priority.
The gray part insideτ2 represents a special chunk of code
in which a preemption would generate a high preemption
cost. Suppose there are two instances ofτ1 arriving at time
t1 and t2, respectively.

Under the floating case (Figure 1(a)), whenτ1 arrives
at timet1, τ2 will not be preempted immediately, but will
switch to non-preemptive mode and continue forQ units

of time. Hence, the first preemption will take place during
the execution of the special chunk. For the same reason,
the second preemption will take place at timet2 +Q, very
close to the end ofτ2, leaving the final non-preemptive
region arbitrary small.

On the other hand, under the FPP case (see Figure 1(b)),
τ2 is divided into four non-preemptive regions and the
preemptions are only allowed at these three preemption
points. As showed in the figure, the special code chunk can
be incorporated into the third non-preemptive region, thus
it will never be preempted during its execution. Moreover,
the final non-preemptive region ofτ2 cannot be arbitrary
small, but has a fixed length decided at design time. For
this reason, the second job ofτ1 (arriving at t2) cannot
preemptτ2.

For the reasons explained above, in this paper we
consider a limited preemption model with fixed preemption
points (FPP). In this model, the length of the final non-
preemptive chunk plays a crucial role in reducing the task
response time. In fact, all higher priority jobs arriving
during the execution of the final chunk of the running
task do not cause a preemption, and their execution is
postponed at the end of the task.

b) Motivating example 2.:Let us consider a task set
consisting of 3 periodic tasks, with relative deadlines equal
to periods. The task set is described asT = {τ1, τ2, τ3} =
{(1, 4), (1, 6), (4, 12)}, where the first number represents
the task computation time and the second the period.

0 4 8 1 2

0 6 1 2

0 1 2

τ1

τ2

τ3

(a) Fully preemptive case.

0 4 8 1 2

0 6 1 2

0 1 2

τ1

τ2

τ3

(b) Fixed preemption case: with final subjob long 3.

Fig. 2. Fully preemptive vs. FPP.

Assuming a synchronous activation of the task set, the
schedule produced by Rate Monotonic in fully preemptive
mode is shown in Figure 2(a). As clear from the figure,
τ3 is preempted twice and has a response time equal to 8
units of time. However, if the last 3 units ofτ3 are executed
non preemptively, the two preemptions do not take place
and the response time reduces to 6, as shown in Figure
2(b). This simple example clearly shows that the last chunk
of a task, when executed in non-preemptive mode, can
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significantly reduce the interference from higher priority
tasks, thus reducing the task response time. However,
a long non-preemptive region can cause large blocking
to higher priority tasks, possibly jeopardizing the system
feasibility.

c) Contributions of the paper.:This work provides
four main contributions. First, we extend the task model
by considering the length of the longest and last non-
preemptive region in each task, in order to simplify feasi-
bility test of tasks with fixed preemption points. Second,
we identify the conditions under which the feasibility
check of a fixed-priority task set can be limited only to
the first instance of each task (instead of checking multiple
instances within a certain period, as proved by Bril et
al. [7]). Third, based on this result, we present an efficient
test to verify the feasibility of fixed priority tasks with
fixed non-preemptive regions, and finally, we present an
algorithm for computing a bound on the length of non-
preemptive chunks for each task, discussing how such a
bound varies as a function of the length of the final subjob.

d) Paper Organization.:The rest of the paper is
organized as follows. Section II presents some related
work. Section III introduces the new task model and the
methodology used in the paper. Section IV determines
the conditions under which the response time analysis
for the FPP model can be simplified. Section V presents
the feasibility test for fixed priority tasks with given
subjob division. Section VI illustrates the algorithm for
computing the maximum length of subjobs for each task
without violating the system feasibility. Section VII reports
some simulation results. Finally, Section VIII states our
conclusions and future work.

II. Related Work

Most work on non-preemptive scheduling has typically
focused on single-job models, where tasks have precedence
relations, are invoked only once, and must be completed
before a deadline [11], [12]. Non-preemptive tasks were
considered in the Spring Kernel [25], where a heuristic
algorithm was used to find a feasible schedule or reduce
the number of deadline misses.

A more general characterization of periodic tasks has
been considered in [16], [19]. In this model, tasks may
have a deadline smaller than or equal to the next release
time. For this more general model, Mok [21] has shown
that the problem of deciding schedulability of a set of
periodic tasks with mutually exclusive sections of code
is NP-hard.

Jeffay et al. [15] showed that non-preemptive schedul-
ing of concrete periodic tasks1 is NP-hard in the strong

1A concrete periodic task is a periodic task that comes with anassigned
initial activation.

sense. George et al. [14] provided comprehensive feasibil-
ity analysis on non-preemptive scheduling, however, the
authors assumed either a completely non-preemptive or a
fully preemptive model. Davis et al. [10] considered typical
applications of non-preemptive fixed priority scheduling on
a CAN bus, and presented the analysis to bound worst-case
response times of real-time messages.

Fixed priority scheduling with deferred preemptions,
allowed only at some predefined points inside the task
code, has been proposed and investigated by Burns [8],
who however did not address the problem of computing
the maximum length of non-preemptive chunks.

Under the floating model, Baruah [3] computed the
longest non-preemptive interval for each task that dose not
jeopardize the schedulability of the task set under EDF,
with respect to the fully preemptive case. Yao et al. [28]
addressed the same problem, but under fixed priorities.

Bril et al. [7] further improved the response time
analysis under this model. The authors identified a critical
situation that may occur in the presence of non-preemptive
regions, deriving the analysis to take such a phenomenon
into account. In particular, in certain situations, the exe-
cution of the last non-preemptive chunk of a taskτi can
delay the execution of one or some higher priority tasks,
which can later interfere with the subsequent invocations
of τi. Identifying such a situation, later referred to asself-
pushingphenomenon, requires a more complex test, since
the analysis cannot be limited to the first job of each task,
but it must be performed on multiple task instances within
a certain period. Furthermore, their work dose not address
the problem of how to compute the maximum length of
each chunk.

When taking preemption costs into account, the schedu-
lability analysis becomes rather complex, because cache-
related preemption delays (CRPDs) significantly increase
worst-case execution times [17], [26], which in turn affect
the total number of preemptions [22]. Under the FPP
model, however, the negative influence of CRPDs can be
alleviated by appropriately selecting the potential preemp-
tion points, and the total number of preemptions a task can
suffer is bounded by the number of preemption points.

The research presented in this paper is motivated by
the need of limiting both the number and the position of
preemptions to better estimate the preemption overhead,
reduce the worst-case execution times, and improve the
system design. Compared to previous related results [3],
[28], this work assumes fixed preemption points instead
of arbitrary positions (as illustrated in Figure 1), which
allows enhancing the schedulability analysis. Moreover, it
provides a method for computing the maximum length of
non-preemptive regions. However, the exact estimation of
preemption cost isnot within the scope of this paper, and
will be investigated in a future work.
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III. Task Model and Methodology

In this section, we present the task model and the
terminology used throughout the paper.

A. Task model

We consider a setT = {τ1, τ2, . . . , τn} of n periodic or
sporadic tasks that have to be executed on a uniprocessor
under fixed priority scheduling. Each taskτi is character-
ized by a worst-case execution time (WCET)Ci, a relative
deadlineDi, and a period (or minimum inter-arrival time)
Ti between two consecutive releases. Each task consists
of an infinite sequence of jobsτi,k (k = 1, 2, . . .) with
arrival time ri,k and absolute deadlinedi,k = ri,k + Di.
Tasks can be scheduled by any fixed-priority assignment
and are indexed by decreasing priority, meaning thatτ1

is the highest priority task. In particular, the following
notation is used in the paper:







hp(i) = {τj | j < i}
hep(i) = {τj| j ≤ i}
lp(i) = {τj| j > i}

We assume that every taskτi consists ofmi non-
preemptive chunks (subjobs), obtained by insertingmi−1
preemption points in the code. Thus, preemptions can only
occur at the subjobs boundaries. Thekth subjob has a
worst-case execution timeqi,k, henceCi =

∑mi

k=1 qi,k. In
particular, the last subjob of jobτi,k is denoted asFi,k.

To simplify the schedulability analysis, two additional
parametersqmax

i and qlast
i are introduced in the task

model: {

qmax
i = maxmi

k=1{qi,k}
qlast
i = qi,mi

(1)

The reasons for choosing these two values can be
summarized as follows:

1) Non-preemptive execution can possibly cause block-
ing to higher priority tasks and the feasibility of a
task τk is affected by the sizeqmax

i of the longest
subjob of each lower priority taskτi ∈ lp(k).

2) For task τi, the length qlast
i of the final subjob

directly affects its response time. In fact, all higher
priority jobs arriving during the execution ofτi’s
final subjob do not cause a preemption, since their
execution is postponed at the end ofτi (see the
examples in Figures 1(b) and 2(b)).

Therefore, we consider each task to be characterized by
the following 5-tuple:

{Ci, Di, Ti, q
last
i , qmax

i }.

The advantage of such a model will be shown through-
out the paper. In the following, the superscript P and FPP
will be used to denote that a specific parameter or function
refers to the preemptive and FPP model, respectively. In

this paper, any time valuet is assumed to be a non-negative
integer value representing the interval[t, t+1). Tasks may
access shared resources, provided that each critical section
is confined within one subjob. Preemption cost is ignored
in the schedulability analysis, however, it is worth pointing
out that by appropriately selecting the preemption points,
preemption cost can be reduced and estimated with higher
precision compared to arbitrary preemptions.

B. Critical instant

The feasibility check to determine whether a given task
τi is schedulable under a certain scheduling policy is done
under the worst-case scenario that leads to the largest
possible response time. The activation times of the tasks
causing the worst-case response time ofτi is defined as
the critical instant forτi [20].

When tasks have non-preemptive regions, Bril [6]
showed that the critical instant ofτi occurs when it is
released simultaneously with all higher priority tasks, and
the longest non-preemptive subjob of lower priority tasks
starts an infinitesimal time before the release ofτi.

Bril et al. [7] also showed that, when tasks have non-
preemptive regions at the end of their code, the worst-case
response time may not occur in the first job. Hence, the
feasibility of a task set cannot be checked by analyzing
only the first job of each task, as done in fully preemptive
systems, but it must be checked for multiple jobs within a
certain time interval, which introduces significant compu-
tation complexity.

C. Request bound function

Schedulability analysis is performed using therequest
bound functionRBF(τi, t), defined as the maximum cumu-
lative execution request that can be generated by jobs of
τi within an interval of lengtht from the critical instant.
In [18], it has been shown that

RBF(τi, t) =

⌈

t

Ti

⌉

Ci. (2)

The cumulative execution request of a taskτi and all
higher priority tasks over an interval of lengtht is therefore
bounded by:

Wi(t) = Ci +
∑

τj∈hp(i)

RBF(τj , t). (3)

A necessary and sufficient schedulability test for fixed
priority preemptive tasks was derived by Lehoczky et
al. [18], by checking whether for every taskτi there exists
a valuet ≤ Di such thatWi(t) ≤ t. This is stated in the
following lemma [18].
Lemma 1. A fixed-priority task set is feasible under fully
preemptive scheduling if and only if∀τi ∈ T , ∃t ≤ Di,
such that

Wi(t) ≤ t. (4)
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whereWi(t) is defined in Equation(3).
If t∗ is the smallest value that satisfies Equation (4),

then it corresponds to the worst-case response time.

D. Worst-case occupied time

As shown by Bril [7], the worst-case response time
of a job can be computed by considering theworst-case
occupied timeWOi(C), which is the longest possible span
of time from the job release till the time at which the
job starts or resumes its execution after the completion of
C units of computation time. Then, he showed that the
worst-case response timeWRi of a task can be expressed
in terms of worst-case occupied timeWOi by taking the
following limit from the left-hand side:

WRi(C) = lim
x↑C

WOi(x). (5)

whereWOi(x) is the smallestt ∈ R
+ that satisfies

t = x +
∑

τj∈hp(i)

(⌊

t

Tj

⌋

+ 1

)

Cj . (6)

Notice that, in Equation (6), the only difference with
respect to the worst-case response time is that the ceiling
function is replaced by the floor plus one. This essential
difference indicates that the response time is computed
when the job finishes its execution, regardless of whether
other higher priority tasks are released at the end, whereas
the occupied time also accounts for the higher priority jobs
arriving at the end of the current job’s execution.

For example, in the schedule illustrated in Figure 2, the
worst-case response time ofτ3 is 8 in Figure 2(a) and 6
in Figure 2(b), whereas its worst-case occupied time is 9
in both cases.

IV. Simplifying Conditions

In this section, we prove that, under the FPP model, the
feasibility test can be restricted to the first job of each task,
activated at its critical instant, if the following conditions
hold:

A1. (Constrained deadlines)Di ≤ Ti .
A2. (Preemptive feasibility) The task set is feasible

under a fully preemptive model.

Notice that these conditions are not restrictive and
are verified for most real-time applications. Burns and
Wellings also recognize their relevance in the analysis of
non-preemptive tasks [9], although not formally used to
derive the results. In this paper, we formally prove that
conditions A1 and A2 allow to simplify the feasibility test
by restricting the analysis to the first job of each task under
the critical instant. We first introduce the concept ofSelf-
Pushingphenomenon and derive a number of properties
under such a condition, then we prove the main theorem.

A. Properties of the self-pushing scenario

Definition 1. Under fixed-priority scheduling, aself-
pushingphenomenon on a taskτi is defined as the con-
dition in which there exists a jobτi,k, with k > 1, such
that its response time is larger than the first job under the
critical instant, that is:

∃k > 1, RFPP
i,k > RFPP

i,1 . (7)

Notice thatRFPP
i,k denotes the generic response time

of one job whileRFPP
i,1 is the one under critical instance.

Now, assume that there exists a self-pushing phenomenon
in task τi and let τi,k, k > 1 be the first job such that
RFPP

i,k > RFPP
i,1 . Let si,k andsi,k−1 be the start times of

final subjobFi,k andFi,k−1, respectively. Such a scenario
is illustrated in Figure 3, where the final subjobs are
depicted in gray. The following properties can be derived
on time interval[si,k−1, si,k].

τi

ri,k

τi,kτi,k−1

TiTi

ri,k−1

si,k−1
si,k

t

Fig. 3. The self-pushing phenomenon.

Property 1. The start timesi,k−1 cannot coincide with
the arrival time of tasks fromhp(i).

Proof: SinceFi,k−1 cannot be preempted during its
execution, let us consider the start timesi,k−1 of Fi,k−1. If
a higher priority job arrives when the final subjobFi,k−1

is about to start, then preemption will take place before
the execution ofFi,k−1; that is,Fi,k−1 will start executing
after that higher priority job. Hence, the property holds.

Property 2. The interval[si,k−1, si,k] is larger thanTi,
that is

si,k − si,k−1 > Ti.

Proof: According to the definition of self-pushing, we
have

RFPP
i,k = si,k + qlast

i − ri,k > RFPP
i,1 . (8)

Since τi,k is the first job experiencing self-pushing, for
τi,k−1 we have

RFPP
i,k−1 = si,k−1 + qlast

i − ri,k−1 ≤ RFPP
i,1 . (9)

Combining Equations (8) and (9), and noticing thatri,k ≥
ri,k−1 + Ti, we have

si,k − si,k−1 > ri,k − ri,k−1 ≥ Ti

which proves the property.
Property 3. The processor is always executing jobs

from hep(i) in [si,k−1, si,k].
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Proof: This can be proved by contradiction. Lett′ ∈
[si,k−1, si,k] be the first time instant in which the processor
is not executing tasks fromhep(i). Clearly, t′ cannot be
in [si,k−1, si,k−1 + qlast

i ], since Fi,k−1 starts executing
non-preemptively atsi,k−1. Also, since in[ri,k, si,k] τi,k

has remaining execution to be completed,t′ cannot be in
[ri,k, si,k]. Hence,t′ must be within(si,k−1 + qlast

i , ri,k).
All tasks from hp(i) arriving beforet′ must get finished
before that time, by definition oft′. If at or after time
instant t′, some tasks fromhp(i) and lp(i) are activated
or the processor becomes idle, the overall interference
(including blocking) will certainly be no greater than the
total delay experienced by the first job (which is activated
at the critical instant). Hence,RFPP

i,k ≤ RFPP
i,1 , which

contradicts the self-pushing assumption and proves the
property.

B. Simplified feasibility analysis

The following lemma uses the previous properties to
show that no self-pushing can occur when conditions A1
and A2 are verified.
Lemma 2. If the task set has constrained deadlines (A1)
and is preemptively feasible (A2), then no self-pushing phe-
nomenon can occur under the fixed-priority FPP model.

Proof: By contradiction. Assumeτi experiences a
self-pushing and letτi,k (k > 1) be the first job with
RFPP

i,k > RFPP
i,1 . We show that this contradicts the pre-

emptive feasibility or the constrained deadline assumption.
Consider a “synthetic” jobτ∗

i,s, consisting of the final
subjobFi,k−1 and jobτi,k excluding its final subjobFi,k,
i.e., τ∗

i,s

.
= Fi,k−1 ∪ (τi,k − Fi,k). Obviously,τ∗

i,s has the
same execution timeCi. Job τ∗

i,s is illustrated in Figure
4. We assume this job arrives at timesi,k−1. Since at this
time all tasks fromhp(i) are finished and subjobFi,k−1

can start, the synthetic job will also start upon arrival.

τi

τ∗
i,s

ri,kri,k−1

si,k−1 si,k−1+Ti

t

Fig. 4. Synthetic task instance τ∗
i,s.

From Property 2, the occupied time of this job, denoted
asOFPP

i (Ci), can be expressed:
OFPP

i (Ci) = si,k − si,k−1 > Ti. (10)

Under the FPP model, high-priority tasks arriving dur-
ing the execution of the final subjob are deferred to the
end of the running task. Since their start times are aligned
with the finish time of the current task, the occupied time
under the FPP model takes such interferences into account.

And since, from Property 3, in[si,k−1, si,k] the processor
is executing only tasks fromhep(i), job τ∗

i,s suffers no
blocking from lp(i). Therefore, the occupied time for this
job under P and FPP model will be the same, that is:

OP
i (Ci) = OFPP

i (Ci). (11)

Now, from Property 1, we know thatsi,k−1 cannot
coincide with the arrival of tasks fromhp(i), hence, the
worst-case for jobτ∗

i,s is that all tasks fromhp(i) arrive at
the same timeǫ(ǫ ↓ o) aftersi,k−1 and functionWOP

i (x)
is left-continuous atCi. Using Equation (5), we have:

WRP
i (Ci) = WOP

i (Ci) >= OP
i (Ci). (12)

Now, combining Equations (10), (11) and (12) together:

WRP
i (Ci) > Ti.

which means that a job with the same parameters as task
τi will have response time larger thanTi. This contradicts
the assumptions and proves the lemma.

Using Lemma 2, we can prove the following theorem.
Theorem 1. Given a preemptively feasible task set with
constrained deadlines, the task set is feasible under fixed
priority scheduling with FPP, if the first job of each task
is feasible under the critical instant.

Proof: From Lemma 2, we know that there is no self-
pushing phenomenon when tasks are preemptively feasible
and have constrained deadlines. Hence, for each taskτi,
the response time of any jobτi,k will be no greater than the
one of the first job at the critical instant. That is,RFPP

i,k ≤

RFPP
i,1 . Hence, if the first job of each task under the critical

instant is feasible, then all the forthcoming jobs will also
be feasible. The theorem follows.

It is worth pointing out that in the proof of Theorem 1
the value ofqlast

i is never used, meaning that the theorem
holds independently of the valueqlast

i .

V. Feasibility Analysis for the FPP Model

In this section, the result stated in Theorem 1 is used to
derive a test for checking the feasibility of a set of fixed
priority tasks under the FPP model.
Definition 2. For each taskτi, thesubjob allowanceαi is
the length of the longest subjob belonging to lower priority
tasks inlp(i). That is,

αi = max
τk∈lp(i)

qmax
k . (13)

whereqmax
n+1 = 0 for completeness.

Under fixed priority scheduling with FPP, the presence
of non-preemptive subjobs causes the following effects:

On one hand, the non-preemptive execution of any
subjob may cause a blocking time to higher priority tasks,
however, no job will be blocked after it has started and any
job can be blocked for at most once by subjobs belonging
to lower priority tasks. Therefore, the maximum blocking
time thatτi may experience is:
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Bi = lim
ǫ↓o

(αi − ǫ)+ (14)

whereǫ is an arbitrary small number to guarantee that sub-
job from lp(i) actually starts beforeτi. The downarrow in
the equation denotes the right-hand limit and the notation
x+ stands formax{x, 0}, indicating that the blocking time
cannot be negative.

On the other hand, since the final subjob cannot be pre-
empted by any other tasks, it will continue to completion
once started. Hence, checking the feasibility of a job is
equivalent to checking whether the final subjob can start
at leastqlast

i units of time before the deadline.
Taking into account these two effects, the cumula-

tive execution request under the FPP model, denoted as
WFPP

i (t), can be represented as:

WFPP
i (t) = (Ci − qlast

i ) +
∑

τj∈hp(i)

RBF(τj , t). (15)

Notice that the execution request ofτi’s final subjob (qlast
i )

is excluded inWFPP
i (t). The feasibility condition for

the task set usingWFPP
i (t) and αi is stated in the next

theorem.
Theorem 2. A preemptively feasible task set with con-
strained deadlines and given subjob division is schedulable
under fixed priority with FPP, if for each taskτi there exists
t ∈ (0, Di − qlast

i ] such that
WFPP

i (t) + αi ≤ t. (16)

whereWFPP
i (t) andαi are defined in Equation(15) and

(13), respectively.
Proof: We first prove the theorem for tasks with

αi = 0. If αi = 0, e.g., the lowest priority taskτn, the
blocking time due to lower priority tasks is zero. Since the
non-preemptive execution of subjobs will only possibly
reduce the interference and the blocking time is always
zero, hence the feasibility can be verified as in the fully
preemptive case independent of Equation (16).

When αi > 0, let t∗ be the earliest time that satisfies
Equation (16). Hence, there∃t∗ ≤ Di − qlast

i and:

WFPP
i (t∗) + αi = t∗.

Using Equation (2) and (15), this can be written as:

(Ci + αi − qlast
i ) +

∑

τj∈hp(i)

⌈

t∗

Tj

⌉

Cj = t∗.

which is equivalent to:

WRP
i (Ci + αi − qlast

i ) = t∗. (17)
Since in this proof allWR andWO functions refer to the
preemptive model, we omit the P superscript to simplify
the notation. The start time of the final subjob ofτi is
given by WOi(Ci + Bi − qlast

i ), whereBi is the actual
blocking time given by Equation (14). Hence, we have:

WOi(Ci+Bi−qlast
i )=lim

ǫ↓0
WOi(Ci+αi−ǫ−qlast

i ) (18)

According to Equation (5), we have:

lim
ǫ↓0

WOi(Ci+αi−ǫ−qlast
i ) = WRi(Ci+αi−qlast

i ) (19)

Combining Equations (17), (18) and (19) together:

WOi(Ci + Bi − qlast
i ) = t∗.

Therefore, the final subjob will start att∗ and finish at
t∗+qlast

i . Sincet∗ ≤ Di−qlast
i , the first job ofτi meets its

deadline and, from Theorem 1, we conclude the entire task
is feasible under FPP model. Hence the theorem follows.

Condition (16) does not need to be evaluated at every
t ∈ (0, Di − qlast

i ], but only at those values oft at which
RBF has a discontinuity, i.e.{t ∈ (0, Di − qlast

i ] | t =
k · Tj , k ∈ N and∀Tj, τj ∈ hp(i)}. Moreover, similarly
to the methods presented in [4], the number of points can
be further reduced to the following set:

T S(τi)
.
= Pi−1(Di − qlast

i ). (20)

wherePi(t) is defined by the following recurrent expres-
sion:

{

P0(t) = {t}

Pi(t) = Pi−1

(⌊

t
Ti

⌋

Ti

)

∪ Pi−1(t)
(21)

Theorem 2 allows finding the maximum length that
subjobs of tasks inlp(i) can have without jeopardizing the
feasibility of τi. Thus, from Equation (16), the maximum
possible valueαi for task , denoted asblocking tolerance
βi, results:

βi = max
t∈T S(τi)

{t−WFPP
i (t)}. (22)

Notice that the lowest priority taskτn will not be blocked
by any other tasks in the system, hence it becomes mean-
ingless to calculateβn. However, we keep this parameter
for the reason of completeness.
Corollary 1. Given a preemptively feasible task set with
constrained deadlines and a specific subjob division, the
task set is feasible under fixed priority if∀τi, i > 1

qmax
i ≤ min

τj∈hp(i)
{βj}. (23)

whereβj is given by Equation(22).
Proof: The corollary can simply be proved through

Theorem 2 and the definition of subjob allowance. Note
that qmax

1 is not used in the test sinceτ1 does not cause
blocking to any other task. Fori > 1, if qmax

i satisfies
Equation (23), then from the definition of subjob allowance
we know thatαj(τj ∈ hp(i)) will not exceedβj , hence
the schedulability is guaranteed by Theorem 2.

Notice that the schedulability for each taskτi itself is
verified by checking the value ofqmax

j (τj ∈ lp(i)), or
as the lowest priority task in the system, is automatically
guaranteed as the first part of the proof of Theorem 2. Us-
ing the value ofβi, we can derive the feasibility condition
for each task. The pseudo-code for the feasibility check is
presented in Algorithm 1. Line 2 sets the initial value for
τ1. Thefor-loop in Line 3 checks the task feasibility one
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by one, in decreasing priority order, using the condition
in Corollary 1. If the algorithm reaches Line 7, then
all the tasks will be feasible and the algorithm returns
true, otherwise, if there is a task withqmax

i exceeding
the maximum possible value (Line 4), it returnsfalse,
meaning that the task set cannot be guaranteed.

Input : {Di, Ci, Ti, q
max
i , qlast

i } for ∀τi ∈ T ,
preemptively feasible andDi ≤ Ti.

Output : Feasibility of the task set under FPP
begin1

β1 = D1 − C12

for i← 2 to n do3

if qmax
i > minτj∈hp(i){βj} then4

return “false”5

Calculateβi usingqlast
i by Equation (22)6

return “ true”7

end8

Algorithm 1 : Feasibility test for a given task set under
fixed priority with FPP.

VI. Bound of Subjob Length

In this section, we illustrate a method for computing
the maximum subjob length for each task under different
circumstances and we discuss how this length varies de-
pending on the length of the final subjob.

Let Qi be the maximum possible length that any subjob
belonging toτi can have, without jeopardizing the system
feasibility under FPP. Notice thatqmax

i andqlast
i represent

the actual lengths in the task code for a given subjob
division, whereasQi is the upper bound for such lengths.
Moreover,Qi is derived without considering the limitation
of the worst-case execution time, hence it can beQi > Ci.

Corollary 1 already provides a bound for the subjob
length ofτi. However, we now derive an efficient way to
computeQi recursively.

Since taskτ1 does not cause any blocking to other tasks
and it does not experience any interference, we set:

{

Q1 =∞
β1 = D1 − C1.

(24)

The next lemma shows how to deriveQi for the
remaining tasks in the system.
Lemma 3. Given a preemptively feasible task set with
constrained deadlines, the maximum length of subjob from
task τi, 2 ≤ i ≤ n that guarantees feasibility under FPP
is given by

Qi = min{βi−1, Qi−1} (25)

where βi−1 can be computed by Equation(22) and the
initial value for τ1 is given in Equation(24).

Proof: From Corollary 1, the subjobs length ofτi must
satisfy

qmax
i ≤ min

τk∈hp(i)
{βk}.

So the upper bound of the subjob length ofτi is given by

Qi = min
τk∈hp(i)

{βk}. (26)

Noting that

min
τk∈hp(i)

{βk} = min

{

βi−1, min
τk∈hp(i−1)

{βk}

}

and thatQi−1 = minτk∈hp(i−1){βk}, Equation (26) can be
rewritten as

Qi = min{βi−1, Qi−1}

which proves the lemma.
It is worth pointing out that the value ofQi for taskτi

only depends onβk(τk ∈ hp(i)), as expressed in Equation
(26). According to Equation (15) and (22), the blocking
toleranceβi is a function ofqlast

i . Therefore,qlast
i does

not directly affectQi, but only the value ofβi, which will
be used to computeQj(τj ∈ lp(i)). Depending on the
knowledge we have on the length of the last subjob, we
can distinguish three cases:

• The value ofqlast
i is not available. In this case,

the guarantee has to be performed in the worst-case
scenario in whichτi can be preempted arbitrarily near
the end of its code. This is equivalent of consider-
ing qlast

i = limǫ↓0 ǫ, as done in the floating non-
preemptive model. In this case, the upper bound on
the subjob length will be denoted asQfloat

i .
• The value ofqlast

i is given as the design parameter.
In this case, the upper boundQg

i is performed as
described above.

• The value ofqlast
i is equal toqmax

i . In this case, the
upper bound on the subjob length will be the highest
and will be denoted asQ∗

i .

The subjob division is a compromise of several con-
straints, e.g. the task structure, application context, hence,
the preemption points placement is not only a matter of the
length of each NPR, but also the preemption cost at this
point and other constraints. Chances are that the length of
final NPR is not the longest one, and for the concerning
of system schedulability, bothqlast

i , qmax
i and other task

parameters must be taken into account, using the methods
presented above.

The computation ofQ∗
i is done in a similar way as

presented in Lemma 3, one task at a time in decreasing
priority order. The crucial factor now is the value ofqlast

i ,
which is set to the maximum possible value (equal to
min{Ci, Q

∗
i }) to compute the blocking tolerance, which

will be used to calculate the bound of NPR length of lower
priority tasks.
Observation 1. Given a preemptively feasible task set with
constrained deadlines, in the FPP model we have that
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Q∗
i ≥ Qg

i ≥ Qfloat
i ≥ 0.

Proof: This can be proved by considering the length
of the final subjob. For the case ofQ∗

i , qlast
i has the

largest possible value. On the contrary, forQfloat
i , qlast

i

is an arbitrary small number, while forQg
i , qlast

i has an
intermediate value between the two cases.

Now, a larger final subjob reduces the interference from
higher priority tasks, allowing a larger blocking time from
lower priority tasks. Since the maximum subjob length is
equal to the minimum blocking tolerance fromhp(i), the
observation follows.

VII. Simulation Results
This section presents some experimental results per-

formed on synthetic task sets to compare the maximum
subjob length and the average number of preemptions
under different situations.

The task set parameters used in the simulations were
randomly generated as follows: The UUniFast algorithm
[5] was used to generate a set ofn tasks with total
utilization equal toUtot. Each computation timeCi was
generated as a random integer uniformly distributed in
a given interval [5, 50], and thenTi was computed as
Ti = Ci/Ui. The relative deadlineDi was generated as
a random integer in [Ci + 0.5 · (Ti − Ci), Ti] and the
unfeasible task sets under fully preemptive mode were
discarded. In all the graphs, each plotted point represents
the average value over 1000 randomly generated task sets.

A. Exp. 1: different Q length

In a first experiment, we considered a set of 10 tasks,
monitoring the maximum subjob length for each task under
different circumstances.
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Fig. 5. Average value of Qi/Ci.
Figure 5 plots the average ratioQi/Ci for each task

when Utot is equal to 0.9. Simulations were performed

under different workloads, however, all the three values
resulted to be very similar for low utilizations. Since all
three values forτ1 were set to infinity, the curves start
from i=2. The value ofQg

i was computed by Lemma 3
settingqlast

i equal tomin{Ci/2, minj<i{βj}}.
This result shows that the subjob bound is affected

by the length of the final subjob. As expected,Q∗
i is

the maximum of all these three values andQfloat
i is the

smallest. Note that the difference becomes larger for tasks
with lower priorities. This is because the lower priority
tasks have a larger chance to be preempted by high priority
tasks, therefore, the length of the final subjob becomes
more crucial: a larger value ofqlast

i will lead to larger
blocking tolerance and consequently largerQ.

B. Exp. 2: average preemption number

In a second experiment, we monitored the average
number of preemptions produced in a run (lasting 1 million
units of time) as a function ofUtot, under different
scenarios. HereUtot was varied from 0.5 to 0.95 with step
0.05 andn = 15.

Under the floating condition taskτi switches to non-
preemptive mode forQfloat

i units of time when a higher
priority task arrives [28]. Under theQ∗

i condition, task
τi executes non-preemptively ifCi ≤ Q∗

i , otherwise,
preemption points are inserted from the end of task code to
the beginning, withQ∗

i length interval, i.e., all the subjobs,
except the first one, have length equal toQ∗

i . For the sake
of comparison, in the case ofQg

i , we assume preemption
points are inserted in the same way as in the case ofQ∗

i , but
with interval length equal toQfloat

i (Qg
i = Qfloat

i ). Figure
6 reports the ratios of average number of preemptions
under the different limited preemptive model with respect
to the fully preemptive model, as a function of the system
utilization Utot.

As clearly showed in the figure, the size of the last
subjob is not a crucial parameter for reducing the number
of preemptions when the task set utilization is low, whereas
its influence becomes more relevant for higher workloads.
In this condition, settingqlast

i to the maximum value
achieves the least number of preemptions.

It is interesting to point out the subtle differences be-
tweenQg

i andQfloat
i . UnderQfloat

i case, each preemption
is deferredQfloat

i units of time unless the running task
remaining execution time is less thanQfloat

i . While under
Qg

i case, the preemption points are inserted at fixed interval
of Qg

i , hence, each preemption is deferred to the next point
and the average deferred time is only aroundQg

i /2. Since
task computation time is fixed andQg

i = Qfloat
i , Qg

i

case should generate more preemptions than theQfloat
i

case, which is validated through simulation results. A fair
comparison can only be done when the preemption cost is
also taken into account, which will be a future work.
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Fig. 6. Ratio of number of preemptions with
respect to the fully preemptive case.

VIII. Conclusions

In this paper, we considered the problem of analyzing
the feasibility of a task set with fixed preemption points
under fixed priority scheduling. The feasibility analysis un-
der limited preemptions has been simplified with respect to
the existing literature, proving that, under given conditions,
guaranteeing the first job of each task is sufficient for
the entire task set. Based on this, an efficient feasibility
test under specific but not restrictive assumptions was
introduced. We also presented an algorithm for computing
the maximum subjob length for each task, and discussed
how such a value changes as a function of the final subjob
length. Finally, simulations were performed on randomly
generated task sets to validate the proposed approach.

As a future work, we plan to exploit the exact preemp-
tion position to better estimate the cost of each preemption
and task worst-case execution time, thus making the sys-
tem design more predictable.
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