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Abstract—In resource-constrained systems, the interference
generated by the concurrent execution of multiple controller tasks
leads to extra delay and jitter, which degrade control performance
and may even jeopardize the stability of the controlled system.
This work presents a general methodology that integrates control
issues and real-time schedulability analysis to improve the con-
trol performance in embedded systems with time and resource
constraints. The performance increase is achieved by properly
selecting task periods and deadlines under feasibility constraints.

Index Terms—Control performance, embedded systems,
real-time control, real-time systems.

I. INTRODUCTION

I N MODERN control systems, the control algorithm is nor-
mally implemented as a periodic task performing activities

such as sensory sampling, control signal calculation, state up-
dating, and actuation. The period of such a task is typically de-
rived in accordance with the traditional discrete-time control
theory, which analyzes the system behavior and guarantees sta-
bility based on the periodicity assumption.

To ensure the timely behavior on a particular execution
platform, multiple periodic controllers are usually scheduled
by a real-time scheduling policy, such as Rate Monotonic (RM)
or Earliest Deadline First (EDF) [1]. When multiple tasks run
concurrently on a computing platform with scarce resources,
however, possible overload conditions could cause tasks to
run at frequencies lower than initially assumed in the control
design phase, possibly jeopardizing the system performance
and stability. Such a situation can easily be prevented offline
by performing schedulability analysis under worst-case con-
ditions. Nevertheless, even when schedulability is guaranteed
under the specified timing requirements, the reciprocal inter-
ference caused by the concurrent access to shared resources
may introduce variable delays and jitter in task executions.
Such an extra platform-induced interference, if not properly
considered, could lead to significant performance degradation,
or even instability and system failure [2], [3]. To avoid such
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problems, it is essential to design the whole system considering
both the control aspects and the execution platform aspects at
the same time, rather than at subsequent design stages. Such an
integrated approach is referred to as real-time/control co-design
and a lot of research has been focused on this area during the
last decade.

To distribute the limited computing resources to different
controller tasks, Seto et al. [4] proposed to formulate the
real-time control co-design problem as an optimization
problem, where the control performance index, expressed as
a function of the sampling period, is constrained by the fea-
sibility condition of the task set. By solving the optimization
problem, the sampling period for each controller is computed to
maximize the overall system performance. This methodology,
further extended by many researches, is referred to as the
period selection problem. Bini and Di Natale [5] applied Seto’s
methodology to a set of controller tasks scheduled by Fixed
Priorities.

To cope with the problem of delay and jitter in real-time
control applications, different techniques have been developed.
Nilsson [3] analyzed the performance and stability of real-time
control systems with varying delays, and derived an optimal sto-
chastic controller to compensate for jitter. Cervin et al. [6] intro-
duced the concept of jitter margin, defined as the upper bound
of the input-output jitter of a control task that guarantees the
stability of the controlled system. Martí et al. [7] presented an
online method to compensate the control performance degrada-
tion caused by jitter. Another approach for reducing delay and
jitter is to use nonpreemptive or limited-preemptive scheduling
policies [8], [9]. For example, Wu and Bertogna [10] discussed
the benefits of using EDF with limited preemptions to reduce
input-output delay and jitter without impairing the schedula-
bility of the task set.

Another widely adopted method to reduce delay and jitter is
to limit the execution interval of each task by setting a proper
relative deadline. Like period selection, this method can be re-
ferred to as deadline selection. Different algorithms for com-
puting the minimum deadline have been proposed in the liter-
ature. Some methods [11], [12] allow minimizing the relative
deadline of a single task at a time, following a given order. In
this way, however, the first task in the sequence experiences
the most significant deadline reduction, leaving little slack for
the remaining tasks. A more uniform deadline reduction can be
achieved by scaling all deadlines by the same factor [12], but
the improvement achieved in terms of delay and jitter is not sig-
nificant and, in some cases, the schedule could even remain un-
changed. Other methods [13], [14] use binary search to reduce
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task relative deadlines as much as possible according to given
reduction factors, while keeping the task set schedulable. These
methods, however, are mainly focused on schedulability aspects
and barely considered control issues; moreover, it is not clear
how reduction factors can be assigned to tasks.

Different delay/jitter reduction methods have been discussed
and compared in [15], where it is shown that the effectiveness
of a particular method depends on the characteristic of the con-
trolled system, although the deadline reduction approach is the
simplest and most effective for most control systems.

Ryu and Hong [16] used a heuristic method to select pe-
riods and deadlines with respect to performance specification
and schedulability constraints. The control performance was
specified in terms of steady state error, overshoot, settling time,
and rise time, which were expressed as functions of the sampling
period and input-output latency. At each step of the heuristic
method, the periods and deadlines were derived using the Period
Calibration Method solving a nonlinear optimization problem.
The optimization goal, however, was to minimize the utilization
of the task set.

Kim [17] suggested to express the control cost as a function
of both periods and delays, where periods were found assuming
that the delays were given. Then, the new delays were computed
by simulating the schedule of all the tasks up to the hyperperiod,
and iteratively the periods were updated assuming the new delay
values. However, this method considered only fixed priorities
and was extremely time consuming.

Palopoli et al. [18] proposed to use resource reservation to
serve control tasks as soft real-time threads. It was revealed
that control tasks may tolerate a certain amount of deadline
misses owing to their inherent robustness, therefore relaxing
the hard timing constraints allows higher activation rates, which
may lead to improved performance. However, no optimization
was performed to select reservation parameters and only exper-
imental results were presented.

Chantem et al. [19] proposed a heuristic search algorithm to
find feasible period-deadline pairs, based on the assumption that
task deadlines are piecewise first-order differentiable functions
of their respective periods. However, this work mainly focused
on schedulability issues.

Bini and Cervin [20] approximated the delays as a function
of task periods and incorporated the delay consideration into
the performance optimization, while the resource constraint re-
mains to be the feasibility region with respect to task periods.
This method only applies to fixed priority systems, because in
dynamic priority systems delays are functions of both periods
and deadlines.

Wu et al. [21] proposed a general framework for real-time
control design in embedded environment considering the sam-
pling period, delay, and jitter effect in the control performance
evaluation, and manifested the possibility to form an optimiza-
tion problem with the help of EDF deadline space. However, the
proposed linkage between timing attributes and task parameters
was not clear, and a formal approach for parameter selection was
missing.

This work presents an integrated approach to enhance the
control performance of a system through proper selection of
task periods and deadlines, under EDF scheduling. A general

framework is proposed to extend Seto’s method to optimize
performance with respect to not only sampling periods but also
other timing attributes. In particular, task deadlines are chosen
to balance the scheduling-induced performance loss of each
controller task exploiting the feasibility region in the space of
EDF deadlines [22]. Detailed simulations are also provided to
demonstrate the usage of the proposed methodology and verify
its effectiveness over other methods.

The rest of this paper is organized as follows. Section II
presents the system model and the terminology. Section III
defines the problem to be solved. Section IV describes the gen-
eral method to formalize the optimization problem. Section V
explains the characterization of the resource constraints.
Section VI presents the experimental results and compares the
proposed method with other approaches. Finally, Section VII
states our conclusions.

II. SYSTEM MODEL

This work considers a set of periodic real-time tasks that
are executed on a uniprocessor system under the Earliest Dead-
line First (EDF) scheduling policy. The task set is logically
divided into two subsets: one subset , consisting of
controller tasks, and another subset , consisting of
regular tasks that are not related to control. Each task is char-
acterized by the following scheduling parameters:

the worse-case execution time (WCET);

the best-case execution time (BCET);

the minimum allowed relative deadline;

the maximum allowed relative deadline;

the minimum allowed period;

the maximum allowed period;

the actual relative deadline, whose value has to be
selected within the range ;

the actual period, whose value has to be selected
within the range . For controller
tasks, is also referred to as the sampling period.

It is assumed that and are
known, whereas and are the design parameters to be
selected.

To derive more general results, relative deadlines are allowed
to be less than, equal to, or greater than periods. In particular, it
has been shown that, for some controllers, shortening the period

below the relative deadline may improve the performance
[20]. In addition, denotes the task utilization, also called
bandwidth, given by . Accordingly, its value
can range within , where ,
and . Similarly, denote the
total utilization of the whole task set , the uti-
lization of all the controller tasks , and
the utilization of all the regular tasks ,
respectively.

Each periodic task generates an infinite sequence of jobs
. Each job has an arrival time and an absolute

deadline . The start time of job is the
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Fig. 1. Timing attributes of job � .

first time it is scheduled for execution, while the finishing time
is the time at which its last instruction is terminated.

As illustrated in Fig. 1, each controller task consists
of three stages of operations, denoted as Input , Calculation

, and Output , corresponding to sampling, control signal
calculation, and actuation, respectively. Without loss of gener-
ality, it is assumed that the Input occurs at the beginning of each
job, i.e., at , whereas the Output occurs at the end, i.e., at

.
The timing of the input and output operations may have

a large impact on the control performance [23]. Hence, the
following additional timing attributes for controller tasks are
defined.

• The sampling delay of a job is the time between
the arrival time and the start time: .

• The input-output delay (IO delay) of a job is
the time between sampling and actuation, and is equivalent
to the time between the start time and the finishing time:

.
• The sampling jitter of a task is the maximum dif-

ference between of all the jobs:
.

• The input-output jitter (IO jitter) of a task is the
maximum difference between of all the jobs:

.
The importance of these parameters will be discussed in the sec-
tions below.

III. PROBLEM STATEMENT

A. The Performance Loss Index

The primary goal of a control system is to meet stability
and performance requirements, such as transient response and
steady-state accuracy [24]. Beyond such requirements, con-
troller design attempts to minimize the system error, defined as
the difference between the desired response and the actual re-
sponse. The smaller the difference, the better the performance.
Hence, performance criteria are mainly based on measures of
the system error. Traditional criteria (reported in control text-
books, e.g., [25]), such as Integral of the Absolute Error (IAE),
Integral of Time-Weighted Absolute Error (ITAE), Integral
of Square Error (ISE), or Integral of Time-Weighted Square
Error (ITSE), provide quantitative measures of a control system
response and are used to evaluate (and design) controllers.

More sophisticated performance criteria, mainly used in op-
timal control problems, account both for the system error and
for the energy that is spent to accomplish the control objective.
The higher the energy demanded by the controller, the higher
the penalty paid in the performance criterion. The system error

and control energy can be multiplied by a weight to balance their
relative importance.

The performance index used in this work is the same as the
one used in Linear Quadratic Gaussian (LQG) controller design
(e.g., [26]). The performance of a controller task is given by a
quadratic cost function

(1)

where and denote the state vector and the control signal
vector, and denote the corresponding transpose vectors,

is the maximum time to be considered in the performance
evaluation, are weighting matrices, and denotes the
expectation operator. The performance can be interpreted as
the weighted sum of state errors and control energy. Higher
values of indicate larger deviation from the desired states or
larger energy spent for control, which means worse control per-
formance. For this reason, in the remainder of this paper, is
referred to as the performance loss index. For discrete-time con-
trol, both the state and the control signal depend on the sam-
pling period . Hence, the performance loss index can also
be written as a function of the period as follows:

In most realistic cases, for a reasonable range of sampling in-
tervals, the performance loss (1) is an increasing function of the
sampling period. Cervin et al. [27] argued that the performance
loss index can often be approximated by a linear function of the
sampling period

or by a quadratic function of the sampling period

Delay and jitter in the controller task execution can have a
large impact on the control performance, especially if the sam-
pling frequency is too low compared to the speed of the closed-
loop system. It would hence be desirable to include the delay and
jitter in the performance loss index. The relationship between
these timing attributes and the resulting control performance is,
however, very complex. The solution proposed in this work is
to include the relative deadline in the cost function

(2)

As will be shown in Section IV, the relative deadline upper
limits the amount of delay and jitter the controller can expe-
rience. Knowing and , it is hence possible to predict the
worst-case performance degradation introduced by the sched-
uling. In general, is a nonlinear function. It is realistic
to assume that it is an increasing function in both and , since
the control performance typically degrades as the sampling pe-
riod, delay, or jitter increases, as later shown in Fig. 8.

B. The Optimization Problem

The period selection problem has received considerable at-
tention in the real-time literature. It can be expressed as an op-
timization problem to find the best periods for the controller
tasks that minimize the performance loss while guaranteeing
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the system schedulability. Such an optimization problem under
EDF can be expressed as follows:

where the objective function is the sum of all the controller
tasks’ performance indices, which are assumed to be function of
the sampling period. The equation of the constraint imposes the
schedulability constraint for the given scheduling policy (EDF).

To take the impact of delay and jitter on control performance
into account, the relative deadlines are included in the perfor-
mance loss indices and the optimization problem is generalized
to

(3)

where is a system-wide function used to
combine the individual performance indices of control tasks
into a global system performance index, and is the space
of feasible parameter values that guarantee schedulability. The
choice of function depends on the user’s interest and can be,
for instance, a linear combination of all the individual perfor-
mance loss indices, or the maximum among the performance
loss indices.

IV. LINKING TASK PARAMETERS TO CONTROL PERFORMANCE

This section explains how to derive the performance loss
index given in (2) in a simulative or experimental fashion,
describes the relation between control performance and sched-
uling parameters, and formalizes the optimization problem
expressed by (3).

A. Characterization of the Delay and Jitter

Assuming that the task set is schedulable, each job will finish
no later than its absolute deadline. This puts a limit on the
amount of delay and jitter that a controller task with period
and relative deadline can experience.

Consider the worst-case scenario depicted in Fig. 2. In this
scenario, task releases 3 consecutive jobs, where job fin-
ishes with best-case execution time , job starts at its re-
lease time and finishes at its deadline, and finally, job starts

before its deadline to ensure that it will not cause an
overrun. By analyzing the worse-case scenario, the following
bounds on the delays can be derived:

(4)

Fig. 2. Worst-case scenario for delay and jitter.

Also, the following relations on the jitter hold:

(5)

Notice that the reported worst-case scenario must not neces-
sarily take place in an actual schedule, since the interference on
task depends on the scheduling parameters of other tasks as
well. Therefore, the relations derived above represent only the
lower or upper bounds of the actual delay and jitter.

The analysis above shows that a shorter relative deadline im-
plies both shorter delays and less jitter, which should imply
better control performance. How to find the actual performance
loss index is treated next.

B. Performance Loss Index Derivation

In most cases, it is impossible to evaluate the exact value
of the performance loss index (1) for a controller executing in
a real-time system. An execution of the real-time system will
generate an infinite sequence of sampling and input-output de-
lays , for each controller
task . The delays are in general random and depend on the
execution-time characteristics of the control algorithm and the
preemption pattern created by the scheduling algorithm, which
in turn depend on the execution of the other tasks in the system.

Using the bounds on the delay and jitter derived in the pre-
vious subsection, various approaches can be used to evaluate the
performance loss index approximately.

• Taking a stochastic approach, one can assume that
describe a sequence of independent

two-dimensional uniform random variables with bounds
given by (4). The performance index can then be eval-
uated numerically using a tool such as Jitterbug [28].
A limitation of Jitterbug, however, is that the maximum
delay variation allowed is bounded by the sampling pe-
riod. Hence, it is not possible to evaluate the case when

.
• Taking a worst-case approach, one may try to evaluate

the largest theoretically possible performance degradation
given the delay bounds (4). For the case of pure input-
output jitter, the jitter margin [6] can be used. Unfortu-
nately, however, no performance degradation theorem for
mixed sampling jitter and input-output jitter exists today.

• A third option, which is advocated in this paper, is to per-
form a quantitative analysis with respect to delay and jitter
to determine which factor has the larger influence on the
performance degradation. Such an analysis can be carried
out using Jitterbug, simulation (using tools like TrueTime
[29] or RTSim [18], [30]), or by experiments on the real
system.

The last option is elaborated upon in the rest of this section.
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Fig. 3. Inserting artificial delays.

Fig. 4. Problem when deadlines are larger than periods.

C. Quantitative Performance Degradation Analysis

As mentioned above, an approximative performance loss
index for a controller task can be derived in a simulative or
experimental fashion. When the system model is not available
or it is not accurate, the control performance can be directly
monitored using a real-time kernel, like S.Ha.R.K [31], that
allows enforcing desired and precise delays in task executions.
In other words, instead of deriving the control performance by
running a real task set under different workload conditions, a
single task is executed at a time, as a function of configurable
timing attributes, simulating the interference by injecting artifi-
cial delays in the task execution.

The most intuitive solution to generate a sampling delay is
to defer the start time of the job of the controller task by in-
serting a delay primitive before the input procedure. Similarly,
the input-output delay can be introduced by inserting a delay
primitive before the output procedure, as shown in Pseudocode
1, where and represent the injected artificial sampling
delay and the IO delay for each job , respectively. Fig. 3 il-
lustrates this intuitive method. Notice that, assuming Input and
Output operations consume negligible computation times, the
actual input-output delay is , while the ac-
tual sampling delay is always equal to the artificial one, that is

.

Pseudocode 1 Controller Task

1: Delay )
2: sampled-data Input()
3: control-signal Calculation(sampled-data)
4: Delay
5: Output(control-signal)

A problem with this implementation is that, when deadlines
are larger than periods, delays can be larger than expected, as
depicted in Fig. 4. In fact, when the th job of task completes
after the beginning of the next period, the actual sampling delay
results to be higher than the specified , and in particular
equal to

Fig. 5. Sequence of subtasks to generate delays larger than periods.

To solve this problem, the controller task is split into three
subtasks: a periodic subtask and two aperiodic subtasks, as il-
lustrated in Fig. 5. At the end of each job of the periodic sub-
task (subtask1), a system-level event is posted to activate the
first aperiodic subtask (subtask2) after a given amount of time,
equal to the specified sampling delay . Such an aperiodic
subtask performs Input and Calculation and then it posts an-
other system-level event to activate the second aperiodic sub-
task (subtask3) after the specified input-output delay . The
second aperiodic subtask performs the Output and finishes the
control job. The two aperiodic subtasks are scheduled with a
lower priority with respect to the periodic task to ensure the
proper activation sequence.

The timeline at the top of the figure shows the equivalent ex-
ecution of the controller task with the proper enforced delays.
It can be easily seen that, except for a negligible overhead due
to the subtask activation, the specified sampling delay and
input-output delay are not affected by the task finishing
time. It is worth mentioning that the second aperiodic subtask is
assigned a priority higher than that of the first aperiodic subtask,
because the Output is less time consuming and should not be
preempted by the execution of the first aperiodic subtask. Also
notice that this approach allows generating tasks with arbitrary
jitter as well, obtained by introducing random activation delays
in the subtasks.

The pseudocode of the controller subtasks is listed in Pseu-
docodes 2, 3, and 4, where Post Kernel Event is a function
that posts a system-level event at time , and is the current
system time.

Pseudocode 2 Subtask1 of

1: Post Kernel Event(

,

event activate subtask2

)
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Fig. 6. Comparison of the influence of delay and jitter for a double integrator
with � � ���� s.

Pseudocode 3 Subtask2 of

1: sampled-data Input()
2: control-signal Calculate(sampled-data)
3: Post Kernel Event(

,

event activate subtask3

)

Pseudocode 4 Subtask3 of

1: Output(control-signal)

D. Example of Analysis Results

As an example of the quantitative performance analysis, the
LQG control of a double integrator process with the sampling
interval s is studied. Fig. 6 illustrates the performance
loss as a function of the sampling jitter, input-output delay, and
input-output jitter, when each parameter (reported as on the
axis) is varied alone, while keeping the others equal to zero.

The values of can be as large as twice the sampling pe-
riod. Notice that the constant sampling delay is not considered
in the comparison, since a task where all jobs have a con-
stant sampling delay is equivalent to a task with a release
offset of and sampling delay equal to 0 for all jobs. It is seen
that, in this case, the IO delay is the most significant timing at-
tribute influencing the control performance. Hence, the worst
case respecting the bounds (4) occurs when and

.

V. RESOURCE CONSTRAINTS CHARACTERIZATION

Since the performance loss index is assumed to decrease as
the period or the deadline of the controllers decrease, the solu-
tion of the design problem is to find the smallest values for
and that guarantee schedulability.

To determine the feasible task parameters under EDF, the pro-
cessor demand criterion proposed by Baruah et al. [32] is used.
According to this test, a task set is schedulable by EDF if and
only if

(6)

where is the set of time instances in which the feasibility
test has to be performed.

Unfortunately, this test does not provide a description of the
feasible parameters that is well suited for maximizing the per-
formance. In fact, since periods and deadlines appear within the
floor operator, the shape of the boundary necessary to apply con-
strained optimization techniques (such as the Lagrange multi-
pliers) is not easy to derive. Performing a global optimization
would require the execution of algorithms, such as Simulated
Annealing, which turned out to be extremely time consuming
and not scalable with the size of the problem, while the number
of the constraints in the proposed method is quadratic with the
number of tasks, as shown later in this section.

To overcome such a problem, the following two-step ap-
proach is adopted.

1) First, consider for all the tasks and find the periods
that minimize the performance loss index, using the Liu
and Layland necessary and sufficient test for EDF

(7)

which is linear and it can be used in the optimization
process [4].

2) Then, fix the task periods as derived in the previous step,
relax the assumption , and perform the optimiza-
tion in the space of the feasible deadlines [22].

As shown by Bini and Buttazzo [22], the difference between
the exact region of feasible deadlines and its convex approxima-
tion is not large when periods are far from harmonic relations.
Since this is the typical condition resulting from step 1, the con-
sequent performance loss is also small. A better performance
could indeed be achieved by selecting periods with a higher de-
gree of harmonicity, but this is not trivial and is still an open
issue.

Due to the convexity of the constraint of (7), if the perfor-
mance loss index can be approximated by a convex function
(such as linear, exponential or logarithmic), then the first step
can be solved by standard convex optimization techniques [33].
For the cases in which the performance loss index cannot be
tightly approximated by a convex function, global optimization
techniques, such as Simulated Annealing, must be used.

The second step can be accomplished by exploiting the geo-
metric properties of the space of feasible deadlines. Bini and
Buttazzo [22] proved that given the computation times

and the periods , the region of
the feasible deadline can be expressed as follows:

(8)
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Fig. 7. Exact space of feasible deadlines (union of the shadowed regions) and
its convex approximation (light gray region).

To clarify the geometry of the space of feasible deadlines we
propose an example with two periodic tasks, whose parameters
are and . According to (8), the resulting
space of feasible deadlines is illustrated in Fig. 7 as the union of
the shadowed regions.

Since the performance always improves as deadlines become
smaller (i.e., ), then all the corners of the
region of the feasible deadlines are a local optima. An opti-
mization routine should then test the performance value at all
these local optima and select the best performing solution. In
the example shown in Fig. 7, local optima are in the set

.
Unfortunately, the cardinality of the set of local optima does

not increase polynomially with the number of tasks, hence this
method can be time consuming for large task sets. An alternative
solution is to use a convex subregion of the exact space. In [22],
it is proved that if the following set of linear constraints are
satisfied:

then the resulting deadline assignment is feasible. Notice that
the number of the linear constraints is . Moreover, if in
the first step of the optimization procedure the periods are
assigned such that the total utilization reaches 1 (i.e., the
computing resource is fully exploited), the convex constraint
becomes

(9)

whose region is delimited by linear constraints. In
Fig. 7 the convex subregion is depicted in light gray. Although
(9) provides only a sufficient test, the convexity of the region al-
lows implementing a very efficient algorithm for finding a dead-
line assignment.

VI. EXPERIMENTAL RESULTS

This section illustrates how the proposed methodology can be
used for selecting periods and deadlines in a system consisting
of both controller tasks and regular tasks. The overall perfor-
mance of the system is evaluated by simulating the runtime of
the whole system scheduled by EDF on a uniprocessor using
TrueTime [29] in Matlab.

A. The Control Systems

Two types of plant have been considered with highly different
dynamics to control. The first type, denoted as Plant A, is a
double integrator with the following state-space model:

The cost function used for both LQG design [26] and control
performance evaluation is

The second type, denoted as Plant B, has the following state-
space model:

with its corresponding quadratic cost function

This plant is a modification of the one investigated in [3], where
the LQG design results in a controller that is extremely sensitive
to delay and jitter.

For all the plant models, is the system state vector, is
the control signal, is a continuous-time zero-mean white noise
process with unit intensity, and is a discrete-time zero-mean
white noise process with unit variance. In the cost function,

is the time span to be considered. Although should be
in LQG design, when evaluating control performance, it is

reasonable to use a suitable large value, which in this case was
set to 50 s, also equal to the simulation time of the experiments.

The control performance loss index with respect to sampling
period and relative deadline was derived for both types of plant.
To obtain such an index, a performance derivation procedure
using the method in Section IV-B was set up in TrueTime. The
adjustable ranges of sampling periods were set to [4, 20] ms
for Plant A and [30, 70] ms for Plant B, respectively. For both
types of plant, the values of different timing attributes can be as
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Fig. 8. Derived performance loss indices. (a) Performance loss index of Plant
A. (b) Performance loss index of Plant B.

large as twice the sampling period. The performance loss indices
derived for the two plants are plotted separately in Fig. 8.

To facilitate the comparison of the performance between dif-
ferent plants, each performance loss index has been normal-
ized so that the minimum performance value is 1. Fig. 8(a)
shows that Plant A is only sensitive to the sampling period,
and quite tolerant to the relative deadline, especially for small
sampling periods. On the contrary, Fig. 8(b) shows that Plant
B is much more sensitive to the relative deadline than to the
sampling period. The figures also show that the derived perfor-
mance loss index of both plants can be approximated by a linear
function. For example, the performance loss index of Plant A
as a function of the period, in the case of zero delay, can be ap-
proximated by the linear function ,
where the resulting mean squared error of the approximation is

.

B. Experimental Setup

To evaluate the performance of the proposed approach, a syn-
thetic task set has been considered for creating different work-
load situations, since a specific benchmark would not explore
the whole design space. The considered task set consists of

TABLE I
SUMMARY OF THE CONTROLLER TASKS

hard real-time tasks scheduled by EDF on a uniprocessor.
The task set is split into a subset of controller
tasks and a subset of regular tasks. The 5 con-
troller tasks in are labeled as and , where

and control a Plant A type each, whereas and con-
trol a Plant B type each. The derived performance loss indices
of both types of plant are saved as 2-D lookup tables, which
allow the optimization procedure to interpolate the cost value.

The WCET of each controller task is equal to 4 ms and task
periods vary in the range reported in Table I, as for the evaluation
of the performance loss indices presented in Section VI-A. The
resulting maximum and minimum utilization of each task is also
reported in the table.

Notice that the maximum utilization of all controller tasks
ranges from 0.714 to 3.266, meaning that the controller

tasks cannot be scheduled by EDF at their maximum sampling
rates.

To investigate situations under different system loads, the
utilization of all the controller tasks was fixed to 0.75
throughout the simulation, and the total utilization of the whole
task set was varied from 0.8 to 1, with a step of 0.05. The
tasks within were generated using the UUNIFAST algorithm
[34], with computation time uniformly distributed in
ms and utilization chosen according to a 4-D uniform dis-
tribution to reach . For each value of , the
performance loss index reported on the graphs was computed as
the average on 100 repetitions with randomly generated subsets
of .

To select the scheduling parameters that optimize the overall
control performance, the function in (3) has been chosen as
follows to form up a global performance loss index:

where is a weight vector. For this
case, all weights have been set to 1, meaning that all plants have
the same importance.

As long as the utilization of all controller tasks is
decided, period selection can be performed without consid-
eration of any regular tasks, using the resource constraint of

, as the first step described in
Section V. By solving the optimization problem with deadlines
equal to periods, the results shown in Table II were obtained.

Once periods have been derived, deadline selection can then
be performed in the deadline space. In the next section, the pro-
posed approach is compared with respect to other approaches
under different load conditions.
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TABLE II
RESULTS OF PERIOD SELECTION

C. Comparison With Other Methods

In this section, the following methods are considered for
comparison.

• Standard: According to this method, control performance
is optimized only by period selection (see Section VI-B)
and relative deadlines are set equal to periods.

• D-convex: This is the two-step approach proposed in this
paper, where periods are first selected and then relative
deadlines of controller tasks are determined using the dead-
line convex space, as proposed in Section V.

• Binary Search: According to this method, periods are first
selected, as described in Section V, and then deadlines are
adjusted using the algorithm proposed by Hoang and But-
tazzo [14], where each task deadline can be adjusted within
the range [ ], according to a scaling factor ,
specified for each task, where 1 denotes maximum deadline
reduction (still guaranteeing schedulability), and 0 means
no deadline reduction with respect to . The dead-
line adjustment of the entire task set is achieved by binary
search.

In all the following experiments, only the deadlines of the
controller tasks are adjusted, while those of the regular tasks
are set equal to their periods.

In a first experiment, D-convex is compared with Standard
and Binary Search where all the controller tasks have the same
scaling factor, leading to a uniform reduction of deadlines. Fig. 9
shows the average value of the ratio of the selected deadline
and the period . Note that a ratio larger than 1 means that dead-
line is extended beyond the period. The ratios of and are
the same due to the same performance loss index and the same
weight, and thus reported in the same figure [Fig. 9(a)]. The
same applies to tasks and , which are reported in Fig. 9(b).

In both subfigures, the ratios under Standard stay at 1,
whereas the ratios under Binary Search have the same value
due to the uniform deadline reduction. However, as shown in
Fig. 9(a), applying the D-convex method, the ratio of and

becomes greater than 1, meaning that their deadlines are
extended beyond their periods to achieve a greater reduction
of and ’s deadlines. Indeed, Fig. 9(b) shows that, using
D-convex, and ’s deadlines can be reduced more than
under Binary Search with the same scaling factor.

The resulting control performance loss for the three consid-
ered methods is illustrated in Fig. 10. As shown in the figure,
under Standard and Binary Search, for high workload condi-
tions the performance loss of the whole system is significantly
degraded. This means that, in a highly loaded system, the in-
terference introduced on the execution of and leads to a
worse behavior of their controlled plants (Plant B type). How-
ever, under D-convex, the performance loss is kept at an accept-

Fig. 9. Ratios of selected deadline and period �� ���� �. (a) Ratio �� ���� �
of � � � and � . (b) Ratio �� ���� � of � and � .

able level, even if the system is highly loaded. This is possible
because the D-convex method allows a more aggressive reduc-
tion of and ’s deadlines, limiting their delay and jitter to
maintain the performance.

The second experiment was aimed at comparing D-convex
with Binary Search, for different scaling factors of the controller
tasks. Because of their higher sensitivity to delay and jitter, the
scaling factors of and were set to 1, whereas those of
and were set equal to a common value , which was varied in
the experiment. For each controller task, and
is twice the period selected by the procedure in Section V. The
scaling factors of all the regular tasks were set to 0, so forcing
their relative deadlines equal to periods.

The results of this experiment are reported in Fig. 11. Notice
that implies that all controller tasks have the same scaling
factor, hence equivalent to uniform reduction of deadlines. The
figure shows that the performance obtained using D-convex is
better than using a scaling factor and . How-
ever, the Binary Search method with or gives
similar performance as D-convex when the system utilization
is below 0.9, and may lead to better performance when .
The results show that selecting the proper scaling factors is not
trivial, and a method for determining the best scaling factors is
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Fig. 10. Control performance under different strategies.

Fig. 11. Comparison with Binary Search method using different scaling
factors.

Fig. 12. Comparison with Binary Search method using different scaling factors
�� � �����.

still missing. To further investigate how the choice of different
scaling factors affects the performance, an additional experi-
ment was carried out to test as a function of , for .

The evaluated performance is normalized with respect to the
performance obtained using D-convex, as reported in Fig. 12.
The figure shows that, the Binary Search method performs better
than D-convex when the scaling factor is within [0.3, 0.74],
approximately, which indicates that an improper selection of
scaling factors may produce a non negligible performance loss.
On the other hand, even when Binary Search gives better per-
formance, the difference from the proposed D-convex method is
not significant.

VII. CONCLUSION

This paper addressed the problem of task parameter selec-
tion for real-time controller tasks in resource-constrained sys-
tems. In particular, a general method has been proposed to de-
rive the control performance loss index in either a simulative
or experimental way, with respect to various timing attributes,
and arbitrary deadlines, which are allowed to be less than, equal
to or greater than the periods. Task periods and deadlines were
then selected by optimization upon the convex approximation
of EDF deadline space, considering the delay and jitter effects
on control performance.

Extensive simulations have been performed to compare the
proposed methodology with other methods. The results have
shown that the proposed method managed to keep the perfor-
mance loss at an acceptable level even in highly loaded systems
which might lead to significant performance loss using other
methods.
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