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Abstract

Limited preemption models have been proposed as a viable alternative between
the two extreme cases of fully preemptive and non-preemptive scheduling. In par-
ticular, allowing preemption to occur only at predefined preemption points reduces
context switch costs, simplifies the access to shared resources, and allows more
predictable estimations of worst-case execution times. Current results related to
such a model, however, exhibit two major deficiencies: (i) The exact response
time analysis has a high computational complexity; (ii) Themaximum lengths of
the non-preemptive regions was not completely investigated in all possible scenar-
ios.

In this paper, we address the problem of scheduling a set of real-time tasks
having fixed priorities and fixed preemption points. In particular, under specific but
not restrictive assumptions we simplified the feasibility analysis and proposed an
efficient feasibility test. Finally, an algorithm for computing the maximum length
of fixed non-preemptive regions for each task is described, and some simulation
experiments are presented to validate the proposed approach.

1 Introduction
Since the pioneering work of Liu and Layland [22], a lot of research has been done
in the area of real-time scheduling to analyze and predict the schedulability of a task
set under different scheduling policies and task models. Most of the available results
have been derived under a fully preemptive model, where every task can be suspended
in any point and at any time, in favor of a task with higher priority. When context
switch overhead is ignored in the analysis, as done in most scheduling papers, the fully
preemptive model is more efficient in terms of processor utilization, and allows better
schedulability results.

In practice, however, arbitrary preemptions can introducea significant runtime
overhead and may cause high fluctuations in task execution times, so degrading system
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predictability. In particular, three different types of costs need to be taken into account
at each preemption [14]. A scheduling cost is due to the time taken by the scheduling
algorithm to suspend the running task, insert it into the ready queue, switch the context,
and dispatch the new incoming task. A Pipeline cost is due to the time taken to flush the
processor pipeline when the task is interrupted and the timetaken to refill the pipeline
when the task is resumed. A cache-related cost is due to the time taken to reload the
cache lines evicted by the preempting task. This time depends on the specific point in
which preemption occurs and on the number of preemptions experienced by the task
[1, 14, 21].

Moreover, to avoid unbounded priority inversion when accessing shared resources,
preemptive scheduling requires the implementation of specific concurrency control
protocols, such as Priority Inheritance, Priority Ceiling[26] or Stack Resource Pol-
icy [2], which introduce additional overhead and complexity, whereas non-preemptive
scheduling automatically prevents unbounded priority inversion.

On the other hand, fully non-preemptive scheduling is too inflexible for certain
applications and could introduce large blocking times thatwould prevent guaranteeing
the schedulability of the task set.

To overcome such difficulties, different scheduling approaches have been proposed
in the literature to avoid arbitrary preemptions and limit the length of non-preemptive
execution.

1. Fixed Preemption Points (FPP). According to this model, each task is divided
into a number of non-preemptive chunks (also called subjobs) by inserting pre-
defined preemption points in the task code. If a higher priority task arrives be-
tween two preemption points of the running task, preemptionis deferred until
the next preemption point.

2. Floating Non-Preemptive Regions (NPR). Another approach is to define for each
taskτi a maximum intervalQi in which the task can execute non-preemptively.
Since the mode switching is triggered by the arrival time of higher priority tasks,
which is unknown a priori, in this model, the non-preemptiveregions have no
fixed start time, and are considered to be “floating” in the task code.

3. Preemption Thresholds. A different approach for limiting preemptions is based
on the concept of preemption thresholds, proposed by Wang and Saksena [29]
under fixed priority systems. This method allows a task to disable preemption
up to a specified priority, which is called preemption threshold. Each task is
assigned a regular priority and a preemption threshold, andthe preemption is
allowed to take place only when the priority of arriving taskis higher than the
threshold of the running task. This work has been later improved by Regehr in
[25].

From a practical point of view, using fixed preemption pointsallows achieving
higher predictability. In fact, by properly selecting the preemption points in the code,
it is possible to reduce cache misses and context switch costs, therefore improving the
estimation of preemption overhead and worst-case execution times [14].
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Figure 1: Floating NPR model vs. FPP model.

Motivating example 1. To better explain the difference between the floating non-
preemptive region and the FPP model, let us consider a simpletask set scheduled by
these two policies, as depicted in Figure 1. Tasks are assigned fixed priorities andτ2

has the lowest priority. The gray part insideτ2 represents a special chunk of code in
which a preemption would generate a high preemption cost. Suppose there are two
instances ofτ1 arriving at timet1 andt2, respectively.

Under the floating case (Figure 1(a)), whenτ1 arrives at timet1, τ2 will not be
preempted immediately, but will switch to non-preemptive mode and continue forQ
units of time. Hence, the first preemption will take place during the execution of the
special chunk. For the same reason, the second preemption will take place at time
t2 + Q, very close to the end ofτ2, leaving the final non-preemptive region arbitrary
small.

On the other hand, under the FPP case (see Figure 1(b)),τ2 is divided into four
non-preemptive regions and the preemptions are only allowed at these three preemp-
tion points. As showed in the figure, the special code chunk can be incorporated into
the third non-preemptive region, thus it will never be preempted during its execution.
Moreover, the final non-preemptive region ofτ2 cannot be arbitrary small, but has a
fixed length decided at design time. For this reason, the second job ofτ1 (arriving at
t2) cannot preemptτ2.

For the reasons explained above, in this paper we consider a limited preemption
model with fixed preemption points (FPP). In this model, the length of the final non-
preemptive chunk plays a crucial role in reducing the task response time. In fact, all
higher priority jobs arriving during the execution of the final chunk of the running task
do not cause a preemption, and their execution is postponed at the end of the task.

Motivating example 2. Let us consider a task set consisting of 3 periodic tasks, with
relative deadlines equal to periods. The task set is described asT = {τ1, τ2, τ3} =
{(1, 4), (1, 6), (4, 12)}, where the first number represents the task computation time
and the second the period. Assuming a synchronous activation of the task set, the
schedule produced by Rate Monotonic in fully preemptive mode is shown in Figure
2(a). As clear from the figure,τ3 is preempted twice and has a response time equal to 8
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Figure 2: Fully preemptive vs. FPP.

units of time. However, if the last 3 units ofτ3 are executed non preemptively, the two
preemptions do not take place and the response time reduces to 6, as shown in Figure
2(b). This simple example clearly shows that the last chunk of a task, when executed
in non-preemptive mode, can significantly reduce the interference from higher priority
tasks, thus reducing the task response time. However, a longnon-preemptive region
can cause large blocking to higher priority tasks, possiblyjeopardizing the system fea-
sibility.

Contributions of the paper. This work provides four main contributions. First, we
extend the task model by considering the length of the longest and last non-preemptive
region in each task, in order to simplify feasibility test oftasks with fixed preemption
points. Second, we identify the conditions under which the feasibility check of a fixed-
priority task set can be limited only to the first instance of each task (instead of checking
multiple instances within a certain period, as proved by Bril et al. [8]). Third, based
on this result, we present an efficient test to verify the feasibility of fixed priority tasks
with fixed non-preemptive regions, and finally, we present analgorithm for computing
a bound on the length of non-preemptive chunks for each task,discussing how such a
bound varies as a function of the length of the final subjob.

Paper Organization. The rest of the paper is organized as follows. Section 2 presents
some related work. Section 3 introduces the new task model and the methodology used
in the paper. Section 4 determines the conditions under which the response time anal-
ysis for the FPP model can be simplified. Section 5 presents the feasibility test for
fixed priority tasks with given subjob division. Section 6 illustrates the algorithm for
computing the maximum length of subjobs for each task without violating the system
feasibility. Section 7 reports some simulation results. Finally, Section 8 states our
conclusions and future work.
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2 Related Work
Most work on non-preemptive scheduling has typically focused on single-job models,
where tasks have precedence relations, are invoked only once, and must be completed
before a deadline [12, 13]. Non-preemptive tasks were considered in the Spring Kernel
[27], where a heuristic algorithm was used to find a feasible schedule or reduce the
number of deadline misses.

A more general characterization of periodic tasks has been considered in [17, 20].
In this model, tasks may have a deadline smaller than or equalto the next release
time. For this more general model, Mok [23] has shown that theproblem of deciding
schedulability of a set of periodic tasks with mutually exclusive sections of code is
NP-hard.

Jeffay et al. [16] showed that non-preemptive scheduling ofconcrete periodic tasks1

is NP-hard in the strong sense. George et al. [15] provided comprehensive feasibility
analysis on non-preemptive scheduling, however, the authors assumed either a com-
pletely non-preemptiveor a fully preemptive model. Davis et al. [11] considered typical
applications of non-preemptive fixed priority scheduling on a CAN bus, and presented
the analysis to bound worst-case response times of real-time messages.

Fixed priority scheduling with deferred preemptions, allowed only at some prede-
fined points inside the task code, has been proposed and investigated by Burns [9],
who however did not address the problem of computing the maximum length of non-
preemptive chunks.

Under the floating model, Baruah [3] computed the longest non-preemptive interval
for each task that does not jeopardize the schedulability ofthe task set under EDF, with
respect to the fully preemptive case. Yao et al. [30] addressed the same problem, but
under fixed priorities.

Bril et al. [7, 8] further improved the response time analysis under this model. The
authors identified a critical situation that may occur in thepresence of non-preemptive
regions, deriving the analysis to take such a phenomenon into account. In particular,
in certain situations, the execution of the last non-preemptive chunk of a taskτi can
delay the execution of one or some higher priority tasks, which can later interfere
with the subsequent invocations ofτi. Identifying such a situation, later referred to as
self-pushingphenomenon, requires a more complex test, since the analysis cannot be
limited to the first job of each task, but it must be performed on multiple task instances
within a certain period. Furthermore, their work dose not address the problem of how
to compute the maximum length of each chunk.

When taking preemption costs into account, the schedulability analysis becomes
rather complex, because cache-related preemption delays (CRPDs) significantly in-
crease worst-case execution times [18, 28], which in turn affect the total number of
preemptions [24]. Under the FPP model, however, the negative influence of CRPDs
can be alleviated by appropriately selecting the potentialpreemption points, and the
total number of preemptions a task can suffer is bounded by the number of preemption
points. A methodology for achieving low-cost and rapid context switches has been pro-
posed by Zhou and Petrov [31], who exploit the information produced by the compiler

1A concrete periodic task is a periodic task that comes with anassigned initial activation.
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to minimize the amount of affected thread states.
The research presented in this paper is motivated by the needof limiting both the

number and the position of preemptions to better estimate the preemption overhead,
reduce the worst-case execution times, and improve the system design. Compared to
previous related results [3, 30], this work assumes fixed preemption points instead of
arbitrary positions (as illustrated in Figure 1), which allows enhancing the schedula-
bility analysis. Moreover, it provides a method for computing the maximum length
of non-preemptive regions. However, the exact estimation of preemption cost isnot
within the scope of this paper, and will be investigated in a future work.

3 Task Model and Methodology

In this section, we present the task model and the terminology used throughout the
paper.

3.1 Task model
We consider a setT = {τ1, τ2, . . . , τn} of n periodic or sporadic tasks that have to
be executed on a uniprocessor under fixed priority scheduling. Each taskτi is char-
acterized by a worst-case execution time (WCET)Ci, a relative deadlineDi, and a
period (or minimum inter-arrival time)Ti between two consecutive releases. Each task
consists of an infinite sequence of jobsτi,k (k = 1, 2, . . .) with arrival timeri,k and
absolute deadlinedi,k = ri,k + Di. Tasks can be scheduled by any fixed-priority as-
signment and are indexed by decreasing priority, meaning thatτ1 is the highest priority
task. In particular, the following notation is used in the paper:







hp(i) = {τj | j < i}
hep(i) = {τj| j ≤ i}
lp(i) = {τj | j > i}

We assume that every taskτi consists ofmi non-preemptive chunks (subjobs),
obtained by insertingmi − 1 preemption points in the code. Thus, preemptions can
only occur at the subjobs boundaries. Thekth subjob has a worst-case execution time
qi,k, henceCi =

∑mi

k=1 qi,k. In particular, the last subjob of jobτi,k is denoted asFi,k.
To simplify the schedulability analysis, two additional parametersqmax

i andqlast
i

are introduced in the task model:
{

qmax
i = maxmi

k=1{qi,k}
qlast
i = qi,mi

(1)

The reasons for choosing these two values can be summarized as follows:

1. Non-preemptive execution can possibly cause blocking tohigher priority tasks
and the feasibility of a taskτk is affected by the sizeqmax

i of the longest subjob
of each lower priority taskτi ∈ lp(k).

2. For taskτi, the lengthqlast
i of the final subjob directly affects its response time.

In fact, all higher priority jobs arriving during the execution of τi’s final subjob

6



do not cause a preemption, since their execution is postponed at the end ofτi

(see the examples in Figures 1(b) and 2(b)).

Therefore, we consider each task to be characterized by the following 5-tuple:

{Ci, Di, Ti, q
last
i , qmax

i }.

The advantage of such a model will be shown throughout the paper. In the follow-
ing, the superscript P and FPP will be used to denote that a specific parameter or func-
tion refers to the preemptive and FPP model, respectively. In this paper, any time value
t is assumed to be a non-negative integer value representing the interval[t, t+1). Tasks
may access shared resources, provided that each critical section is confined within one
subjob. Preemption cost is ignored in the schedulability analysis, however, it is worth
pointing out that by appropriately selecting the preemption points, preemption cost can
be reduced and estimated with higher precision compared to arbitrary preemptions.

3.2 Critical instant

The feasibility check to determine whether a given taskτi is schedulable under a certain
scheduling policy is done under the worst-case scenario that leads to the largest possible
response time. The activation times of the tasks causing theworst-case response time
of τi is defined as the critical instant forτi [22].

When tasks have non-preemptive regions, Bril [6] showed that the critical instant
of τi occurs when it is released simultaneously with all higher priority tasks, and the
longest non-preemptive subjob of lower priority tasks starts an infinitesimal time before
the release ofτi.

Bril et al. [8] also showed that, when tasks have non-preemptive regions at the end
of their code, the worst-case response time may not occur in the first job. Hence, the
feasibility of a task set cannot be checked by analyzing onlythe first job of each task,
as done in fully preemptive systems, but it must be checked for multiple jobs within a
certain time interval, which introduces significant computation complexity.

3.3 Request bound function

Schedulability analysis is performed using therequest bound functionRBF(τi, t), de-
fined as the maximum cumulative execution request that can begenerated by jobs ofτi

within an interval of lengtht from the critical instant. In [19], it has been shown that

RBF(τi, t) =

⌈

t

Ti

⌉

Ci. (2)

The cumulative execution request of a taskτi and all higher priority tasks over an
interval of lengtht is therefore bounded by:

Wi(t) = Ci +
∑

τj∈hp(i)

RBF(τj , t). (3)

A necessary and sufficient schedulability test for fixed priority preemptive tasks
was derived by Lehoczky et al. [19], by checking whether for every taskτi there exists
a valuet ≤ Di such thatWi(t) ≤ t. This is stated in the following lemma [19].
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Lemma 1. A fixed-priority task set is feasible under fully preemptivescheduling if and
only if ∀τi ∈ T , ∃t ≤ Di, such that

Wi(t) ≤ t. (4)

whereWi(t) is defined in Equation(3).

If t∗ is the smallest value that satisfies Equation (4), then it corresponds to the
worst-case response time.

3.4 Worst-case occupied time
As shown by Bril [7, 8], the worst-case response time of a job can be computed by
considering theworst-case occupied timeWOi(C), which is the longest possible span
of time from the job release till the time at which the job starts or resumes its execution
after the completion ofC units of computation time. Then, he showed that the worst-
case response timeWRi of a task can be expressed in terms of worst-case occupied
timeWOi by taking the following limit from the left-hand side:

WRi(C) = lim
x↑C

WOi(x). (5)

whereWOi(x) is the smallestt ∈ R
+ that satisfies

t = x +
∑

τj∈hp(i)

(⌊

t

Tj

⌋

+ 1

)

Cj . (6)

Notice that, in Equation (6), the only difference with respect to the worst-case response
time is that the ceiling function is replaced by the floor plusone. This essential differ-
ence indicates that the response time is computed when the job finishes its execution,
regardless of whether other higher priority tasks are released at the end, whereas the oc-
cupied time also accounts for the higher priority jobs arriving at the end of the current
job’s execution.

For example, in the schedule illustrated in Figure 2, the worst-case response time
of τ3 is 8 in Figure 2(a) and 6 in Figure 2(b), whereas its worst-case occupied time is 9
in both cases.

4 Simplifying Conditions
In this section, we prove that, under the FPP model, the feasibility test can be restricted
to the first job of each task, activated at its critical instant, if the following conditions
hold:

A1. (Constrained deadlines)Di ≤ Ti .

A2. (Preemptive feasibility) The task set is feasible under a fully preemptive model.

Notice that these conditions are not restrictive and are verified for most real-time
applications. Burns and Wellings also recognize their relevance in the analysis of non-
preemptive tasks [10], although not formally used to derivethe results. In this paper,
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we formally prove that conditions A1 and A2 allow to simplifythe feasibility test by
restricting the analysis to the first job of each task under the critical instant. We first
introduce the concept ofSelf-Pushingphenomenon and derive a number of properties
under such a condition, then we prove the main theorem.

4.1 Properties of the self-pushing scenario
Definition 1. Under fixed-priority scheduling, aself-pushingphenomenon on a task
τi is defined as the condition in which there exists a jobτi,k, with k > 1, such that its
response time is larger than the first job under the critical instant, that is:

∃k > 1, RFPP
i,k > RFPP

i,1 . (7)

Notice thatRFPP
i,k denotes the generic response time of one job whileRFPP

i,1 is the
one under critical instance. Now, assume that there exists aself-pushing phenomenon
in taskτi and letτi,k, k > 1 be the first job such thatRFPP

i,k > RFPP
i,1 . Let si,k and

si,k−1 be the start times of final subjobFi,k andFi,k−1, respectively. Such a scenario
is illustrated in Figure 3, where the final subjobs are depicted in gray. The following
properties can be derived on time interval[si,k−1, si,k].

τi

ri,k

τi,kτi,k−1

TiTi

ri,k−1

si,k−1
si,k

t

Figure 3: The self-pushing phenomenon.

Property 1. The start timesi,k−1 cannot coincide with the arrival time of tasks
from hp(i).

Proof. SinceFi,k−1 cannot be preempted during its execution, let us consider the start
time si,k−1 of Fi,k−1. If a higher priority job arrives when the final subjobFi,k−1 is
about to start, then preemption will take place before the execution ofFi,k−1; that is,
Fi,k−1 will start executing after that higher priority job. Hence,the property holds.

Property 2. The interval[si,k−1, si,k] is larger thanTi, that is

si,k − si,k−1 > Ti.

Proof. According to the definition of self-pushing, we have

RFPP
i,k = si,k + qlast

i − ri,k > RFPP
i,1 . (8)

Sinceτi,k is the first job experiencing self-pushing, forτi,k−1 we have

RFPP
i,k−1 = si,k−1 + qlast

i − ri,k−1 ≤ RFPP
i,1 . (9)
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Combining Equations (8) and (9), and noticing thatri,k ≥ ri,k−1 + Ti, we have

si,k − si,k−1 > ri,k − ri,k−1 ≥ Ti

which proves the property.

Property 3. The processor is always executing jobs fromhep(i) in [si,k−1, si,k].

Proof. This can be proved by contradiction. Lett′ ∈ [si,k−1, si,k] be the first time
instant in which the processor is not executing tasks fromhep(i). Clearly,t′ cannot
be in[si,k−1, si,k−1 + qlast

i ], sinceFi,k−1 starts executing non-preemptively atsi,k−1.
Also, since in[ri,k, si,k] τi,k has remaining execution to be completed,t′ cannot be in
[ri,k, si,k]. Hence,t′ must be within(si,k−1 +qlast

i , ri,k). All tasks fromhp(i) arriving
beforet′ must get finished before that time, by definition oft′. If at or after time instant
t′, some tasks fromhp(i) and lp(i) are activated or the processor becomes idle, the
overall interference (including blocking) will certainlybe no greater than the total delay
experienced by the first job (which is activated at the critical instant). Hence,RFPP

i,k ≤

RFPP
i,1 , which contradicts the self-pushing assumption and provesthe property.

4.2 Simplified feasibility analysis
The following lemma uses the previous properties to show that no self-pushing can
occur when conditions A1 and A2 are verified.

Lemma 2. If the task set has constrained deadlines (A1) and is preemptively feasible
(A2), then no self-pushing phenomenon can occur under the fixed-priority FPP model.

Proof. By contradiction. Assumeτi experiences a self-pushing and letτi,k (k > 1)
be the first job withRFPP

i,k > RFPP
i,1 . We show that this contradicts the preemptive

feasibility or the constrained deadline assumption.
Consider a “synthetic” jobτ∗

i,s, consisting of the final subjobFi,k−1 and jobτi,k

excluding its final subjobFi,k, i.e.,τ∗
i,s

.
= Fi,k−1 ∪ (τi,k − Fi,k). Obviously,τ∗

i,s has
the same execution timeCi. Jobτ∗

i,s is illustrated in Figure 4.

τi

τ∗
i,s

ri,kri,k−1

si,k−1 si,k−1+Ti

t

Figure 4: Synthetic task instanceτ∗
i,s.

From Property 2, we can write:

WOFPP
i (Ci) ≥ si,k − si,k−1 > Ti. (10)

Under the FPP model, high-priority tasks arriving during the execution of the final
subjob will be deferred to the end of the running task. Since their start times are

10



aligned with the finish time of the current task, the occupiedtime under the FPP model
(WOFPP (Ci)) takes such interferences into account. And since, from Property 3, in
[si,k−1, si,k] the processor is executing only tasks fromhep(i), we have:

WOP
i (Ci) = WOFPP

i (Ci). (11)

Now, from Property 1, we know thatsi,k−1 cannot coincide with the arrival of tasks
from hp(i), hence functionWOP

i (x) is left-continuous forx = Ci. Thus, using Equa-
tion (5), we have:

WRP
i (Ci) = WOP

i (Ci). (12)

Now, combining Equations (10), (11) and (12) together:

WRP
i (Ci) > Ti.

which contradicts the assumptions and proves the lemma.

Using Lemma 2, we can prove the following theorem.

Theorem 1. Given a preemptively feasible task set with constrained deadlines, the task
set is feasible under fixed priority scheduling with FPP, if the first job of each task is
feasible under the critical instant.

Proof. From Lemma 2, we know that there is no self-pushing phenomenon when tasks
are preemptively feasible and have constrained deadlines.Hence, for each taskτi, the
response time of any jobτi,k will be no greater than the one of the first job at the critical
instant. That is,RFPP

i,k ≤ RFPP
i,1 . Hence, if the first job of each task under the critical

instant is feasible, then all the forthcoming jobs will alsobe feasible. The theorem
follows.

It is worth pointing out that in the proof of Theorem 1 the value of qlast
i is never

used, meaning that the theorem holds independently of the valueqlast
i .

5 Feasibility Analysis for the FPP Model
In this section, the result stated in Theorem 1 is used to derive a test for checking the
feasibility of a set of fixed priority tasks under the FPP model.

Definition 2. For each taskτi, the subjob allowanceαi is the length of the longest
subjob belonging to lower priority tasks inlp(i). That is,

αi = max
τk∈lp(i)

qmax
k . (13)

whereqmax
n+1 = 0 for completeness.

Under fixed priority scheduling with FPP, the presence of non-preemptive subjobs
causes the following effects:

On one hand, the non-preemptive execution of any subjob may cause a blocking
time to higher priority tasks, however, no job will be blocked after it has started and
any job can be blocked for at most once by subjobs belonging tolower priority tasks.
Therefore, the maximum blocking time thatτi may experience is:
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Bi = lim
ǫ↓o

(αi − ǫ)+ (14)

whereǫ is an arbitrary small number to guarantee that subjob fromlp(i) actually starts
beforeτi. The downarrow in the equation denotes the right-hand limitand the notation
x+ stands formax{x, 0}, indicating that the blocking time cannot be negative.

On the other hand, since the final subjob cannot be preempted by any other tasks,
it will continue to completion once started. Hence, checking the feasibility of a job
is equivalent to checking whether the final subjob can start at leastqlast

i units of time
before the deadline.

Taking into account these two effects, the cumulative execution request under the
FPP model, denoted asWFPP

i (t), can be represented as:

WFPP
i (t) = (Ci − qlast

i ) +
∑

τj∈hp(i)

RBF(τj , t). (15)

Notice that the execution request ofτi’s final subjob (qlast
i ) is excluded inWFPP

i (t).
The feasibility condition for the task set usingWFPP

i (t) andαi is stated in the next
theorem.

Theorem 2. A preemptively feasible task set with constrained deadlines and given
subjob division is schedulable under fixed priority with FPP, if for each taskτi there
existst ∈ (0, Di − qlast

i ] such that

WFPP
i (t) + αi ≤ t. (16)

whereWFPP
i (t) andαi are defined in Equation(15)and (13), respectively.

Proof. We first prove the theorem for tasks withαi = 0. If αi = 0, e.g., the lowest
priority taskτn, the blocking time due to lower priority tasks is zero and thefeasibility
can be verified as in the fully preemptive case.

Whenαi > 0, let t∗ be the earliest time that satisfies Equation (16). Hence, there
∃t∗ ≤ Di − qlast

i and:
WFPP

i (t∗) + αi = t∗.

Using Equation (2) and (15), this can be written as:

(Ci + αi − qlast
i ) +

∑

τj∈hp(i)

⌈

t∗

Tj

⌉

Cj = t∗.

which is equivalent to:
WRP

i (Ci + αi − qlast
i ) = t∗. (17)

Since in this proof allWR andWO functions refer to the preemptive model, we omit
the P superscript to simplify the notation. The start time ofthe final subjob ofτi is given
byWOi(Ci +Bi−qlast

i ), whereBi is the actual blocking time given by Equation (14).
Hence, we have:

WOi(Ci + Bi − qlast
i )=lim

ǫ↓0
WOi(Ci + αi − ǫ− qlast

i ) (18)

According to Equation (5), we have:

lim
ǫ↓0

WOi(Ci + αi − ǫ− qlast
i ) = WRi(Ci + αi − qlast

i ) (19)
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Combining Equations (17), (18) and (19) together:

WOi(Ci + Bi − qlast
i ) = t∗.

Therefore, the final subjob will start att∗ and finish att∗+qlast
i . Sincet∗ ≤ Di−qlast

i ,
the first job ofτi meets its deadline and, from Theorem 1, we conclude the entire task
is feasible under FPP model. Hence the theorem follows.

Condition (16) does not need to be evaluated at everyt ∈ (0, Di − qlast
i ], but only

at those values oft at whichRBF has a discontinuity, i.e.{t ∈ (0, Di − qlast
i ] | t =

k · Tj, k ∈ N and∀Tj, τj ∈ hp(i)}. Moreover, similarly to the methods presented
in [4], the number of points can be further reduced to the following set:

T S(τi)
.
= Pi−1(Di − qlast

i ). (20)

wherePi(t) is defined by the following recurrent expression:
{

P0(t) = {t}

Pi(t) = Pi−1

(⌊

t
Ti

⌋

Ti

)

∪ Pi−1(t)
(21)

Theorem 2 allows finding the maximum length that subjobs of tasks in lp(i) can
have without jeopardizing the feasibility ofτi. Thus, from Equation (16), the maximum
possible valueαi for task , denoted asblocking toleranceβi, results:

βi = max
t∈T S(τi)

{t−WFPP
i (t)}. (22)

Notice that the lowest priority taskτn will not be blocked by any other tasks in the sys-
tem, hence it becomes meaningless to calculateβn. However, we keep this parameter
for the reason of completeness.
Corollary 1. Given a preemptively feasible task set with constrained deadlines and a
specific subjob division, the task set is feasible under fixedpriority if ∀τi, i > 1

qmax
i ≤ min

τj∈hp(i)
{βj}. (23)

whereβj is given by Equation(22).

Proof. The corollary can simply be proved through Theorem 2 and the definition of
subjob allowance. Note thatqmax

1 is not used in the test sinceτ1 does not cause block-
ing to any other task. Fori > 1, if qmax

i satisfies Equation (23), then from the defini-
tion of subjob allowance we know thatαj(τj ∈ hp(i)) will not exceedβj , hence the
schedulability is guaranteed by Theorem 2.

Notice that the schedulability for each taskτi itself is verified by checking the
value ofqmax

j (τj ∈ lp(i)), or as the lowest priority task in the system, is automatically
guaranteed as the first part of the proof of Theorem 2. Using the value ofβi, we can
derive the feasibility condition for each task. The pseudo-code for the feasibility check
is presented in Algorithm 1. Line 2 sets the initial value forτ1. Thefor-loop in Line 3
checks the task feasibility one by one, in decreasing priority order, using the condition
in Corollary 1. If the algorithm reaches Line 7, then all the tasks will be feasible
and the algorithm returnstrue, otherwise, if there is a task withqmax

i exceeding the
maximum possible value (Line 4), it returnsfalse, meaning that the task set cannot be
guaranteed.
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Input : {Di, Ci, Ti, q
max
i , qlast

i } for ∀τi ∈ T , preemptively feasible and
Di ≤ Ti.

Output : Feasibility of the task set under FPP
begin1

β1 = D1 − C12

for i← 2 to n do3

if qmax
i > minτj∈hp(i){βj} then4

return “false”5

Calculateβi usingqlast
i by Equation (22)6

return “ true”7

end8

Algorithm 1 : Feasibility test for a given task set under fixed priority with FPP.

6 Bound of Subjob Length

In this section, we illustrate a method for computing the maximum subjob length for
each task under different circumstances, then we discuss how this length varies de-
pending on the length of the final subjob and how the feasibility of the task set can be
determined accordingly.

Let Qi be the maximum possible length that any subjob belonging toτi can have,
without jeopardizing the system feasibility under FPP. Notice thatqmax

i andqlast
i rep-

resent the actual lengths in the task code for a given subjob division, whereasQi is
the upper bound for such lengths. Moreover,Qi is derived without considering the
limitation of the worst-case execution time, hence it can beQi > Ci.

Corollary 1 already provides a bound for the subjob length ofτi. However, we now
derive an efficient way to computeQi recursively.

Since taskτ1 does not cause any blocking to other tasks and it does not experience
any interference, we set:

{

Q1 =∞
β1 = D1 − C1.

(24)

The next lemma shows how to deriveQi for the remaining tasks in the system.

Lemma 3. Given a preemptively feasible task set with constrained deadlines, the max-
imum length of subjob from taskτi, 2 ≤ i ≤ n that guarantees feasibility under FPP is
given by

Qi = min{βi−1, Qi−1} (25)

whereβi−1 can be computed by Equation(22) and the initial value forτ1 is given in
Equation(24).

Proof. From Corollary 1, the subjobs length ofτi must satisfy

qmax
i ≤ min

τk∈hp(i)
{βk}.

So the upper bound of the subjob length ofτi is given by

Qi = min
τk∈hp(i)

{βk}. (26)

Noting that
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min
τk∈hp(i)

{βk} = min

{

βi−1, min
τk∈hp(i−1)

{βk}

}

and thatQi−1 = minτk∈hp(i−1){βk}, Equation (26) can be rewritten as

Qi = min{βi−1, Qi−1}

which proves the lemma.

It is worth pointing out that the value ofQi for taskτi only depends onβk(τk ∈
hp(i)), as expressed in Equation (26). According to Equation (15) and (22), the block-
ing toleranceβi is a function ofqlast

i . Therefore,qlast
i does notdirectly affectQi, but

only the value ofβi, which will be used to computeQj(τj ∈ lp(i)). Depending on the
knowledge we have on the length of the last subjob, we can distinguish three cases:

• The value ofqlast
i is not available. In this case, the guarantee has to be performed

in the worst-case scenario in whichτi can be preempted arbitrarily near the end
of its code. This is equivalent of consideringqlast

i = limǫ↓0 ǫ, as done in the
floating non-preemptive model. In this case, the upper boundon the subjob
length will be denoted asQfloat

i .

• The value ofqlast
i is given as the design parameter. In this case, the upper bound

Qg
i is performed as described above.

• The value ofqlast
i is equal toqmax

i . In this case, the upper bound on the subjob
length will be the highest and will be denoted asQ∗

i .

The subjob division is a compromise of several constraints,e.g. the task structure,
application context, hence, the preemption points placement is not only a matter of the
length of each NPR, but also the preemption cost at this pointand other constraints.
Chances are that the length of final NPR is not the longest one,and for the concerning
of system schedulability, bothqlast

i , qmax
i and other task parameters must be taken into

account, using the methods presented above.
The computation ofQ∗

i is done in a similar way as presented in Lemma 3, one task
at a time in decreasing priority order. The crucial factor now is the value ofqlast

i , which
is set to the maximum possible value (equal tomin{Ci, Q

∗
i }) to compute the blocking

tolerance, which will be used to calculate the bound of NPR length of lower priority
tasks.

Observation 1. Given a preemptively feasible task set with constrained deadlines, in
the FPP model we have that

Q∗
i ≥ Qg

i ≥ Qfloat
i ≥ 0.

Proof. This can be proved by considering the length of the final subjob. For the case
of Q∗

i , qlast
i has the largest possible value. On the contrary, forQfloat

i , qlast
i is an

arbitrary small number, while forQg
i , qlast

i has an intermediate value between the two
cases.

Now, a larger final subjob reduces the interference from higher priority tasks, allow-
ing a larger blocking time from lower priority tasks. Since the maximum subjob length
is equal to the minimum blocking tolerance fromhp(i), the observation follows.
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Figure 5: Feasibility regions for a task set.

Figure 5 qualitatively illustrates the subjob upper boundsfor each task under dif-
ferent assumptions onqlast

i .
Notice that all the curves are monotonically non-increasing with the task index.

Since forτ1 all three values are assumed to be infinite, they are not plotted in the figure.
For τ2, all three parameters have the same value (D1 − C1), hence, there is only one
point forτ2. For a specific task set, with given subjob division, the sequence of{qmax

i }
values will be denoted as thetask curve. Plotting the task curve on the graph presented
above, we can immediately verify the feasibility of the taskset (under assumptions A1
and A2) as follows:

1. There∃i, qmax
i > Q∗

i . If a part of the task curve exceeds the solid line and falls
in Zone A, the task set is not FPP-feasible under fixed priorities.

2. ∀i, qmax
i ≤ Qfloat

i . If the task curve falls entirely below the dash-dotted line
(Zone D), the corresponding task set is feasible, as proved in [30].

3. ∀i, Qfloat
i < qmax

i ≤ Q∗
i . If the task curve falls inside the intermediate area

(Zone B and C), the feasibility can be checked by the test presented in Section 5,
as a function ofqlast

i . In particular, the feasibility is guaranteed if the task curve
falls totally inside zone C, whereas it is not if a part of the curve falls in zone B.
In this case, in fact, there are subjobs exceeding the maximum allowed length.

7 Simulation Results
This section presents some experimental results performedon synthetic task sets to
compare the maximum subjob length and the average number of preemptions under
different situations.

The task set parameters used in the simulations were randomly generated as fol-
lows: The UUniFast algorithm [5] was used to generate a set ofn tasks with to-
tal utilization equal toUtot. Each computation timeCi was generated as a random
integer uniformly distributed in a given interval [5, 50], and thenTi was computed
as Ti = Ci/Ui. The relative deadlineDi was generated as a random integer in
[Ci + 0.5 · (Ti − Ci), Ti] and the unfeasible task sets under fully preemptive mode
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were discarded. In all the graphs, each plotted point represents the average value over
1000 randomly generated task sets.

7.1 Exp. 1: different Q length
In a first experiment, we considered a set of 10 tasks, monitoring the maximum subjob
length for each task under different circumstances.
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Figure 6: Average value ofQi/Ci.

Figure 6 plots the average ratioQi/Ci for each task whenUtot is equal to 0.9.
Simulations were performed under different workloads, however, all the three values
resulted to be very similar for low utilizations. Since all three values forτ1 were set to
infinity, the curves start fromi=2. The value ofQg

i was computed by Lemma 3 setting
qlast
i equal tomin{Ci/2, minj<i{βj}}.

This result shows that the subjob bound is affected by the length of the final subjob.
As expected,Q∗

i is the maximum of all these three values andQfloat
i is the smallest.

Note that the difference becomes larger for tasks with lowerpriorities. This is because
the lower priority tasks have a larger chance to be preemptedby high priority tasks,
therefore, the length of the final subjob becomes more crucial: a larger value ofqlast

i

will lead to larger blocking tolerance and consequently largerQ.

7.2 Exp. 2: average preemption number

In a second experiment, we monitored the average number of preemptions produced in
a run (lasting 1 million units of time) as a function ofUtot, under different scenarios.
HereUtot was varied from 0.5 to 0.95 with step 0.05 andn = 15.

Under the floating condition taskτi switches to non-preemptive mode forQfloat
i

units of time when a higher priority task arrives [30]. Underthe Q∗
i condition, task

τi executes non-preemptively ifCi ≤ Q∗
i , otherwise, preemption points are inserted

from the end of task code to the beginning, withQ∗
i length interval, i.e., all the subjobs,
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except the first one, have length equal toQ∗
i . For the sake of comparison, in the case

of Qg
i , we assume preemption points are inserted in the same way as in the case of

Q∗
i , but with interval length equal toQfloat

i (Qg
i = Qfloat

i ). Figure 7 reports the ratios
of average number of preemptions under the different limited preemptive model with
respect to the fully preemptive model, as a function of the system utilizationUtot.
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Figure 7: Ratio of number of preemptions with respect to the fully preemptive case.

As clearly showed in the figure, the size of the last subjob is not a crucial parameter
for reducing the number of preemptions when the task set utilization is low, whereas its
influence becomes more relevant for higher workloads. In this condition, settingqlast

i

to the maximum value achieves the least number of preemptions.
It is interesting to point out the subtle differences between Qg

i andQfloat
i . Under

Qfloat
i case, each preemption is deferredQfloat

i units of time unless the running task
remaining execution time is less thanQfloat

i . While underQg
i case, the preemption

points are inserted at fixed interval ofQg
i , hence, each preemption is deferred to the

next point and the average deferred time is only aroundQg
i /2. Since task computation

time is fixed andQg
i = Qfloat

i , Qg
i case should generate more preemptions than the

Qfloat
i case, which is validated through simulation results. A faircomparison can only

be done when the preemption cost is also taken into account, which will be a future
work.

8 Conclusions
In this paper, we considered the problem of analyzing the feasibility of a task set with
fixed preemption points under fixed priority scheduling. Thefeasibility analysis under
limited preemptions has been simplified with respect to the existing literature, proving
that, under given conditions, guaranteeing the first job of each task is sufficient for
the entire task set. Based on this, an efficient feasibility test under specific but not
restrictive assumptions was introduced. We also presentedan algorithm for computing
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the maximum subjob length for each task, and discussed how such a value changes as
a function of the final subjob length. Finally, simulations were performed on randomly
generated task sets to validate the proposed approach.

As a future work, we plan to exploit the exact preemption position to better estimate
the cost of each preemption and task worst-case execution time, thus making the system
design more predictable.
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