Technical Report RETIS-TR-10-01, RETIS Lab, Scuola Superiore Sant'Anna, Pisa, Italy, January 2010

Feasibility Analysis under Fixed Priority
Scheduling with Fixed Preemption Points

Gang Yao,G orgi o ButtazzoandMar ko Bertogna
Scuola Superiore Sant’Anna
Pisa, Italy
{g.yao, g.buttazzo, mbertogna}@ssup.it

Abstract

Limited preemption models have been proposed as a viaklmative between
the two extreme cases of fully preemptive and non-preemgitheduling. In par-
ticular, allowing preemption to occur only at predefinedgongtion points reduces
context switch costs, simplifies the access to shared ressuand allows more
predictable estimations of worst-case execution timesirebtiresults related to
such a model, however, exhibit two major deficiencies: (ig Hxact response
time analysis has a high computational complexity; (ii) Th@ximum lengths of
the non-preemptive regions was not completely investifjmtall possible scenar-
ios.

In this paper, we address the problem of scheduling a setabtiree tasks
having fixed priorities and fixed preemption points. In parr, under specific but
not restrictive assumptions we simplified the feasibilitkysis and proposed an
efficient feasibility test. Finally, an algorithm for comjng the maximum length
of fixed non-preemptive regions for each task is described,smsme simulation
experiments are presented to validate the proposed approac

1 Introduction

Since the pioneering work of Liu and Layland [22], a lot ofeasch has been done
in the area of real-time scheduling to analyze and predesthedulability of a task
set under different scheduling policies and task modelsstMbthe available results
have been derived under a fully preemptive model, whereydask can be suspended
in any point and at any time, in favor of a task with higher pgtio When context
switch overhead is ignored in the analysis, as done in mbsikding papers, the fully
preemptive model is more efficient in terms of processoizatilon, and allows better
schedulability results.

In practice, however, arbitrary preemptions can introdacggnificant runtime
overhead and may cause high fluctuations in task executi@stiso degrading system

*This work has been partially supported by the European Camitysi Seventh Framework Programme
FP7/2007-2013 under grant agreement no. 216008.

predictability. In particular, three different types ofste need to be taken into account
at each preemption [14]. A scheduling cost is due to the taken by the scheduling
algorithm to suspend the running task, insert it into thelyapueue, switch the context,
and dispatch the new incoming task. A Pipeline cost is dueddime taken to flush the
processor pipeline when the task is interrupted and thettken to refill the pipeline
when the task is resumed. A cache-related cost is due tortfeetéiken to reload the
cache lines evicted by the preempting task. This time dependhe specific point in
which preemption occurs and on the number of preemptionsrexped by the task
[1, 14, 21].

Moreover, to avoid unbounded priority inversion when astegshared resources,
preemptive scheduling requires the implementation of iipexoncurrency control
protocols, such as Priority Inheritance, Priority Ceilif$] or Stack Resource Pol-
icy [2], which introduce additional overhead and complgxithereas non-preemptive
scheduling automatically prevents unbounded prioritgision.

On the other hand, fully non-preemptive scheduling is tdtexible for certain
applications and could introduce large blocking times thatlld prevent guaranteeing
the schedulability of the task set.

To overcome such difficulties, different scheduling apptas have been proposed
in the literature to avoid arbitrary preemptions and lirhi¢ ifength of non-preemptive
execution.

1. Fixed Preemption Points (FPPAccording to this model, each task is divided
into a number of non-preemptive chunks (also called subjoyénserting pre-
defined preemption points in the task code. If a higher gyidask arrives be-
tween two preemption points of the running task, preempsaseferred until
the next preemption point.

2. Floating Non-Preemptive Regions (NPRhother approach is to define for each
taskr; @ maximum interval); in which the task can execute non-preemptively.
Since the mode switching is triggered by the arrival timeighlr priority tasks,
which is unknown a priori, in this model, the non-preemptiggions have no
fixed start time, and are considered to be “floating” in th& taxde.

3. Preemption Threshold®A different approach for limiting preemptions is based
on the concept of preemption thresholds, proposed by Waddsaksena [29]
under fixed priority systems. This method allows a task taklis preemption
up to a specified priority, which is called preemption thadh Each task is
assigned a regular priority and a preemption threshold,thegreemption is
allowed to take place only when the priority of arriving taskhigher than the
threshold of the running task. This work has been later imguidoy Regehr in
[25].

From a practical point of view, using fixed preemption poialilews achieving
higher predictability. In fact, by properly selecting theeemption points in the code,
it is possible to reduce cache misses and context switck,abstrefore improving the
estimation of preemption overhead and worst-case exectimes [14].

" 1 1
§t1 to
& J , |
Q) Q]
(a) Floating non-preemptive region case.
n 1 1
f,l tQ

.
’ [| | |

\4

\4

\ 4

A\ 4

(b) Fixed preemption point case.

Figure 1: Floating NPR model vs. FPP model.

Motivating example 1. To better explain the difference between the floating non-
preemptive region and the FPP model, let us consider a sitagkeset scheduled by
these two policies, as depicted in Figure 1. Tasks are assifixed priorities and-
has the lowest priority. The gray part insiderepresents a special chunk of code in
which a preemption would generate a high preemption cospp&se there are two
instances of arriving at timet; andt., respectively.

Under the floating case (Figure 1(a)), whenarrives at timet;, = will not be
preempted immediately, but will switch to non-preemptiveda and continue fof)
units of time. Hence, the first preemption will take placeidgthe execution of the
special chunk. For the same reason, the second preemptiotake place at time
ta + @, very close to the end ak, leaving the final non-preemptive region arbitrary
small.

On the other hand, under the FPP case (see Figure I{big,divided into four
non-preemptive regions and the preemptions are only atlaté¢hese three preemp-
tion points. As showed in the figure, the special code chunkbeaincorporated into
the third non-preemptive region, thus it will never be preésd during its execution.
Moreover, the final non-preemptive regionof cannot be arbitrary small, but has a
fixed length decided at design time. For this reason, thensbjob of r; (arriving at
t2) cannot preempts,.

For the reasons explained above, in this paper we considatitad preemption
model with fixed preemption points (FPP). In this model, tegith of the final non-
preemptive chunk plays a crucial role in reducing the taskoase time. In fact, all
higher priority jobs arriving during the execution of thedithunk of the running task
do not cause a preemption, and their execution is postpdrikd and of the task.

Motivating example 2. Let us consider a task set consisting of 3 periodic tasks, wit
relative deadlines equal to periods. The task set is destals7 = {7, 72,73} =
{(1,4),(1,6), (4,12)}, where the first number represents the task computation time

and the second the period. Assuming a synchronous activafithe task set, the
schedule produced by Rate Monotonic in fully preemptive enisdshown in Figure

2(a). As clear from the figurey is preempted twice and has a response time equal to 8

= = = !
Ty /™ /] f
Tg% I — — /™

T 1
0

-
~

(a) Fully preemptive case.

N SST S S S
I R T
Tg% I_I—? ’

T 1
0 1

~

(b) Fixed preemption case: with final subjob long 3.

Figure 2: Fully preemptive vs. FPP.

units of time. However, if the last 3 units of are executed non preemptively, the two
preemptions do not take place and the response time reduéess$ shown in Figure
2(b). This simple example clearly shows that the last churktask, when executed
in non-preemptive mode, can significantly reduce the interice from higher priority
tasks, thus reducing the task response time. However, arlongpreemptive region
can cause large blocking to higher priority tasks, posgémypardizing the system fea-
sibility.

Contributions of the paper. This work provides four main contributions. First, we
extend the task model by considering the length of the laregeslast non-preemptive
region in each task, in order to simplify feasibility testtagks with fixed preemption
points. Second, we identify the conditions under which gasibility check of a fixed-
priority task set can be limited only to the first instanceadletask (instead of checking
multiple instances within a certain period, as proved by &rial. [8]). Third, based
on this result, we present an efficient test to verify theifality of fixed priority tasks
with fixed non-preemptive regions, and finally, we preseralgorithm for computing
a bound on the length of non-preemptive chunks for each ths&ussing how such a
bound varies as a function of the length of the final subjob.

Paper Organization. The restof the paperis organized as follows. Section 2 ptese
some related work. Section 3 introduces the new task modeha&methodology used
in the paper. Section 4 determines the conditions underhnthie response time anal-
ysis for the FPP model can be simplified. Section 5 preseetdethsibility test for
fixed priority tasks with given subjob division. Section Rdtrates the algorithm for
computing the maximum length of subjobs for each task witlvlating the system
feasibility. Section 7 reports some simulation resultsnaly, Section 8 states our
conclusions and future work.

2 Related Work

Most work on non-preemptive scheduling has typically fetlien single-job models,
where tasks have precedence relations, are invoked ong; and must be completed
before a deadline [12, 13]. Non-preemptive tasks were densd in the Spring Kernel
[27], where a heuristic algorithm was used to find a feasibleedule or reduce the
number of deadline misses.

A more general characterization of periodic tasks has beasidered in [17, 20].
In this model, tasks may have a deadline smaller than or dquidle next release
time. For this more general model, Mok [23] has shown thaipttedlem of deciding
schedulability of a set of periodic tasks with mutually exsiVe sections of code is
NP-hard.

Jeffay et al. [16] showed that non-preemptive schedulirgpatrete periodic tasks
is NP-hard in the strong sense. George et al. [15] provideghecehensive feasibility
analysis on non-preemptive scheduling, however, the asitfissumed either a com-
pletely non-preemptive or a fully preemptive model. Daviale[11] considered typical
applications of non-preemptive fixed priority schedulimgaoCAN bus, and presented
the analysis to bound worst-case response times of realrtigssages.

Fixed priority scheduling with deferred preemptions, akal only at some prede-
fined points inside the task code, has been proposed andigatesl by Burns [9],
who however did not address the problem of computing the mamxi length of non-
preemptive chunks.

Under the floating model, Baruah [3] computed the longestpr@emptive interval
for each task that does not jeopardize the schedulabilityeofask set under EDF, with
respect to the fully preemptive case. Yao et al. [30] adeée:dse same problem, but
under fixed priorities.

Bril et al. [7, 8] further improved the response time anaysider this model. The
authors identified a critical situation that may occur in pinesence of non-preemptive
regions, deriving the analysis to take such a phenomenoractount. In particular,
in certain situations, the execution of the last non-preaamghunk of a task; can
delay the execution of one or some higher priority tasks,ctvtuan later interfere
with the subsequent invocationsgf Identifying such a situation, later referred to as
self-pushingphenomenon, requires a more complex test, since the asalysnot be
limited to the first job of each task, but it must be performadmultiple task instances
within a certain period. Furthermore, their work dose natrads the problem of how
to compute the maximum length of each chunk.

When taking preemption costs into account, the scheditlahihalysis becomes
rather complex, because cache-related preemption deGiBDs) significantly in-
crease worst-case execution times [18, 28], which in tufecathe total number of
preemptions [24]. Under the FPP model, however, the negatfluence of CRPDs
can be alleviated by appropriately selecting the poteptieémption points, and the
total number of preemptions a task can suffer is boundedédwytimber of preemption
points. A methodology for achieving low-cost and rapid extswitches has been pro-
posed by Zhou and Petrov [31], who exploit the informatioodurced by the compiler

1A concrete periodic task is a periodic task that comes withsaigned initial activation.

to minimize the amount of affected thread states.

The research presented in this paper is motivated by theafdediting both the
number and the position of preemptions to better estimagthemption overhead,
reduce the worst-case execution times, and improve theraydesign. Compared to
previous related results [3, 30], this work assumes fixedmpion points instead of
arbitrary positions (as illustrated in Figure 1), whichoals enhancing the schedula-
bility analysis. Moreover, it provides a method for compgtthe maximum length
of non-preemptive regions. However, the exact estimatiopreemption cost isiot
within the scope of this paper, and will be investigated intafe work.

3 Task Model and Methodology

In this section, we present the task model and the termigolsgd throughout the
paper.

3.1 Task model

We consider a seT = {71, 7,...,7,} of n periodic or sporadic tasks that have to
be executed on a uniprocessor under fixed priority scheglulitach taskr; is char-
acterized by a worst-case execution time (WCET) a relative deadlind;, and a
period (or minimum inter-arrival time}; between two consecutive releases. Each task
consists of an infinite sequence of johs; (k = 1,2,...) with arrival timer; ;, and
absolute deadling; , = r; , + D;. Tasks can be scheduled by any fixed-priority as-
signment and are indexed by decreasing priority, meanigrths the highest priority
task. In particular, the following notation is used in theppa

hp(i) = {r| j < i}
hep(i) = {r;| j < 1}
(i) = {n,] 5 > i)

We assume that every task consists ofm; non-preemptive chunks (subjobs),
obtained by insertingn; — 1 preemption points in the code. Thus, preemptions can
only occur at the subjobs boundaries. & subjob has a worst-case execution time
¢k, henceC; = 37" g; 1. In particular, the last subjob of job ;. is denoted ag’; .

To simplify the schedulability analysis, two additionaraaeters;** andq!®s!
are introduced in the task model:

{ ¢ = max; " {qix} (1)

last

Qi = Qi,mi
The reasons for choosing these two values can be summasiZeticavs:

1. Non-preemptive execution can possibly cause blockinggber priority tasks
and the feasibility of a task; is affected by the sizg*** of the longest subjob
of each lower priority task; € Ip(k).

2. For taskr;, the lengthglet of the final subjob directly affects its response time.
In fact, all higher priority jobs arriving during the exe@n of r;'s final subjob

do not cause a preemption, since their execution is postpanthe end ofr;
(see the examples in Figures 1(b) and 2(b)).

Therefore, we consider each task to be characterized byltloging 5-tuple:
{O’iv Di7 Tia ql'aStv qzmllﬂﬂ}'

K2

The advantage of such a model will be shown throughout therpépthe follow-
ing, the superscript P and FPP will be used to denote thatafisgearameter or func-
tion refers to the preemptive and FPP model, respectivelthis paper, any time value
t is assumed to be a non-negative integer value represehénigterval, ¢+ 1). Tasks
may access shared resources, provided that each critatarses confined within one
subjob. Preemption cost is ignored in the schedulabiliglysis, however, it is worth
pointing out that by appropriately selecting the preempgioints, preemption cost can
be reduced and estimated with higher precision comparedbivaay preemptions.

3.2 Critical instant

The feasibility check to determine whether a given tgsk schedulable under a certain
scheduling policy is done under the worst-case scenaridethds to the largest possible
response time. The activation times of the tasks causing/inst-case response time
of ; is defined as the critical instant fey [22].

When tasks have non-preemptive regions, Bril [6] showettthacritical instant
of 7, occurs when it is released simultaneously with all highéorjiy tasks, and the
longest non-preemptive subjob of lower priority taskststan infinitesimal time before
the release of;.

Bril et al. [8] also showed that, when tasks have non-preemptgions at the end
of their code, the worst-case response time may not occteiffirst job. Hence, the
feasibility of a task set cannot be checked by analyzing trayfirst job of each task,
as done in fully preemptive systems, but it must be checkethfdtiple jobs within a
certain time interval, which introduces significant congiiatn complexity.

3.3 Request bound function

Schedulability analysis is performed using tlegquest bound functiorRBF(7;, t), de-
fined as the maximum cumulative execution request that cgeberated by jobs of
within an interval of length from the critical instant. In [19], it has been shown that
t
RBF(7;,t) = {E-‘ C;. (2
The cumulative execution request of a taskand all higher priority tasks over an
interval of lengtl is therefore bounded by:

Wi(t)=Ci+ Y RBF(7;,1). 3)
T €hp(3)
A necessary and sufficient schedulability test for fixed fitsigpreemptive tasks

was derived by Lehoczky et al. [19], by checking whether farg taskr; there exists
avaluet < D, such that¥;(¢) < ¢. This is stated in the following lemma [19].

Lemma 1. A fixed-priority task set is feasible under fully preempsigbkeduling if and
only if vr; € 7,3t < D;, such that

Wi(t) <t (4)
whereW,(t) is defined in Equatio(8).

If t* is the smallest value that satisfies Equation (4), then itesponds to the
worst-case response time.

3.4 Worst-case occupied time
As shown by Bril [7, 8], the worst-case response time of a jab be computed by

considering thevorst-case occupied timi& O, (C), which is the longest possible span

of time from the job release till the time at which the job ttar resumes its execution
after the completion of” units of computation time. Then, he showed that the worst-
case response timé& R; of a task can be expressed in terms of worst-case occupied
time WO, by taking the following limit from the left-hand side:

WRi(C) = lim WO;(x). (5)

wherelW O, (z) is the smallest € R that satisfies

t
t=2+ Y QTJ_JJA)CJ. (6)
Notice that, in Equation (6), the only difference with resfte the worst-case response
time is that the ceiling function is replaced by the floor pbue. This essential differ-
ence indicates that the response time is computed whenlHajshes its execution,
regardless of whether other higher priority tasks are seldat the end, whereas the oc-
cupied time also accounts for the higher priority jobs angvat the end of the current
job’s execution.

For example, in the schedule illustrated in Figure 2, thestvoase response time
of 73 is 8 in Figure 2(a) and 6 in Figure 2(b), whereas its worsea@azupied time is 9
in both cases.

4 Simplifying Conditions

In this section, we prove that, under the FPP model, thebigi#gitest can be restricted
to the first job of each task, activated at its critical inst#frthe following conditions
hold:

Al. (Constrained deadline$); < T; .

A2. (Preemptive feasibility) The task set is feasible undeils fireemptive model.

Notice that these conditions are not restrictive and aréiedrfor most real-time
applications. Burns and Wellings also recognize theinalee in the analysis of non-
preemptive tasks [10], although not formally used to detiveresults. In this paper,

we formally prove that conditions Al and A2 allow to simplifye feasibility test by
restricting the analysis to the first job of each task underdtitical instant. We first
introduce the concept @elf-Pushingphenomenon and derive a number of properties
under such a condition, then we prove the main theorem.

4.1 Properties of the self-pushing scenario

Definition 1. Under fixed-priority scheduling, aelf-pushingphenomenon on a task
7; is defined as the condition in which there exists ajph, with &£ > 1, such that its
response time is larger than the first job under the criticedtant, that is:

Ik >1, RIP>RITE. (7)

Notice thatR] " denotes the generic response time of one job whfi¢'” is the
one under crmcal instance. Now, assume that there existifgushing phenomenon
in task; and letr; , k > 1 be the first job such thak/['" > RITF. Lets, . and
si,k—1 be the start times of final subjdi , andF; ;_1, respectlvely Such a scenario
is illustrated in Figure 3, where the final subjobs are depidéh gray. The following
properties can be derived on time interfsgl,_1, s |-

Tik—1 Ti,k
b T \ T ”l
-
! Tﬁ 1 [Tﬁ [T,t
Tk Tik
Si k-1 Sik

Figure 3: The self-pushing phenomenon.

Property 1. The start times; ,_; cannot coincide with the arrival time of tasks
from hp(i).

Proof. SinceF; ;_; cannot be preempted during its execution, let us consieesttrt
time s; 1 of F; 5_;. If a higher priority job arrives when the final subjd _ is
about to start, then preemption will take place before trexation ofF; ;,_;; that is,
F; ,—1 will start executing after that higher priority job. Hentlee property holds. O

Property 2. The interval[s; x—1, s; x| is larger thar{;, that is
Sik — Sik—1 > 1;.
Proof. According to the definition of self-pushing, we have
— Sip+ g9 — iy > REFP (8)

RFPP

Sincer; j, is the first job experiencing self-pushing, far,_1 we have
le 1—51k 1—|—qia5t—Tk1<RFPP. (9)

Combining Equations (8) and (9), and noticing that > r; 1 + T;, we have

Sik — Sik—1 > Tik — Tik—1 = 1j
which proves the property. O
Property 3. The processor is always executing jobs froep(i) in [s; x—1, Si k|-

Proof. This can be proved by contradiction. L#te [s;,_1,s;x] be the first time
instant in which the processor is not executing tasks ftem(i). Clearly,t’ cannot
bein(s; k1,8 k-1 + qf-‘”t], sincerk; _; starts executing non-preemptivelysag, .
Also, since inr; k., si,k] 7% has remaining execution to be completéd;annot be in

[ri ks 8i.k). HENncet’ must be within(s; x—1 +¢!*t, r;). All tasks fromhp(i) arriving
beforet’ must get finished before that time, by definitiontoflf at or after time instant

t', some tasks fronkp(i) andlp(i) are activated or the processor becomes idle, the
overall interference (including blocking) will certairiye no greater than the total delay

experienced by the first job (which is activated at the altiostant). HenceR[”” <
RFTP, which contradicts the self-pushing assumption and prthvegroperty. [

4.2 Simplified feasibility analysis
The following lemma uses the previous properties to show nibaself-pushing can
occur when conditions Al and A2 are verified.

Lemma 2. If the task set has constrained deadlines (A1) and is prageipfeasible
(A2), then no self-pushing phenomenon can occur under theé-fikority FPP model.

Proof. By contradiction. Assume; experiences a self-pushing and fef, (¢ > 1)

be the first job withr " > RI'P. We show that this contradicts the preemptive
feasibility or the constrained deadline assumption.

Consider a “synthetic” jotfr;fs, consisting of the final subjob; ,_1 and jobr;
excluding its final subjol#; ;. i.e.,ﬁjs = F, p—1 U (1ik — Fig) Obviously,ﬁjs has
the same execution tin€;. Jobr; is illustrated in Figure 4.

-
! T!—\ | T!—\] - L
Tik—1 Tik ¢

i
H
i

‘4 ;‘

M ot T

%
Ti,s

Figure 4: Synthetic task instaneg, .

From Property 2, we can write:
WOIPP(Cy) > sip — sig—1 > Ti. (10)

Under the FPP model, high-priority tasks arriving during #ixecution of the final
subjob will be deferred to the end of the running task. SirErtstart times are

10

aligned with the finish time of the current task, the occupiex under the FPP model
(WOFFPE((C;)) takes such interferences into account. And since, frorpéttg 3, in
[si,k—1, Si.k] the processor is executing only tasks froap(i), we have:

WOl (C;) = WOl (Cy). (11)

Now, from Property 1, we know that ,_; cannot coincide with the arrival of tasks
from hp(i), hence functionV OF (z) is left-continuous for: = C;. Thus, using Equa-
tion (5), we have:

WR{ (Ci) = WO[(Cy). (12)

Now, combining Equations (10), (11) and (12) together:
WRF(Cy) > T.
which contradicts the assumptions and proves the lemma. O

Using Lemma 2, we can prove the following theorem.

Theorem 1. Given a preemptively feasible task set with constrainedliges, the task
set is feasible under fixed priority scheduling with FPPh# first job of each task is
feasible under the critical instant.

Proof. From Lemma 2, we know that there is no self-pushing phenomesen tasks
are preemptively feasible and have constrained deadlihesce, for each task, the
response time of any jok will be no greater than the one of the first job at the critical
instant. ThatisR7” < RF{"". Hence, if the first job of each task under the critical
instant is feasible, then all the forthcoming jobs will alse feasible. The theorem
follows. O

It is worth pointing out that in the proof of Theorem 1 the \&lof ¢!2*¢ is never
used, meaning that the theorem holds independently of tiie y#**.

5 Feasibility Analysis for the FPP Model

In this section, the result stated in Theorem 1 is used tweeritest for checking the
feasibility of a set of fixed priority tasks under the FPP node

Definition 2. For each taskr;, the subjob allowancey; is the length of the longest
subjob belonging to lower priority tasks ip(i). That s,
a; = max gy, (13)
T €lp(7)

whereg;'’{ = 0 for completeness.

Under fixed priority scheduling with FPP, the presence of-pteemptive subjobs
causes the following effects:

On one hand, the non-preemptive execution of any subjob mageca blocking
time to higher priority tasks, however, no job will be blodkafter it has started and
any job can be blocked for at most once by subjobs belongitmater priority tasks.
Therefore, the maximum blocking time thatmay experience is:

11

Bi = an(ai — 6)+ (14)

wheree is an arbitrary small number to guarantee that subjob fiye() actually starts
beforer;. The downarrow in the equation denotes the right-hand kmit the notation
x stands fomax{z, 0}, indicating that the blocking time cannot be negative.

On the other hand, since the final subjob cannot be preemptadybother tasks,
it will continue to completion once started. Hence, chegkime feasibility of a job
is equivalent to checking whether the final subjob can stdetastq!*** units of time
before the deadline.

Taking into account these two effects, the cumulative ettesuequest under the
FPP model, denoted &7 (¢), can be represented as:

WEPP(#) = (Ci — ™)+) RBF(r;,1). (15)
7 €hp(i)
Notice that the execution request®f final subjob ¢***) is excluded inW 7P (t).

The feasibility condition for the task set usifig?”’* (¢) anda; is stated in the next
theorem.

Theorem 2. A preemptively feasible task set with constrained deasllaned given
subjob division is schedulable under fixed priority with F-Ror each taskr; there
existst € (0, D; — ¢'***] such that

WP () + i < t. (16)
whereW PP (t) and«; are defined in Equatio(5) and (13), respectively.

Proof. We first prove the theorem for tasks with = 0. If a; = 0, e.g., the lowest
priority taskr,,, the blocking time due to lower priority tasks is zero andféeesibility
can be verified as in the fully preemptive case.
Whena; > 0, lett* be the earliest time that satisfies Equation (16). Hencegthe
3t* < D; — ¢l**t and:
WiFPP(t*) +a; = .

Using Equation (2) and (15), this can be written as:

t*
C; i — gt — | C; =t~
Cra-d+ ¥ [r]e
T;€hp(3) :
which is equivalent to:
WRE(C; + a; — ¢l**") = t*. 17)
Since in this proof allW’ R andW O functions refer to the preemptive model, we omit
the P superscript to simplify the notation. The start timtheffinal subjob of; is given
by WO, (C; + B; — ¢!***), whereB; is the actual blocking time given by Equation (14).
Hence, we have:

WOZ(Ol + Bi — qéaSt) :hFOl WOZ(Cl +o; —€— qéaSt) (18)
According to Equation (5), we have:

lim WOi(Ci + a; — e - q*") = WR;(C; + o — ¢**") (19)

12

Combining Equations (17), (18) and (19) together:
WOZ(Ol + Bi — ql»aSt) = t*.

3

Therefore, the final subjob will start &t and finish at* +¢***. Sincet* < D; —q!**,

the first job ofr; meets its deadline and, from Theorem 1, we conclude theseiak
is feasible under FPP model. Hence the theorem follows. O

Condition (16) does not need to be evaluated at every0, D; — ¢*5!], but only
at those values of at whichrBF has a discontinuity, i.e{t € (0, D, — ¢*'] | t =
k-T;, k€ NandVT;, 7; € hp(i)}. Moreover, similarly to the methods presented
in [4], the number of points can be further reduced to thefwihg set:

TS(7) = Piea(Di — ¢**"). (20)
whereP;(t) is defined by the following recurrent expression:
Po(t) = {t}
21
{ Pilt) = P (|| T0) UP-a(®) (21)

Theorem 2 allows finding the maximum length that subjobs skganip(i) can
have without jeopardizing the feasibility of. Thus, from Equation (16), the maximum
possible valuey; for task , denoted aslocking tolerances;, results:

Bi= max {0 = WITP(0)} (22)
Notice that the lowest priority task, will not be blocked by any other tasks in the sys-
tem, hence it becomes meaningless to calcuigteHowever, we keep this parameter
for the reason of completeness.
Corollary 1. Given a preemptively feasible task set with constrainedilileas and a
specific subjob division, the task set is feasible under fixexdity if V7;,7 > 1
mar < mi i} 23
""" < Tfél;i&@{ﬁf} (23)
where; is given by Equatiol22).

Proof. The corollary can simply be proved through Theorem 2 and #fmition of
subjob allowance. Note thaf*** is not used in the test sinee does not cause block-
ing to any other task. Far> 1, if ¢/"** satisfies Equation (23), then from the defini-
tion of subjob allowance we know that(7; € hp(i)) will not exceeds;, hence the
schedulability is guaranteed by Theorem 2. O

Notice that the schedulability for each taskitself is verified by checking the
value ofg}***(r; € Ip(i)), or as the lowest priority task in the system, is automagical
guaranteed as the first part of the proof of Theorem 2. Usiag/éttue of3;, we can
derive the feasibility condition for each task. The pseadde for the feasibility check
is presented in Algorithm 1. Line 2 sets the initial valuefor The for-loop in Line 3
checks the task feasibility one by one, in decreasing pyiorider, using the condition
in Corollary 1. If the algorithm reaches Line 7, then all tlasks will be feasible
and the algorithm returns-ue, otherwise, if there is a task witfj*** exceeding the
maximum possible value (Line 4), it returiialse, meaning that the task set cannot be

guaranteed.

13

Input: {D;, C;, T;, ¢, gla*t} for Vr; € T, preemptively feasible and
D; <T,.

Output: Feasibility of the task set under FPP

1 begin

2 B1=D; - Cy

3 fori — 2tondo

a4 if ¢i"** > min, eppi){B;} then

5 | return “false”

6 Calculates; usingglest by Equation (22)

7 return “true”

g end
Algorithm 1 : Feasibility test for a given task set under fixed prioritgtwiPP.

6 Bound of Subjob Length

In this section, we illustrate a method for computing the mmam subjob length for
each task under different circumstances, then we discusstiiie length varies de-
pending on the length of the final subjob and how the feasihili the task set can be
determined accordingly.

Let Q; be the maximum possible length that any subjob belonging tan have,
without jeopardizing the system feasibility under FPP.idothatg™** andg!*** rep-
resent the actual lengths in the task code for a given sulijosiah, whereasy); is
the upper bound for such lengths. Moreowgt, is derived without considering the
limitation of the worst-case execution time, hence it caihe- C;.

Corollary 1 already provides a bound for the subjob length offowever, we now
derive an efficient way to computg; recursively.

Since taskr; does not cause any blocking to other tasks and it does notierpe
any interference, we set:

{ Q1 =00 (24)

pr=D1—Ch.
The next lemma shows how to derigg for the remaining tasks in the system.

Lemma 3. Given a preemptively feasible task set with constrainediliess, the max-
imum length of subjob from task 2 < i < n that guarantees feasibility under FPP is

iven b .
g y Qi = min{f;i_1,Qi—1} (25)
where;_1 can be computed by Equati¢d2) and the initial value forr; is given in
Equation(24).
Proof. From Corollary 1, the subjobs length gfmust satisfy

¢;"** < min {f}.
T €hp(i)

So the upper bound of the subjob lengthrpls given by
Qi= min {3}, (26)

T €hp(i)
Noting that

14

min {5k}_mm{ﬁ“, min {ﬁk}}

TR ERP(7) TR ERP(i—1)

and thatQ; 1 = min,, cpp—1){Bx }, Equation (26) can be rewritten as

Qi = min{f;i_1,Qi—1}

which proves the lemma. O

It is worth pointing out that the value @); for taskr; only depends o (7 €
hp(i)), as expressed in Equation (26). According to Equation (&8)22), the block-
ing tolerances; is a function ofg!***. Thereforeg!*** does notirectly affect;, but
only the value of3;, which will be used to comput®,(7; € ip(i)). Depending on the
knowledge we have on the length of the last subjob, we camdissh three cases:

e The value of!**! is not available In this case, the guarantee has to be performed
in the worst-case scenario in whighcan be preempted arbitrarily near the end
of its code. This is equivalent of consideriagst = lim(|p ¢, as done in the
floating non-preemptive model. In this case, the upper baamdhe subjob
length will be denoted ag/'**",

e The value of!*** is given as the design parametén this case, the upper bound
Q7 is performed as described above.

e The value of;!*** is equal tog™**. In this case, the upper bound on the subjob
length will be the highest and will be denoted@s.

The subjob division is a compromise of several constragtg, the task structure,
application context, hence, the preemption points plac¢menot only a matter of the
length of each NPR, but also the preemption cost at this oidtother constraints.
Chances are that the length of final NPR is not the longestankfor the concerning
of system schedulability, bogj***, ¢"** and other task parameters must be taken into
account, using the methods presented above.

The computation of); is done in a similar way as presented in Lemma 3, one task
atatime in decreasing priority order. The crucial factonvi®the value of/l*t, which
is set to the maximum possible value (equaltm{C;, Q;}) to compute the blocking
tolerance, which will be used to calculate the bound of NRRytle of lower priority
tasks.

Observation 1. Given a preemptively feasible task set with constrainedililees, in
the FPP model we have that

Qr > QY > Q" >o.

Proof. This can be proved by considering the length of the final dubf@r the case
of Q7, ¢l**! has the largest possible value. On the contrary,Q{)’l"‘“, gl*st is an
arbitrary small number, while fa@?, g!*** has an intermediate value between the two
cases.

Now, a larger final subjob reduces the interference fromdvighiority tasks, allow-
ing a larger blocking time from lower priority tasks. Sinbetmaximum subjob length

is equal to the minimum blocking tolerance frdm(i), the observation follows. O

15

Qi glest=Max
,,,,,,,,,,,,, q;*°'=Given
glest=Min

1 2 3 4 5 6 7 ndex

Figure 5: Feasibility regions for a task set.

Figure 5 qualitatively illustrates the subjob upper boufutsach task under dif-
ferent assumptions agj**t.

Notice that all the curves are monotonically non-incregsiith the task index.
Since forr, all three values are assumed to be infinite, they are notglattthe figure.
For 5, all three parameters have the same value { C), hence, there is only one
point for r». For a specific task set, with given subjob division, the sege of{¢**}
values will be denoted as tha&sk curve Plotting the task curve on the graph presented
above, we can immediately verify the feasibility of the task (under assumptions Al
and A2) as follows:

1. Theredi, ¢*** > Q7. If a part of the task curve exceeds the solid line and falls
in Zone A, the task set is not FPP-feasible under fixed piésrit

2. Vi, g < Q{'l"‘“. If the task curve falls entirely below the dash-dotted line
(Zone D), the corresponding task set is feasible, as praviDi.

3. Vi, QI < gmew < Qr. If the task curve falls inside the intermediate area
(Zone B and C), the feasibility can be checked by the teseptesl in Section 5,
as a function of;!***. In particular, the feasibility is guaranteed if the taskveu
falls totally inside zone C, whereas it is not if a part of theve falls in zone B.

In this case, in fact, there are subjobs exceeding the mawiailowed length.

7 Simulation Results

This section presents some experimental results perfoonezynthetic task sets to
compare the maximum subjob length and the average numbeeefptions under
different situations.

The task set parameters used in the simulations were ragdyenkrated as fol-
lows: The UUniFast algorithm [5] was used to generate a set tdsks with to-
tal utilization equal tol;,;. Each computation tim€’; was generated as a random
integer uniformly distributed in a given interval,[50], and thenT; was computed
asT; = C;/U;. The relative deadlind; was generated as a random integer in
[Ci+ 05 (T; — C;), T;] and the unfeasible task sets under fully preemptive mode

16

were discarded. In all the graphs, each plotted point repteshe average value over
1000 randomly generated task sets.

7.1 Exp. 1: different @) length
In a first experiment, we considered a set of 10 tasks, mamgdine maximum subjob
length for each task under different circumstances.

25

=
o
T

[N

Average Value of Q over C

o
2
T

Task Index

Figure 6: Average value @, /C;.

Figure 6 plots the average rati; /C; for each task whew/,,; is equal to 0.9.
Simulations were performed under different workloads, éwsv, all the three values
resulted to be very similar for low utilizations. Since dlté¢e values for; were set to
infinity, the curves start froni=2. The value of9? was computed by Lemma 3 setting
g'*st equal tomin{C;/2, min;;{3;}}.

This result shows that the subjob bound is affected by thgtheof the final subjob.
As expected@)? is the maximum of all these three values a@ﬁo‘” is the smallest.
Note that the difference becomes larger for tasks with Iqwirities. This is because
the lower priority tasks have a larger chance to be preeniptdugh priority tasks,
therefore, the length of the final subjob becomes more drugitarger value of!s
will lead to larger blocking tolerance and consequentlgéac).

7.2 Exp. 2: average preemption number

In a second experiment, we monitored the average numbeeefptions produced in
a run (lasting 1 million units of time) as a function &f,;, under different scenarios.
HereU,,; was varied from 0.5 to 0.95 with step 0.05 ane- 15.

Under the floating condition task switches to non-preemptive mode f@t{lo“t
units of time when a higher priority task arrives [30]. Undlee)} condition, task
7; executes non-preemptively@; < @}, otherwise, preemption points are inserted
from the end of task code to the beginning, with length interval, i.e., all the subjobs,

17

except the first one, have length equatlp. For the sake of comparison, in the case
of @Y, we assume preemption points are inserted in the same waythe case of

% P ‘loat loat : :

*, but with interval length equal t@/"*** (Q? = Q/'**"). Figure 7 reports the ratios

of average number of preemptions under the different liangeeemptive model with
respect to the fully preemptive model, as a function of treteay utilizationU;,;.

0.35

last
i

-A—-0. = Given

03| o gt = Min ;
1

last

- x -0 = Max

o
)
a

~

o

= I

a N
T

Ratio of Number of Preemptions
I
&

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Total Utilization

Figure 7: Ratio of number of preemptions with respect to thly preemptive case.

As clearly showed in the figure, the size of the last subjoltsarcrucial parameter
for reducing the number of preemptions when the task sétatibn is low, whereas its
influence becomes more relevant for higher workloads. B dbndition, setting!®**
to the maximum value achieves the least number of preengption '

It is interesting to point out the subtle differences betw&¥ andQ/'***. Under
QI'*** case, each preemption is defer@ff*** units of time unless the running task
remaining execution time is less thé}{lo‘”. While under@?¢ case, the preemption
points are inserted at fixed interval @, hence, each preemption is deferred to the
next point and the average deferred time is only ara@figR. Since task computation
time is fixed andQ? = Q/"***, Q¢ case should generate more preemptions than the
Qf“"” case, which is validated through simulation results. A¢aimparison can only
be done when the preemption cost is also taken into accoumthwill be a future
work.

8 Conclusions

In this paper, we considered the problem of analyzing thsilidéy of a task set with
fixed preemption points under fixed priority scheduling. Téesibility analysis under
limited preemptions has been simplified with respect to ttigtiag literature, proving
that, under given conditions, guaranteeing the first jobawhetask is sufficient for
the entire task set. Based on this, an efficient feasibiést tinder specific but not
restrictive assumptions was introduced. We also presemedorithm for computing

18

the maximum subjob length for each task, and discussed hclwasualue changes as
a function of the final subjob length. Finally, simulationsne performed on randomly
generated task sets to validate the proposed approach.

As a future work, we plan to exploit the exact preemption p@sio better estimate
the cost of each preemption and task worst-case executientiius making the system
design more predictable.

References

[1] S. Altmeyer and G. Gebhard. Wcet analysis for preempaieeduling. In8th
Int. Workshop on Worst-Case Execution Time Analymges 105-112, Prague,
Czech, July 2008.

[2] T. P. Baker. Stack-based scheduling of real-time preegReal-Time Systems
3(1):67-100, March 1991.

[3] S. Baruah. The limited-preemption uniprocessor scliegwf sporadic systems.
In ECRTS '05: Proc. of Euromicro Conf. on Real-Time Systqrages 137-144,
July 2005.

[4] E. Bini and G. C. Buttazzo. Schedulability analysis ofipdic fixed priority
systemslEEE Trans. on Computers3(11):1462-1473, 2004.

[5] E. Bini and G. C. Buttazzo. Measuring the performanceatfesiulability tests.
Real-Time System30(1-2):129-154, 2005.

[6] R. Bril. Specification and Compositional Verification of Real-Tipst&ms PhD
thesis, Technische UniversiteitEindhoven (TU/e), 2004.

[7]1 R. Bril, J. Lukkien, and W. Verhaegh. Worst-case resgaimse analysis of real-
time tasks under fixed-priority scheduling with deferredgmption.Real-Time
System42(1-3):63-119, 2009.

[8] R. J. Bril, J. J. Lukkien, and W. F. J. Verhaegh. Worstecessponse time anal-
ysis of real-time tasks under fixed-priority schedulinghndeferred preemption
revisited. INECRTS '07: Proc. of Euromicro Conf. on Real-Time Sysigrages
269-279, 2007.

[9] A. Burns. Preemptive priority based scheduling: An aggsrate engineering
approachS. Son, editor, Advances in Real-Time Systpages 225-248, 1994.

[10] A. Burns and A. Wellings. Real-Time Systems and Programming Languages:
Ada, Real-Time Java and C/Real-Time POSIX (Fourth Editiéa)dison Wesley
Longmain, 2009.

[11] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien. Caiter area network
(can) schedulability analysis: Refuted, revisited andsexy. Real-Time System
35(3):239-272, 2007.

19

[12] G. Frederickson. Scheduling unit-time tasks with gaerelease times and dead-
lines. Information Processing Letterd6(4):171-173, May 1983.

[13] M. Garey, D. Johnson, B. Simons, and R. Tarjan. Schadulnit-time tasks with
arbitrary release times and deadlin€dAM Journal of Computingl0(2):256—
269, 1981.

[14] G. Gebhard and S. Altmeyer. Optimal task placement tprawe cache per-
formance. InProc. of the ACM-IEEE Int. Conf. on Embedded Softwages
259-268, Salzburg, Austria, 2007.

[15] L. George, N. Rivierre, and M. Spuri. Preemptive and-poeemptive real-time
uniprocessor scheduling. Research Report RR-2966, INRidnce, 1996.

[16] K. Jeffay, D. Stanat, and C. Martel. On non-preemptafeesiuling of period and
sporadic tasks. IRroc. of Real-Time Systems Symposjyrages 129-139, Dec
1991.

[17] E. Lawler and C. Martel. Scheduling periodically oatng tasks on multiple
processorsinformation Processing Letteréd2(1):9-12, 1981.

[18] C.-G. Lee, J. Hahn, Y.-M. Seo, S. L. Min, R. Ha, S. Hong,YCPark, M. Lee,
and C. S. Kim. Analysis of cache-related preemption deldixad-priority pre-
emptive schedulinglEEE Trans. on Computerd7(6):700-713, 1998.

[19] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic sctiag algorithm: Ex-
act characterization and average case behaviérda. of the Real-Time Systems
Symposiunpages 166 — 171, CA, USA, Dec 1989.

[20] J. Leung and J. Whitehead. On the complexity of fixeaity scheduling of
periodic real-time taskPerformance Evaluatiqr?(4):237-250, 1982.

[21] C. Li, C. Ding, and K. Shen. Quantifying the cost of cofitewitch. InProc. of
Workshop on Experimental Computer Scier&zn Diego, California, 2007.

[22] C. L. Liu and J. W. Layland. Scheduling algorithms for ltiprogramming in a
hard-real-time environmendournal ACM 20(1):46-61, 1973.

[23] A.-L. Mok. Fundamental Design Problems of Distributed Systems foHiuel
Real-Time EnvironmenPhD thesis, MIT, USA, 1983.

[24] H. Ramaprasad and F. Mueller. Tightening the boundseasible preemption
points. INRTSS '06. Proc. of 27th Real-Time Systems Symposiages 212—
222, Dec. 2006.

[25] J. Regehr. Scheduling tasks with mixed preemptionticaia for robustness to
timing faults. InProc. of the 23rd IEEE Real-Time Systems Sympqspages
315-326, 2002.

20

[26] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority intece protocols: An
approach to real-time synchronizatidieEE Trans. on Computer89(9):1175—
1185, 1990.

[27] J. A. Stankovic and K. Ramamritham. The spring kernelneiv paradigm for
real-time systemdEEE Softw. 8(3):62-72, 1991.

[28] J. Staschulat and R. Ernst. Multiple process execlticache related preemption
delay analysis. IProc. of ACM Int. Conf. on Embedded softwgrages 278—-286,
Pisa, Italy, 2004.

[29] Y. Wang and M. Saksena. Scheduling fixed-priority tagkkh preemption thresh-
old. InProc. of Conf. on Embedded and Real-Time Computing Systeth&@
plications pages 328-335, 1999.

[30] G. Yao, G. Buttazzo, and M. Bertogna. Bounding the maximength of non-
preemptive regions under fixed priority schedulingPhoc. of Conf. on Embed-
ded and Real-Time Computing Systems and Applicatpages 351-360, China,
20009.

[31] X. Zhou and P. Petrov. Rapid and low-cost context-dwitrough embedded
processor customization for real-time and control apfiice. InProc. of Design
Automation Conference (DAages 352 — 357, July 2006.

21

	Testo1: Technical Report RETIS-TR-10-01, RETIS Lab, Scuola Superiore Sant'Anna, Pisa, Italy, January 2010

