Technical Report RETIS-TR-10-02, RETIS Lab, Scuola Superiore Sant'/Anna, Pisa, Italy, February 2010

Reducing Stack with intra-task Threshold
Priorities in Real-Time Systenis

Gang YaoandGiorgio Buttazzo

Scuola Superiore Sant’Anna,
Pisa, Italy

{g.yao, g.buttazzo}@ssup.it

Abstract

In the design of hard real-time systems, the feasibilityhaf task set is one
of the primary concerns. However, in embedded systems wihce resources,
optimizing resource usage is equally important. In pakticihe RAM is highly
expensive in terms of chip space, and it heavily impacts tis¢ af the final prod-
uct.

In this paper, we address the problem of reducing the steafieusf a set of
sporadic tasks with timing and resource constraints, ngiein a uni-processor
system. With respect to other approaches available in theature, this work
considers each task consisting of a set of functions (oofshj each characterized
by a maximum stack requirement. This makes it possible thipitoarbitrary
preemptions through a dynamic priority protocol that rextuthe overall system
stack usage. Resource synchronization is also considattca extension of the
Stack Resource Policy is presented to arbitrate the acoassitually exclusive
resources while reducing the overall stack space. Sinougitare performed on
randomly generated task sets to evaluate the efficiencyeoptbposed method
with respect to existing approaches.

1 Introduction

In areal-time kernel, it is well known that different schédg policies lead to different
system performance and different memory usage. For examymeuting all the tasks
in non-preemptive fashion can significantly reduce the aVstack usage, however it
degrades task responsiveness and the total processpatidifi. For this reason, most
real-time operating systems (RTOSs) adopt fully preerechedulers, which reduce
the latency of high priority tasks, but introduce highertine overhead and require
a larger amount of memory. Many RTOSs (e.g., uC/OS-Il, Fi€@® AvrX) allocate
a dedicated stack space for each task, whereas others (statka [1], Fusion [2],
RTA-OSEK RTOS [3] etc.) allow several tasks to share a siatslek space.

*This work has been partially supported by the European Camitysi Seventh Framework Programme
FP7/2007-2013 under grant agreement no. 216008.

In classical schedulability analysis, the structure oftdek code is typically ne-
glected, so that any preemption pattern is assumed to béfmsshis fact leads to
very pessimistic results in terms of memory usage, sinck peemption is supposed
to occur when the current task is using its maximum stackesp@herefore, the total
stack space that has to be allocated to the application sutimeof the maximum stack
spaces required by all the tasks.

Sharing a common stack for a group of tasks is possible wheetattks in the group
can execute in non-interleaved fashion, so one stack frarasfficient for the entire
group. For instance, the preemption thresholds methogids] allows designers
to partition the system into task groups, where all taskglénthe same group are
executed non-preemptively. In this case, the stack usagadf group is equal to the
stack space needed by the task with the maximum requireeditthe overall stack
usage is reduced to the sum of all the group stacks, ratheathtne task stacks.

Modern system design methodologies and standards redgiepbrtability and
reuses of functional components. For example, in AUTOSAR Uéed for the de-
velopment of automotive systems, the application is dgetaas a group of software
components, whose behavior is represented by a senafibles each implementing
a specific functionality. Each runnable is then mapped tsk wath a given priority,
which is defined to enforce a desired order of execution, iegpect to other runnables.

Recently, limited preemptive scheduling with non-predugategions has received
increasing attention in the real-time community, for itsgibility of combining the
advantages of preemptive and non-preemptive scheduljr&6]8 This framework not
only is suitable for modelling tasks structured as a seqa@hdunctions, but it also
allows reducing the overall memory usage. For example, eagiable can be mapped
to a function within a task, and treated as subjob with givemory and computational
requirements. How mapping is performed is out of the scoghisfpaper (interested
readers may refer to [13, 14] for details). The advantageasfitppning a task into
subjobs is that at the subjob boundaries the stack usadatisety low, hence a method
can be proposed to schedule tasks so that the overall syttekisreduced.

Contributions of the paper This work provides three main contributions. First, a
new task model is proposed to specify the structure of eathaa a set of functions
with specific timing and memory requirements. Preemptidwben subjobs is always
allowed, whereas preemption within a subjob is allowed evitgn necessary to guar-
antee the feasibility of the task set. Second, a dynamicipyriprotocol is proposed to
limit preemptions and reduce the overall stack usage, wideting all task deadlines.
Finally, the method is integrated with the Stack Resourdey(SRP) [6] to handle
shared resources.

Paper Organization The rest of the paper is organized as follows. Section 2 in-
troduces the basic assumptions and methodology used inajiwer,pand presents a
motivation example for the paper. Section 3 presents thegsed approach. Section 4
describes the integration with the SRP and how the scheagipliticy can be imple-
mented. Section 5 reports some simulation results. Seé6tipresents some related
work and the distinctions from prior results. Finally, Sent7 states our conclusions

and future work.

2 Task Model and Assumptions

The system consists of a SEt= {7, 72, ..., 7, } Of n real-time tasks to be executed
on a uniprocessor under fixed priority scheduling. Each taskn be periodic or spo-
radic, whereP; denotes its nominal priority); its relative deadline(; its worst-case
execution time, and; its period or minimum inter-arrival time between two consec
utive releases. A constrained deadline model is adoptex] BeD; is assumed to be
less than or equal td;. Task priorities are assigned according to Rate Monot@fit; [
if all relatives deadlines are equal to periods, or accaytirDeadline Monotonic [20],
otherwise. Tasks are indexed by decreasing priority, aadgef value of?; denotes a
higher priority. For convenience, we also use the followiogations to represent some
task subsets:

hp(i) = {7;| P; > P;}
hep(i) = {7;| P; = Pi}
Ip(i) = {7| P; < P}

The system utilizatiot/ is defined as the sum of the utilization factors of all the sask

n n

U=> U=>» CiT.
=1 =1

Inthe model considered in this paper, each taglonsists ofn; functions (or subjobs),
{Fi1,...,Fim,} where each functiof; ; is characterized by a worst-case execution
time ¢; ; and a maximum stack usagg;. Therefore, the worse-case execution time of
a task is the sum of all its subjob durations, thatis= Z;.”:il Qi j-

Since it is difficult to determine the exact stack usage atyepeint for a given
task instance, it is assumed that each subjob graduallgases its stack usage up to
its maximum levels; ;, remains at that level for the entire subjob duration, arhth
releases the stack space at the end of the subjob code. Thestigical assumption
adopted for the task stack usage in related research woBksl[a, 23, 24], which
provides safe but pessimistic bounds. Moreover, a fixeksiagis considered to be
required by task; between subjobs. Finally, it is assumed that the stack i uséd
between the start and the finishing time of each task instare@ce, no local data
remains on the stack at the end of a task instance. Noticéhisatssumption complies
with the OSEK standard [5] used in the development of autaratpplications. The
subjob division and mapping is beyond the scope of this pamead, the information
about subjobs is used to perform the analysis and derivetaqmidhat reduces system
stack.

To limit preemptions, each subjdj ; is assigned a static priority levé} ; > P;,
computed off line to limit stack usage while preserving stthiability. The priority
P; ; is used during subjob execution atheeshold priorityto prevent preemption from
any taskr,, with P; < P, < P; ;. Between subjobs, task is executed using its nominal
priority P;. As a consequence, the actual priority of a tasis not fixed, but varies at

stack
S3

Ee—l

T
! Fia Fi Fis Fi‘m. \L t
D\ TI

Figure 1: Example of task with different computational atetk requirements.

runtime depending on the portion of code under executiore VEmiablep; is used to
denote such a dynamic priority for task

Figure 1 illustrates a sample task consisting of four suhjathe maximum stack
usage is also shown at each time instant. Notice that a stacd &0 s, ¢ is needed
between subjobs, as the previous subjob has releaseddkssgtace and the coming
subjob has not yet started.

For the sake of convenience, the following parameters aredsfined:

s denotes the maximum stack usage among all subjobs offasiat is

m o _ ..
sit = ggﬁi{sm}-

S;,; denotes the maximum system stack usage when sufjplis feasibility sched-
uled together with all tasks ihp(i).

S; denotes the maximum system stack required to feasibly séhéte subsetep(i).
Clearly, it can be computed as:

S; = max {S;;}. (1)

1<j<m;
S denotes the maximum system stack required to feasibly stdéue whole task set:

S = max {S;}. 2)

1<i<n

2.1 Motivation example

Consider a simple task set of three periodic (or sporadéistas reported in Table 1.
The task parameters are given in the second column and thatexetime and stack
requirement of subjobs is in the third and forth column, estpely. Each task is
assumed to consist of two subjobs,(= 2,7 = 1,2, 3) ands, o is the same value for
eachtaskg; o =1,i=1,2,3).

Under fully preemptive scheduling, the stack bound is etu#tie sum of all task
stack spacesS’ 7S= 18) and the system can be easily verified to be schedulable.

| [C Di Ti sP[aingiz]siisiz]Bi]
|10 14 20 5 5 5 4 5 4
|4 30 30 7| 2 2 5 7 6
31 9 40 40 6| 5 4 4 6 3

Table 1: A sample task set of 3 tasks.

Preemption threshold methodoldggssigns the first two tasks;(and) to a non-
preemptive group, thus allowing some stack savifig{® = max{s7",s5'} + s§* =
13) while still guaranteeing the schedulability. Prohibgtipreemptions can save the
system stack usage but at the risk of deadline misses. Ttatig®arise that with the
additional information on the subjob requirement on timamgl stack space, how can
system further reduce the overall stack space with systaedsdability still preserved
and how to implement this method with limited efforts. Thése questions will be
investigated in the following two sections.

3 Reducing stack usage

This section presents the approach proposed in this papkmiting the stack usage
of the task set and computing the maximum stack requiremdotéimit the growth
of the stack, tasks are executed using limited preemptivediding. In fact, the non-
preemptive execution of subjobs prevents a task from beigrmppted arbitrarily when
using the maximum stack space, which would require a higheradl stack usage.
However, non-preemptive regions increase the blockingydeh higher priority tasks,
possibly jeopardizing the system feasibility. Taking icmnsideration both the two
effects, the proposed method computes the highest priexigt ; ; for each subjob
F; ; that reduces the overall stack usage while guaranteeingctiedulability of the
task set.

3.1 Main results on limited preemptive scheduling

Feasibility analysis under fixed priority scheduling carpkeeformed using theequest
bound functiorf19] RBF(7;, t), which is defined as the maximal cumulative execution
request that can be generated by jobs efithin an interval of length from the critical
instant:

RBF(7;,t) = [iw C;.

The cumulative execution request of a taslandhp(i) over an interval of length is
therefore bounded by:

Wi(t) = C; + Z RBF(7j, t).
T;€hp(3)

IMany valid task grouping with different objective are ptsj theOPT- Par ti t i on algorithm in [24]
is adopted here for comparison.

Definition 1. The blocking tolerancg; for taskr; under fixed priority scheduling is
defined as:

Bi = te%%i}{t - Wi(t)}. 3)

Notice that the right hand side of Equation (3) does not nedlket evaluated at
every instant € (0, D;], but only at those times in whicl;(¢) has a discontinuity,
that is:

{t S [Cl,Dl] | t=k- Tj, keN andVTj, T € hp(l)}

The (; calculated in Equation (3) represents the maximal blockiragr; can suffer
without violating the deadline constraint. Notice thisualkan also be used to verify
the feasibility of the task setinder fully preemptive schedulinif all the computeds;
are non-negative, the task set is deemed feasible.

Theorem 1. For a preemptively feasible task set, subjbh, of taskr; can execute
non-preemptively without causing any deadline miss insaslk hp(i) if

Proof. By contradiction. Assume Equation (4) is satisfied apg € [1,7 — 1]) has
a deadline miss due to the non-preemptive executiof;gf Since the maximum
blocking time due td; i, is ¢; x, for 7; we have:

Vte (0,D;] qin+Cj+ > RBR(m,t) >t
T1€RP(J)
which is equivalent to:
Gik > max {t -Ci— > | RBF(Tl,t)}
T1€RP(J)

According to the definition of blocking tolerance in Equati@), we have:

gk > B

which contradicts Equation (4) and proves the theorem. O

3.2 Proposed approach

Let us start considering a special case in which the task sehiedulable when all tasks
are executed non-preemptively. In this case, there is amyative task at a time, and
the maximum stack space required for the task set, denot8&'3S, is equal to the
largest stack space required by each task, that is:
NPS __ m
SNPS = max {57}, (5)

When preemption is allowed only between subjobs (that igmail subjobs are ex-
ecuted in non-preemptive fashion), then only one subjolstiseat any time instant.

Hence, the overall stack space, denotedS4s’7 (Non-preemptive SubJob), is no
greater than:

n

SNST — Z si,0 + max {s]" — si0}- (6)

‘ 1<i<n
=1

It can easily be verified tha&"V7S is no larger thaisV'S7, since there is no extrg g
needed for the system under non-preemptive scheduling.

If the non-preemptive execution of one subjob makes the sasknfeasible, pre-
emption must take place within that subjob and, consequehd stack space required
by the system may increase. The idea to limit the increasbeobverall stack space
is to allow preemptions inside a subjob only when strictlgessary, that is, when the
non-preemptive execution of that subjob would cause otekstto miss their dead-
lines. To implement this idea, each subjbp; is assigned a priority leveP; ; > F;
that prevents preemption as much as possible. NoticeRhafreferred to as subjob
threshold priority) is a static value computed off line, besigned dynamically at run
time when subjol#; ; starts executing.

Given a subjobF; ; of taskr;, let P, (P; < P, < Pp) be the highest priority
level such that all tasks, with P, < P, remain schedulable whef; ; is executed
non-preemptively. Ther¥; ; can be safely executed with priorify; ; = P;, with the
system schedulability preserved. Notice that the schédifjeof Ip(i) andr; are not
affected by the non-preemptive executioniqf;, and the schedulability of tasks in
hp(i) can be verified using Theorem 1. Hen&®,; can be expressed as follows:

Pj=max{{P}U{P: [k € [1i)Vh=h,....i=1iq; <A} (D

The following lemma states a property of ths; } sequence for the task set.
Lemma 1. The sequencgS;} (1 < i < n) is non-decreasing.

Proof. Suppose task subsétp(i) is successfully scheduled with total stack usage
S;. If task 7; is removed fromhep(i), clearly, the remaining tasks are still feasible.
Since the system stack usage cannot increase by removintaskeit follows that
Si > Si—1. O

Let Sip(P) denote the maximum stack used by taskshi{k). Then, from
Lemma 1, it follows that:

Shp(Pk) 7I?Sal§(71{8i} = Skfl. (8)

- 1<
And sincer; is the highest priority task in the system and it can neverbempted by
other tasks, it follows that:

Shp(P1) =Sp =0. 9

Once the threshold priority; ; is computed for each subjalj ;, the corresponding
stack usage,; ; can be computed by the following theorem, by consideringaisks
that can preempk; ;.

Theorem 2. Let P, ; = P, P; < P, < P;. Then, the max stack space needed for
feasibly scheduling’; ; together with tasks ifp(i) is:

Sij = max{s; j + Sk—1, sio+Si—1} (10)
whereS, = 0 as in Equation(9).

Proof. If P, ; = P, F; ; can be preempted immediately only by tasks with priorities
in [Py, Pr—1], while tasks with priorities ifPy, P;,_1] start executing only after the
completion ofF; ;. WhenF; ; is immediately preempted, the overall stack is equal to
the current stacks(;) plus the increment due to preemptioss{(Px)). According to
Equation (8), it can be expressed as; + Si—1.

When preemptions are deferred to the end'pf, the stack usage of is reduced
to s; o0 and, the stack increment due to preemptionsis{S;| k¥ <! < i}. Therefore,
according to Lemma 1 the stack usage can be expressegyas:S;_;.

Hence, the maximum stack space required for executing uhje is the maxi-
mum between these two values. Hence, the theorem follows. O

Two additional notes regarding the proof of Theorem 2:

1. From the scheduling point of view, our proposed approaokiges a compro-
mise between two extreme cases: fully preemptive and neanpptive subjob
scheduling. WherP, = P;, the task priority is always equal to the nominal
one and the task instance is executed in fully preemptiveamiwdthis case, the
stack usagé,; ; becomes; ; + S;—1, hence Equation (10) still holds. Whereas,
when P, = P, it corresponds to the special case in which suljob is exe-
cuted non-preemptively. In this case, Equation (10) stiltls asS; is defined in
Equation (9).

2. One special case is whéf ; is the last subjob of;, thens; o in Equation (10)
can be avoided as this task instance ends. However, Eqatipis used as the
uniform expression and is still correct as an upbound of theksusage.

It is worth pointing out that the stack increase due to mupwaémptions among
tasks withinkp(7) is already accounted in the value 8f, as the computation is per-
formed in decreasing priority order. Moreover, proceedimghis way, S; for task
7; € hp(3) is available when considering task

Sincer; is the highest priority task, all its subjobs will never be@mpted, hence
S1 = si*. For the remaining tasks in the system, each valye (1 < j < m;)
is calculated using Theorem 2. Then, the stack usage forubseshep(i) can be
computed according to Equation (1).

Corollary 1. The maximum system stack us&ges equal to the stack needed to fea-
sibly schedule task, together with the other tasks ip(n), that is

S=S3,. (11)

Proof. It directly follows from Equation (2) and Lemma 1. O

3.3 The algorithm implementation

Using the results presented above, this section descridvesothcompute the maximum
stack space required by the system. A proced@e_t hr eshol d(4, j), shown in
Figure 2, is used to compute the threshold priofity; for subjob F; ;. The main
algorithm,st ack_si ze() , is presented in Figure 3.

Procedure: setthreshold(i, j)
Input: Task set parameters.
Output: P@j(l <1<n,1<] < ml)
begin
k=1
while £ > 1 do
1 k=k—-1
2 if g;,; > By thenreturn P4
end
return P;
end

Figure 2: Procedure for computig ;.

The while loop in Figure 2 scans all tasks with priority higher thBnto verify
whether they are feasible whéf ; is executed non-preemptively. According to The-
orem 1, ifg; ; < [, taskr, remains feasible and priority is raised to the next level,
otherwise Line 2 returns the priority of the previous le¥&l, . If all tasks are found
to be schedulable, thef; ; is assigned the highest priorify; .

The algorithm in Figure 3 considers tasks in decreasingipriorder, fromr; to
Tn. The values ofS, andS; are initialized in Line 1. For each task(l < i < n),
subjobsF; ;(1 < j < m,;) are checked sequentially, by increasing indexj ofln
particular, P; ; is computed at Line 2 using the algorithm in Figure 2. Thgp; is
computed for subjol#; ; at Line 3, according to Theorem 2. The stack us&gés
derived using Equation (1). In this way, Line 4 keeps the réad S; and updates it
when necessary. Finally, Line 5 returfs as the system stack usage, according to
Corollary 1.

In terms of complexity, calculating the blocking toleraacequires pseudo-polynomial
complexity, as showed in [9, 26]. Hence, the complexity efght _t hr eshol d pro-
cedure is pseudo-polynomial. In the main algorithm, stackomputed task by task
and, within each task, subjob by subjob, hence the complexithis procedure is
O(n * m;). Therefore, the overall complexity of the algorithm is pdewpolynomial.

3.4 Motivation example revisit

The motivation example presented in Section 2 is revisit@ ho illustrate the pro-
posed approach. The blocking toleranBgscomputed using the algorithm in [26], are
reported in the last column of Table 1.

The stack usage af; can be easily derived & = s7* = 5. Form, asgs ;1 and
g2,2 are both less thafi;, subjobsF; ; andF; 5 can always execute non-preemptively

Algorithm: stack _size()
Input: Task set parameters.
Output: Maximum system stack usage
begin

1 So = O, 81 = S;n
for : — 2tondo

Si=si1

for j « 1tom; do
2 P; ; = setthreshold ¢, 7)
3 Si,j :max{sl-_,j +Shp(Pi,j)aSi,0 —|—Sl',1}
4 Sz = maX{Si, Si_’j}
5 S=8,

end
Figure 3: Algorithm for computing.

(P21 = P2 = Pp1). The maximum stack usage f6b ; is whenr; starts after the
completion ofF% 1, hence,

821 = max{s2 1 + So, S20+S1} =820+ S1 =6.

Whenr, starts aftet; » finishes,F; » does not have the stack usagesgf as current
instance finishes. Hence,

8272 zmax{szg + So, 81} §max{5272 + 80, S2,0 + 81}27

Therefore, the stack usage is 7 (the maximum betwee$}, ; andS, 2). For taskrs,
sincegs,; < (2 andgs; > (1, we havePs ; = P, and

83,1 = max{s&l + S, 83,0 + 82} = max{4 +5, 14+ 7} =09.

Finally, beinggs » < 81 andgs 2 < (2, F32 can be executed non-preemptively and
P; 5 = P, hence:

8372 ZmaX{Sg,g + So, 82} §max{5372 =+ 80, §3,0 + 82} =&.

andSs = max{Ss 1, S32} = 9. Therefore the maximum system stack usage is
S=8;=0.

A possible scheduling trace for the task set in Table 1 isntedan Figure 4, which
also shows the system staskand the dynamic priority of;3 as a function of time.
Each subjob is represented by a different filling patterntidéothat, since tasks are
sporadic, all preemption patterns are possible, deperatirtge specific arrival times.
Attimet = 12, p; = P31 = P, hence subjolF; ; resumes after; finishes. As a
consequence§ remains aks 1. Attimet¢ = 15, subjobFs ; ends ancs decreases to
P, thus taskr, starts executing. Notice that, in this way, the stack ineesdromss o,
but not fromss ;. The priority of 75 remains atP; for the entire execution of,, then
increases td’ o = P; attimet = 19, asFj o starts executing.

10

P3o= Py

P31=P,
Py

L L I L L I L B N B t

0 5 10 15 20 25 30

Figure 4: A sample task set with the stack usage and the dgraiority of taskrs.

Table 2 summarizes the maximum system stack usage and tieakschedula-
bility test, when the task set is scheduled by different meésh In particularSV?S
denotes the stack bound computed under non-preemptiveidaigand,SVS7 the
stack bound computed when preemption can occur only betaggobs. These two
values can be computed by Equation (5) and (6), respectingdyice that these two
methods can achieve higher stack saving, but cannot makmgkeset schedulable.
The maximum stack usage produced by our proposed approegprésented as. It
achieves the lowest system stack usage among the listeddsetlith the schedulabil-
ity still preserved.

| || SNP& SN&.] | S S?’Té 8.7:736 |

System Stack 7 9 9 13 18
Schedulability N N Y Y Y

Table 2: Results of different methods.

The performance of these methods is further investigatezktgnsive simulations
reported in Section 5.

4 Integrating with Stack Resource Policy (SRP)

The proposed approach can be easily extended to work underdshesources, pro-
vided that each critical section is confined within one shbjm fact, if SRP is used
to access critical sections, the limited preemptive metis®t to reduce stack can be
easily implemented by introducing a setpsfeudo-resources

Tasks may share a setofreal) mutually exclusive resourcgs, p?, . .., p”, which
are accessed and released within subjobs, thus no res@ueckscked between sub-
jobs. Letwjfj be the length of the longest critical section of resoyrfte subjobF; ;.
No knowledge is assumed on the position of critical sectigitBin subjobs, so the
start time of critical sections is unknown to the designer.

11

Under SRP, each task is assigned a static preemption leweland, under fixed
priority scheduling, preemption levels can be set to theinahpriorities ¢r; = F;).
SRP guarantees that each job is blocked at most once, atthé attempts to preempt.
The maximum blocking time for task, under SRP can be calculated as the longest
critical sectionw; ; accessed by tasks with lower preemption levels and wittingeil

higher than or ed]ual to the preemption levelpf

B, = Vrlgl%?éj,k{wl]fﬂ m > m N < ceil(ph)}. (12)
In the approach proposed in this pap@ér, has a strong similarity with the ceiling of a
resource. Whetk; ; starts, the tasks having priorities lower than or equdttpcannot
start executioras if a resource were locked and the system ceiling were raisddr Af
F; ; ends, tasks blocked ¥, ; can start executings if the resource were released and
the system ceiling were reduced to the previous value.

This is equivalent to assuming that each subjgh accesses a pseudo-resource
pi.; With length equal tay; ; and static ceiling equal t&; ;. Such a pseudo-resource
is locked whenF; ; starts executing and unlocked wheh; ends. The system ceil-
ing is also updated accordingly, considering the otherunests. Notice that, the real
local resourceg” are shared among the tasks in the system and the resouriog ceil
is decided accordingly, depending on which tasks accessdlburce, whereas, the
pseudo-resource; ; is added only to one subjob, with the ceiling computed ofé lin
according to Equation (7).

Such an extension is referred to as SRP with fixed subjobidiviSRP-H. Under
SPR-F, thesystem ceilings computed as

M, = ma {{ max {eeil(p)}} U {pslr; s active} |
where the first part represents the ceiling of the real shasalirces while second part
the pseudo-resource, depending on which subjobs are adfive pseudo-resources
added in SRP-F are compatible with the traditional SRP messihence, all properties
under SRP are automatically retained under SPR-F.

Since we introduce another set of pseudo-resources, eskthés more chance
to be blocked. Indeed, now blocking may occur for two reasapshe real local
resources and i) the pseudo-resources. In the first casatigqg (12) still holds and the
feasibility can be verified using the methods introducedin In the second case, the
blocking can be calculated in a similar way, and the ceiliolgefach pseudo-resource
is computed in such a way that the system feasibility is asn@yaranteed.

5 Simulation Results

This section presents some experimental results perfoonezynthetic task sets to
evaluate the effectiveness of our algorithm with respeeithes listed in Table 2. The
proposed method is referred toSiRP- F.

12

5.1 Simulation setup

In order to simplify the simulation, each taskis assumed to have the same number
of subjobs and the same minimum/maximum stack usage, thét is [1,n], m; =
m, si* = s™ ands; o = so. Moreover, another parameter, = s™/sq, has been
introduced to represent the level of fluctuation on taskisteage. In all simulations,
s™ is set to 1024 and, is computed according to the valueaf

Subjob computation timeg_; are generated as a random numbers uniformly dis-
tributed in [100,500], then tasks computation times arézddrby summing the subjob
durations. Each subjob staek; is randomly distributed withitfs,, s*] and then the
largest one is set tg” so that the maximum stack usage is guaranteed to be used.

Individual task utilization factoré/; are generated using the UUniFast algorithm
[10] given a desired total utilizatiofy. Task periods are computed @s/U; and then
deadlines are generated as random integers WithiriT;]. Finally, the unfeasible task
sets under fully preemptive mode are discarded. In all ggagdch point represents the
average value over 1000 runs.

5.2 Exp 1: Overall performance of SRP-F

In a first experiment, the average system stack usage of tgoged algorithm has
been monitored as a function afandU. « was varied from 2 to 20 in step of 2, and
U from 0.4 to 0.85 in step of 0.05. The task set includes terstésk= 10), and each
task has four subjobsi{ = 4).

@
3
S
3

4000

Average System Stack Usage

Ve
N
&
S
3

10 o7 08 09

20 o4 05 06

™ U: System total Utilization
a: Ratio of s" over s,

Figure 5: Stack of SRP-F when= 10 andm = 4.

As clearly showed in Figure 5, the proposed algorithm caniigntly reduce the
system stack usage whenincreases. In fact, higher values®@fdenote higher stack
fluctuations due to lower stack usage between subjaf)s The stack usage slightly
increases with the system utilization, as tasks have mareags to be preempted, but
the increment is not significant.

The following experiments compaf®RP- F againstPTS and NSJ for different
parameters values. Notice tHaPS andNPS are not reported in the graphs, because
the corresponding required stacks can easily be comput&d 8S = n * s™ and
SNPS — g™ respectively.

13

5.3 Exp 2: Comparing stack usage

In a second experimerBRP- F was compared againBTS andNSJ as a function of
the total system utilizatiotv, whenn = 8, m = 5 anda = 10. Results are shown in
Figure 6.

4500

+ PTS
—6— SRP-F +
4000 —@- NSJ

3500
3000
2500

"
2000 [e s e M/e

1500
0.4

Average System Stack Usage

Figure 6: Average system stack at differéhtvhenn = 8, m = 5 anda = 10.

As clearly shown in the graph, stack required®§S increases with the system
utilization at a much faster speed with respecBRP- F. Also notice that, for small
utilizations (/' < 0.5) PTS requires less stack th&RP- F, because there is more
chance to group tasks into a small number of non-preemptougas, thus saving some
unnecessary,. For high workloads, however, to keep the task set scheliyl@bS
must increase the number of groups (each group requitingwhile SRP- F can allow
preemptions at a lower casg. Notice thatNSJ is not affected by/, since preemptions
are always allowed between subjobs. Remember, howevéiN8Jamay not be able
maintain the task set schedulable.

5000

4500

4000

w
&
3
S

3000

2500

Average System Stack Usage

2000

1500

1000
2 4 6 8 10 12 14 16 18 20
a: Ratio of s™ over s

Figure 7: Average system stack at differenvhenn = 8, m = 5 andU = 0.7.

Figure 7 shows the stack usage as a function ehenU = 0.7, n = 8, andm =
5. Notice thatPTS is not affected byx, whereas bottsRP- F andNSJ significantly
reduce the stack space for large valuesvptaking advantage of the lower value of

14

s with respect tas™. AlthoughNSJ is able to save more stack space, the task set
may not be always schedulable, whBBP- F can guarantee the system feasibility at a
reasonable cost of extra stack usage.

3000,

2800 +

2600

+- PTS
—4— SRP-F
—o- - NSJ

24005

2200

Average System Stack Usage

2000

1800 T ——— _
- -8 - -O0--8--0--8--0--8 - -0 —

1600,
2

4 6 8 14 16 18 20

0o 12
m: Number of Subjobs

Figure 8: Average system stack at differentvhenn = 8, « = 10 andU = 0.7.

Figure 8 shows the results when the number of subjefswas changed from 2
to 20, keeping:, andU at fixed values. As shown in the grafBRP- F reduces the
stack significantly whem increases. This is because larger valuesiamply shorter
subjob durations, with respect to task computation timiess thigher chances to be
executed non-preemptively. Since preemptions betweejolssilonly require small
stack overheadsRP- F achieves a low overall stack. As usuld§J is able to achieve
better stack saving, but at the cost of missing deadlinestic®ldhatPTS slightly
reduces the system stack for largeras tasks tend to have similar computation times.

4 6 8 10 12 14 16 18 20
n: Number of Tasks

Figure 9: Average system stack at differenvhenm = 6, « = 10 andU = 0.7.

In the last simulationp was varied from 4 to 20, whereas, o andU were kept
fixed. The results plotted in Figure 9 show that, un8BP- F andNSJ, the stack us-
ages almost increase linearly withsince both algorithms suffer thg stack overhead
for each task PTS is less sensitive ta, since the number of non-preemptive groups
increases very slowly with the task set size, especiallydigrutilizations.

Taking into account all the presented results above, oyrgeed metho&RP- F

15

shows its superiority especially when at large valuec@ndm. Indeed, in this case,
subjobs have relatively short computation requirementtante, the preemptions are
deferred to the end of subjobs, where stack usage is quitdl@xo large value of.
Another interesting result is that system stack usage usidles F increases relatively
slowly with utilization. Finally, when the system has a lkangumber of tasksPTS

has good performance since the number of non-preemptivggmrows very slowly.
However, in this caseSRP- F can provide high responsiveness as the blocking for a
task is the maximum subjob length from lower priority tagkstead of the task length
underPTS. Actually, now the problem becomes a design choice, shooleiunction
blocks be mapped into one task or not?

As illustrated by the motivation examplESJ (andNPS) cannot always guarantee
the schedulability of the task set. The exact feasible natiderNSJ is not the main
focus of this paper, and it heavily depends on how the tasis ggtnerated, and espe-
cially on the deadlines. Als&SJ can be considered as a very special caseRbt- F,
occurring when all subjob threshold priorities are equahi highest possible level.
Therefore, the unschedulable ratio unN8d can be qualitatively illustrated by the gap
between theNSJ andSRP- F curves. For example, in Figure 8 and 9, when the value
of m or n increasesNSJ has a larger chance to successfully schedule the task set and
the two curves become closer.

6 Related Work

Preemption threshold scheduling (PTs first introduced by Express Logic Inc. in
their real-time kernel ThreadX and then investigated acacly by Wang and Sak-
sena [25]. According to this method, each task has two pyidevels: a nominal
priority and a preemption threshold, used during task et@cuThen, preemption is
allowed to take place only when the nominal priority of anvéing task is higher than
the threshold of the running task. In this way, a task has éissipility of disabling pre-
emption up to a given priority level, equal to its threshdldhe authors also proposed
an algorithm to assign the optimal preemption thresholdgmsiorities for a given task
set.

Based on the idea of a dual-priority scheme, Saksena and [®dhgnd Davis et
al. [12] independently addressed the problem of reduciagtack space required by
the task set. Tasks are partitioned into groups, within tiésks are not allowed to
preempt each other, so that the stack required by each gsaqual to the maximum
stack requirement of the tasks within the group. In this wiag,overall stack required
by the task set is given by the sum of the stacks required bygtbeps. In partic-
ular, Saksena and Wang [24] also proposed an algorithm thinizes the number
of groups, showing that, for task sets with random attriutee number of groups
increases much more slowly than the number of tasks.

Unfortunately, Gai et al. [15, 16] showed that minimizing thumber of groups
does not minimize the overall stack usage. The authors aksepted an algorithm,
having exponential complexity in the worst case, to miniertize total amount of re-
quired stack.

Regehr [23] introduced two novel scheduling abstractiotesk clusters and task

16

barriers — that provide better timing robustness. In hiskytire execution time vari-
ance was also investigated and an algorithm to find faudtrémit preemption thresholds
was presented. Ghattas and Dean [17] proposed a unifiedviraiaasing preemption
thresholds under both static and dynamic scheduling. Thethod allows optimizing
the selection of preemption thresholds and reducing theageeworst-case response
times, for systems with limited memory and reduced stack.

While most of the approaches are built upon the dual-pyictheme, there exist
other methods that focus on reducing the stack usage. Midtlah [22] proposed
the multi-task stack sharing technique (MTSS) that growessthck of a particular task
into other tasks in the system. Hanninen et al. [18] prexkah approximate stack
analysis method to derive a safe upper bound on the sharekl wsage, in offset-
based hybrid (interrupt- and time-driven) fixed priorityepmptive systems. Finally,
Bohlin etal. [11] introduced some techniques to exploitpence and offset relations
between tasks, thus limiting preemption patterns and biogrttie amount of shared-
stack usage.

In all the papers considered above, the internal strucfitheedasks is never consid-
ered in the analysis, and the stack level is always assuneel ¢égual to its maximum
size when a task is preempted. Conversely, to comply withctiremon industrial
practice for modular software development, this work assuthat each task consists
of a sequence of functions, with given computational andkstaquirements. Then,
exploiting the results achieved on limited preemptive sittieg, this work presents a
scheduling protocol for limiting the preemption among t&akd reducing the overall
system stack usage.

The scheduling protocol proposed in this paper is intedratigh the Stack Re-
source Policy (SRP) [6], proposed by Baker to bound pridritiersion among real-
time tasks that share mutually exclusive resources. Gdi 18] showed how SRP
can be extended to support preemption thresholds, withralgrties of SRP still pre-
served. Baruah [7] and Bertogna et al. [9] considered thbleno of reducing the re-
source holding times under EDF+SRP, by raising the systéimgeither statically or
dynamically during runtime. In this paper, SRP is extenaddtit preemption within
subjobs as much as possible, to reduce stack usage whikryiresschedulability.

6.1 Distinctions from prior results

The idea oblocking tolerancevas first used in [9] and [26] with the purpose of bound-
ing the maximal length of the non-preemptive regions forhetask. In this paper,
however, the blocking tolerance is used to compute the kigtréority at which each
subjob can run, to limit preemptions and stack usage. As stdwy the example in
Table 1, subjol¥; ; can only be preempted immediately by taskbut not byr,. The
algorithm in this paper is more similar to [9], however, imtkvork the main objective
was to compute and minimize the resource holding timeserdttan stack size. More-
over, that work considered critical sections inside thk tasle, rather than subjobs.
A similar approach is also used in [8], which takes into actdath the preemption
related delays and system schedulability. The strateggtadan that paper is to make
each task chunk totally non-preemptive, by statically litisg potential preemption
points inside the code. Our paper differs from that work vesal ways. In our task

17

model, the subjob division comes from the system functiolesign, as input to our
algorithm. Hence, we do not manually add preemption poirgile the code, instead,
we compute the maximum priority each subjob can raise.

The subjob threshold priority shares similarities withwark on preemption thresh-
olds [24, 25], however, these two differ both in the validgarand the values. With
subjob threshold priority, the task instance has a varyngripy during its execution,
depending on which subjob is executing, and the priority weiturn to the nominal
one between subjobs. On the contrary, preemption threshueddid for the entire task
instance, from its start time to its completion. The grogsdd task set partition strat-
egy, adopted in [16, 23, 24], cannot be applied here in agsttfairward way. In fact,
the longest subjob imposes the strongest constraint onntliregt requirement and the
maximum subjob stack directly affects the final optimizatiesult. Since these two
subjobs may not be the same, the problem is clearly combiahtihus requiring high
computational complexity.

7 Conclusions

This paper presented an approach for reducing the stacle wfaa set of real-time
sporadic tasks running on a uniprocessor system under frkadtyp scheduling. With
respect to other approaches available in the literatuig wtbrk considered each task
consisting of a set of functions (or subjobs), each charaet by a maximum stack
requirement. This made it possible to prohibit arbitramgmptions through a dynamic
priority protocol, which rises the priority of each subjakthe maximum possible level
to reduce the the system stack, while still guarantee faifgiResource synchroniza-
tion was also considered and an extension of the Stack RasBuaticy, called SRP-F,
was presented to arbitrate the access to mutually exclussa@irces while reducing
the overall stack space.

The idea of splitting each task into a sequence of subjolis different stack re-
quirements allows taking advantage of internal stack fatidns, trying to prohibit pre-
emptions within a subjob, unless this is necessary for guieeing the schedulability of
the task set. Simulation results show that, for most tasga@tmeters, SRP-F achieves
much smaller stack usage with respect to preemption thigsbbeduling (PTS). Non-
preemptive scheduling (NPS) and non-preemptive subjoediding (NSJ) have also
been considered in the experiments, but only as refereaces they cannot always
guarantee the feasibility of the task set.

There are also particular situations in which PTS achieveerstack saving with
respect to SRP-F. For example, when the stack fluctuatiootibigh (small values of
«), the stacks, required between subjobs has a large influence on SRP-Fj¢lguades
the performance, whereas PTS is not affected:bglso, when the task set utilization
is low (U < 0.5) or the number of tasks is higm (> 15), task computation times
become small and PTS has more chances to reduce the numheupbgso saving
more stack than SRP-F.

In conclusion, simulation results suggest that, by anatythe characteristics of
the task set, it is possible to select the algorithm thateaels the smallest stack usage.

As a future work, we plan to extend the proposed methodologyulti-core sys-

18

tems and apply it to industrial applications to preciselyaswee how much memory
space can be saved in real embedded systems.

References

[1] Evidence Srl. Web pagéat t p: / / www. evi dence. eu. com

[2] Unicoi Systems. Web pagét t p: / / www. uni coi . com

[3] ETAS Group. Web pagéht t p: / / www. et as. com

[4] AUTOSAR Consortium. Web pagért t p: / / ww. aut osar. or g.
[5] OSEK Group. Web pagditt p: / / www. osek- vdx. org.

[6] T. P. Baker. Stack-based scheduling of real-time preegReal-Time Systems
3(1):67-100, March 1991.

[7] S. K. Baruah. Resource sharing in edf-scheduled systérobser look. INRTSS
'06: Proc. of 27th Real-Time Systems Sympospages 379-387, 2006.

[8] M. Bertogna, G. Buttazzo, M. Marinoni, G. Yao, F. Esposiand M. Caccamo.
Preemption points placement for sporadic task setsE@RTS '10: Proc. of
Euromicro Conf. on Real-Time Systerdsly 2010. to appear.

[9] M. Bertogna, N. Fisher, and S. Baruah. Resource holdingg: computation and
optimization.Real-Time System1(2):87-117, 2009.

[10] E. Bini and G. C. Buttazzo. Measuring the performancedfedulability tests.
Real-Time System30(1-2):129-154, 2005.

[11] M. Bohlin, K. Hanninen, J. Maki-Turja, J. Carlson, and Molin. Bounding
shared-stack usage in systems with offsets and precedén&3SRTS '08: Proc.
of Euromicro Conf. on Real-Time Systempages 276-285, July 2008.

[12] R. Davis, N. Merriam, and N. Tracey. How embedded appians using an rtos
can stay within on-chip memory limits. Froc. of Industrial Experience Session,
Euromicro Conf. on RealTime Systemages 43-50, 2000.

[13] M. Di Natale. Optimizing the multitask implementatiaf multirate simulink
models. INRTAS '06: Proc. of the 12th IEEE Real-Time and Embedded @&chn
ogy and Applications Symposiupages 335-346, 2006.

[14] A. Ferrari, M. D. Natale, G. Gentile, G. Reggiani, andzRi. Time and memory
tradeoffs in the implementation of autosar componentsDATE '09: Proc. of
Design, Automation and Test in Eurggeages 864—869, 2009.

[15] P. Gai.Real-Time Operating System design for Multiprocessoegysin-a-chip
PhD thesis, SSSA, Pisa, Italy, 2004.

19

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

P. Gai, G. Lipari, and M. D. Natale. Minimizing memonyligation of real-time
task sets in single and multi-processor systems-on-a-¢thigTSS '01: Proc. of
Real-Time Systems Symposipages 73—-83, 2001.

R. Ghattas and A. G. Dean. Preemption threshold schrefdubtack optimality,
enhancements and analysis.RfMAS '07: Proc. of the 13th IEEE Real Time and
Embedded Technology and Applications Sympagiages 147-157, 2007.

K. Hanninen, J. Maki-Turja, M. Bohlin, J. Carlson, and Molin. Determining
maximum stack usage in preemptive shared stack syster®RI 3% '06: Proc. of
the 27th Real-Time Systems Sympospages 445—-453, 2006.

J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic sicieg algorithm: Ex-
act characterization and average case behavifrda. of the Real-Time Systems
Symposiunpages 166 — 171, CA, USA, Dec 1989.

J. Leung and J. Whitehead. On the complexity of fixeanity scheduling of
periodic real-time taskPerformance Evaluatiqr?(4):237-250, 1982.

C. L. Liu and J. W. Layland. Scheduling algorithms for ltiprogramming in a
hard-real-time environmendournal ACM 20(1):46-61, 1973.

B. Middha, M. Simpson, and R. Barua. Mtss: Multitaskcgtaharing for embed-
ded systemsACM Trans. Embedded Computing Systé():1-37, 2008.

J. Regehr. Scheduling tasks with mixed preemptiortioxa for robustness to
timing faults. InProc. of the 23rd IEEE Real-Time Systems Sympqsnages
315-326, 2002.

M. Saksena and Y. Wang. Scalable real-time system dassing preemption
thresholds. IRRTSS '00: Proc. of Real-Time Systems Sympqgiages 25-34,
2000.

Y. Wang and M. Saksena. Scheduling fixed-priority taskh preemption thresh-
old. InProc. of Conf. on Embedded and Real-Time Computing Systeth&@
plications pages 328-335, 1999.

G. Yao, G. Buttazzo, and M. Bertogna. Bounding the maximength of non-
preemptive regions under fixed priority schedulingPhoc. of Conf. on Embed-
ded and Real-Time Computing Systems and Applicatpages 351-360, China,
20009.

20

	Testo1: Technical Report RETIS-TR-10-02, RETIS Lab, Scuola Superiore Sant'Anna, Pisa, Italy, February 2010
	Testo4:

