
Reducing Stack with intra-task Threshold
Priorities in Real-Time Systems∗

Gang YaoandGiorgio Buttazzo
Scuola Superiore Sant’Anna,

Pisa, Italy
{g.yao, g.buttazzo}@sssup.it

Abstract

In the design of hard real-time systems, the feasibility of the task set is one
of the primary concerns. However, in embedded systems with scarce resources,
optimizing resource usage is equally important. In particular, the RAM is highly
expensive in terms of chip space, and it heavily impacts the cost of the final prod-
uct.

In this paper, we address the problem of reducing the stack usage of a set of
sporadic tasks with timing and resource constraints, running on a uni-processor
system. With respect to other approaches available in the literature, this work
considers each task consisting of a set of functions (or subjobs), each characterized
by a maximum stack requirement. This makes it possible to prohibit arbitrary
preemptions through a dynamic priority protocol that reduces the overall system
stack usage. Resource synchronization is also considered and, an extension of the
Stack Resource Policy is presented to arbitrate the access to mutually exclusive
resources while reducing the overall stack space. Simulations are performed on
randomly generated task sets to evaluate the efficiency of the proposed method
with respect to existing approaches.

1 Introduction

In a real-time kernel, it is well known that different scheduling policies lead to different
system performance and different memory usage. For example, executing all the tasks
in non-preemptive fashion can significantly reduce the overall stack usage, however it
degrades task responsiveness and the total processor utilization. For this reason, most
real-time operating systems (RTOSs) adopt fully preemptive schedulers, which reduce
the latency of high priority tasks, but introduce higher runtime overhead and require
a larger amount of memory. Many RTOSs (e.g., uC/OS-II, FreeRTOS, AvrX) allocate
a dedicated stack space for each task, whereas others (such as Erika [1], Fusion [2],
RTA-OSEK RTOS [3] etc.) allow several tasks to share a singlestack space.

∗This work has been partially supported by the European Community’s Seventh Framework Programme
FP7/2007-2013 under grant agreement no. 216008.

1

In classical schedulability analysis, the structure of thetask code is typically ne-
glected, so that any preemption pattern is assumed to be possible. This fact leads to
very pessimistic results in terms of memory usage, since each preemption is supposed
to occur when the current task is using its maximum stack space. Therefore, the total
stack space that has to be allocated to the application is thesum of the maximum stack
spaces required by all the tasks.

Sharing a common stack for a group of tasks is possible when the tasks in the group
can execute in non-interleaved fashion, so one stack frame is sufficient for the entire
group. For instance, the preemption thresholds methodology [25] allows designers
to partition the system into task groups, where all tasks inside the same group are
executed non-preemptively. In this case, the stack usage ofeach group is equal to the
stack space needed by the task with the maximum requirement,and the overall stack
usage is reduced to the sum of all the group stacks, rather than all the task stacks.

Modern system design methodologies and standards require high portability and
reuses of functional components. For example, in AUTOSAR [4], used for the de-
velopment of automotive systems, the application is developed as a group of software
components, whose behavior is represented by a set ofrunnables, each implementing
a specific functionality. Each runnable is then mapped to a task with a given priority,
which is defined to enforce a desired order of execution, withrespect to other runnables.

Recently, limited preemptive scheduling with non-preemptive regions has received
increasing attention in the real-time community, for its possibility of combining the
advantages of preemptive and non-preemptive scheduling [8, 26]. This framework not
only is suitable for modelling tasks structured as a sequence of functions, but it also
allows reducing the overall memory usage. For example, eachrunnable can be mapped
to a function within a task, and treated as subjob with given memory and computational
requirements. How mapping is performed is out of the scope ofthis paper (interested
readers may refer to [13, 14] for details). The advantage of partitioning a task into
subjobs is that at the subjob boundaries the stack usage is relatively low, hence a method
can be proposed to schedule tasks so that the overall system stack is reduced.

Contributions of the paper This work provides three main contributions. First, a
new task model is proposed to specify the structure of each task as a set of functions
with specific timing and memory requirements. Preemption between subjobs is always
allowed, whereas preemption within a subjob is allowed onlywhen necessary to guar-
antee the feasibility of the task set. Second, a dynamic priority protocol is proposed to
limit preemptions and reduce the overall stack usage, whilemeeting all task deadlines.
Finally, the method is integrated with the Stack Resource Policy (SRP) [6] to handle
shared resources.

Paper Organization The rest of the paper is organized as follows. Section 2 in-
troduces the basic assumptions and methodology used in the paper, and presents a
motivation example for the paper. Section 3 presents the proposed approach. Section 4
describes the integration with the SRP and how the scheduling policy can be imple-
mented. Section 5 reports some simulation results. Section6 presents some related
work and the distinctions from prior results. Finally, Section 7 states our conclusions

2

and future work.

2 Task Model and Assumptions

The system consists of a setT = {τ1, τ2, . . . , τn} of n real-time tasks to be executed
on a uniprocessor under fixed priority scheduling. Each taskτi can be periodic or spo-
radic, wherePi denotes its nominal priority,Di its relative deadline,Ci its worst-case
execution time, andTi its period or minimum inter-arrival time between two consec-
utive releases. A constrained deadline model is adopted here, soDi is assumed to be
less than or equal toTi. Task priorities are assigned according to Rate Monotonic [21],
if all relatives deadlines are equal to periods, or according to Deadline Monotonic [20],
otherwise. Tasks are indexed by decreasing priority, and a larger value ofPi denotes a
higher priority. For convenience, we also use the followingnotations to represent some
task subsets:

hp(i) = {τj | Pj > Pi}
hep(i) = {τj| Pj ≥ Pi}
lp(i) = {τj| Pj < Pi}

The system utilizationU is defined as the sum of the utilization factors of all the tasks:

U =

n
∑

i=1

Ui =

n
∑

i=1

Ci/Ti.

In the model considered in this paper, each taskτi consists ofmi functions (or subjobs),
{Fi,1, . . . , Fi,mi

}, where each functionFi,j is characterized by a worst-case execution
timeqi,j and a maximum stack usagesi,j . Therefore, the worse-case execution time of
a task is the sum of all its subjob durations, that is,Ci =

∑mi

j=1 qi,j .
Since it is difficult to determine the exact stack usage at every point for a given

task instance, it is assumed that each subjob gradually increases its stack usage up to
its maximum levelsi,j , remains at that level for the entire subjob duration, and then
releases the stack space at the end of the subjob code. This isthe typical assumption
adopted for the task stack usage in related research works [16, 17, 23, 24], which
provides safe but pessimistic bounds. Moreover, a fixed stack si,0 is considered to be
required by taskτi between subjobs. Finally, it is assumed that the stack is only used
between the start and the finishing time of each task instance, hence, no local data
remains on the stack at the end of a task instance. Notice thatthis assumption complies
with the OSEK standard [5] used in the development of automotive applications. The
subjob division and mapping is beyond the scope of this paper, instead, the information
about subjobs is used to perform the analysis and derive a protocol that reduces system
stack.

To limit preemptions, each subjobFi,j is assigned a static priority levelPi,j ≥ Pi,
computed off line to limit stack usage while preserving schedulability. The priority
Pi,j is used during subjob execution as athreshold priorityto prevent preemption from
any taskτh, with Pi < Ph ≤ Pi,j . Between subjobs, task is executed using its nominal
priority Pi. As a consequence, the actual priority of a taskτi is not fixed, but varies at

3

stack

i,0

F

q Diqi,2qi,1 qi,3

i,2F Fi,m i ti,3i,1

iT

Fiτ

i,m i

s

s

0

i,2

i,3

s

Figure 1: Example of task with different computational and stack requirements.

runtime depending on the portion of code under execution. The variablepi is used to
denote such a dynamic priority for taskτi.

Figure 1 illustrates a sample task consisting of four subjobs. The maximum stack
usage is also shown at each time instant. Notice that a stack equal tosi,0 is needed
between subjobs, as the previous subjob has released its stack space and the coming
subjob has not yet started.

For the sake of convenience, the following parameters are also defined:

sm
i denotes the maximum stack usage among all subjobs of taskτi, that is

sm
i = max

1≤j≤mi

{si,j}.

Si,j denotes the maximum system stack usage when subjobFi,j is feasibility sched-
uled together with all tasks inhp(i).

Si denotes the maximum system stack required to feasibly schedule the subsethep(i).
Clearly, it can be computed as:

Si = max
1≤j≤mi

{Si,j}. (1)

S denotes the maximum system stack required to feasibly schedule the whole task set:

S = max
1≤i≤n

{Si}. (2)

2.1 Motivation example

Consider a simple task set of three periodic (or sporadic) tasks as reported in Table 1.
The task parameters are given in the second column and the execution time and stack
requirement of subjobs is in the third and forth column, respectively. Each task is
assumed to consist of two subjobs (mi = 2, i = 1, 2, 3) andsi,0 is the same value for
each task (si,0 = 1, i = 1, 2, 3).

Under fully preemptive scheduling, the stack bound is equalto the sum of all task
stack spaces (SFPS= 18) and the system can be easily verified to be schedulable.

4

Ci Di Ti sm
i qi,1 qi,2 si,1 si,2 βi

τ1 10 14 20 5 5 5 4 5 4
τ2 4 30 30 7 2 2 5 7 6
τ3 9 40 40 6 5 4 4 6 3

Table 1: A sample task set of 3 tasks.

Preemption threshold methodology1 assigns the first two tasks (τ1 andτ2) to a non-
preemptive group, thus allowing some stack saving (SPT S = max{sm

1 , sm
2 } + sm

3 =
13) while still guaranteeing the schedulability. Prohibiting preemptions can save the
system stack usage but at the risk of deadline misses. The questions arise that with the
additional information on the subjob requirement on timingand stack space, how can
system further reduce the overall stack space with system schedulability still preserved
and how to implement this method with limited efforts. Thesetwo questions will be
investigated in the following two sections.

3 Reducing stack usage

This section presents the approach proposed in this paper for limiting the stack usage
of the task set and computing the maximum stack requirements. To limit the growth
of the stack, tasks are executed using limited preemptive scheduling. In fact, the non-
preemptive execution of subjobs prevents a task from being preempted arbitrarily when
using the maximum stack space, which would require a higher overall stack usage.
However, non-preemptive regions increase the blocking delay on higher priority tasks,
possibly jeopardizing the system feasibility. Taking intoconsideration both the two
effects, the proposed method computes the highest prioritylevel Pi,j for each subjob
Fi,j that reduces the overall stack usage while guaranteeing theschedulability of the
task set.

3.1 Main results on limited preemptive scheduling

Feasibility analysis under fixed priority scheduling can beperformed using therequest
bound function[19] RBF(τi, t), which is defined as the maximal cumulative execution
request that can be generated by jobs ofτi within an interval of lengtht from the critical
instant:

RBF(τi, t) =

⌈

t

Ti

⌉

Ci.

The cumulative execution request of a taskτi andhp(i) over an interval of lengtht is
therefore bounded by:

Wi(t) = Ci +
∑

τj∈hp(i)

RBF(τj , t).

1Many valid task grouping with different objective are possible, theOPT-Partition algorithm in [24]
is adopted here for comparison.

5

Definition 1. The blocking toleranceβi for taskτi under fixed priority scheduling is
defined as:

βi = max
t∈(0,Di]

{t−Wi(t)}. (3)

Notice that the right hand side of Equation (3) does not need to be evaluated at
every instantt ∈ (0, Di], but only at those times in whichWi(t) has a discontinuity,
that is:

{t ∈ [Ci, Di] | t = k · Tj , k ∈ N and∀Tj , τj ∈ hp(i)}.

Theβi calculated in Equation (3) represents the maximal blockingthat τi can suffer
without violating the deadline constraint. Notice this value can also be used to verify
the feasibility of the task setunder fully preemptive scheduling: if all the computedβi

are non-negative, the task set is deemed feasible.

Theorem 1. For a preemptively feasible task set, subjobFi,k of taskτi can execute
non-preemptively without causing any deadline miss in tasks τj ∈ hp(i) if

∀j = 1, . . . , i− 1 qi,k ≤ βj . (4)

Proof. By contradiction. Assume Equation (4) is satisfied andτj(j ∈ [1, i − 1]) has
a deadline miss due to the non-preemptive execution ofFi,k. Since the maximum
blocking time due toFi,k is qi,k, for τj we have:

∀t ∈ (0, Dj] qi,k + Cj +
∑

τl∈hp(j)

RBF(τl, t) > t

which is equivalent to:

qi,k > max
t∈(0,Dj]

{

t− Cj −
∑

τl∈hp(j)

RBF(τl, t)
}

According to the definition of blocking tolerance in Equation (3), we have:

qi,k > βj

which contradicts Equation (4) and proves the theorem.

3.2 Proposed approach

Let us start considering a special case in which the task set is schedulable when all tasks
are executed non-preemptively. In this case, there is only one active task at a time, and
the maximum stack space required for the task set, denoted asSNPS , is equal to the
largest stack space required by each task, that is:

SNPS = max
1≤i≤n

{sm
i }. (5)

When preemption is allowed only between subjobs (that is, when all subjobs are ex-
ecuted in non-preemptive fashion), then only one subjob is active at any time instant.

6

Hence, the overall stack space, denoted asSNSJ (Non-preemptive SubJob), is no
greater than:

SNSJ =

n
∑

i=1

si,0 + max
1≤i≤n

{sm
i − si,0}. (6)

It can easily be verified thatSNPS is no larger thanSNSJ , since there is no extrasi,0

needed for the system under non-preemptive scheduling.
If the non-preemptive execution of one subjob makes the taskset infeasible, pre-

emption must take place within that subjob and, consequently, the stack space required
by the system may increase. The idea to limit the increase of the overall stack space
is to allow preemptions inside a subjob only when strictly necessary, that is, when the
non-preemptive execution of that subjob would cause other tasks to miss their dead-
lines. To implement this idea, each subjobFi,j is assigned a priority levelPi,j ≥ Pi

that prevents preemption as much as possible. Notice thatPi,j (referred to as subjob
threshold priority) is a static value computed off line, butassigned dynamically at run
time when subjobFi,j starts executing.

Given a subjobFi,j of task τi, let Pk (Pi ≤ Pk ≤ P1) be the highest priority
level such that all tasksτh with Ph ≤ Pk remain schedulable whenFi,j is executed
non-preemptively. Then,Fi,j can be safely executed with priorityPi,j = Pk with the
system schedulability preserved. Notice that the schedulability of lp(i) andτi are not
affected by the non-preemptive execution ofFi,j , and the schedulability of tasks in
hp(i) can be verified using Theorem 1. Hence,Pi,j can be expressed as follows:

Pi,j =max
{

{Pi} ∪ {Pk |k ∈ [1, i), ∀h = k, . . . , i− 1 : qi,j ≤ βh}
}

. (7)

The following lemma states a property of the{Si} sequence for the task set.

Lemma 1. The sequence{Si} (1 ≤ i ≤ n) is non-decreasing.

Proof. Suppose task subsethep(i) is successfully scheduled with total stack usage
Si. If task τi is removed fromhep(i), clearly, the remaining tasks are still feasible.
Since the system stack usage cannot increase by removing onetask, it follows that
Si ≥ Si−1.

Let Shp(Pk) denote the maximum stack used by tasks inhp(k). Then, from
Lemma 1, it follows that:

Shp(Pk) = max
1≤i≤k−1

{Si} = Sk−1. (8)

And sinceτ1 is the highest priority task in the system and it can never be preempted by
other tasks, it follows that:

Shp(P1) = S0 = 0. (9)

Once the threshold priorityPi,j is computed for each subjobFi,j , the corresponding
stack usageSi,j can be computed by the following theorem, by considering thetasks
that can preemptFi,j .

7

Theorem 2. Let Pi,j = Pk, Pi ≤ Pk ≤ P1. Then, the max stack space needed for
feasibly schedulingFi,j together with tasks inhp(i) is:

Si,j = max{si,j + Sk−1, si,0 + Si−1} (10)

whereS0 = 0 as in Equation(9).

Proof. If Pi,j = Pk, Fi,j can be preempted immediately only by tasks with priorities
in [P1, Pk−1], while tasks with priorities in[Pk, Pi−1] start executing only after the
completion ofFi,j . WhenFi,j is immediately preempted, the overall stack is equal to
the current stack (si,j) plus the increment due to preemptions (Shp(Pk)). According to
Equation (8), it can be expressed as:si,j + Sk−1.

When preemptions are deferred to the end ofFi,j , the stack usage ofτi is reduced
to si,0 and, the stack increment due to preemptions ismax{Sl| k ≤ l < i}. Therefore,
according to Lemma 1 the stack usage can be expressed as:si,0 + Si−1.

Hence, the maximum stack space required for executing subjob Fi,j is the maxi-
mum between these two values. Hence, the theorem follows.

Two additional notes regarding the proof of Theorem 2:

1. From the scheduling point of view, our proposed approach provides a compro-
mise between two extreme cases: fully preemptive and non-preemptive subjob
scheduling. WhenPk = Pi, the task priority is always equal to the nominal
one and the task instance is executed in fully preemptive mode. In this case, the
stack usageSi,j becomessi,j + Si−1, hence Equation (10) still holds. Whereas,
whenPk = P1 it corresponds to the special case in which subjobFi,j is exe-
cuted non-preemptively. In this case, Equation (10) still holds asS0 is defined in
Equation (9).

2. One special case is whenFi,j is the last subjob ofτi, thensi,0 in Equation (10)
can be avoided as this task instance ends. However, Equation(10) is used as the
uniform expression and is still correct as an upbound of the stack usage.

It is worth pointing out that the stack increase due to mutualpreemptions among
tasks withinhp(i) is already accounted in the value ofSi, as the computation is per-
formed in decreasing priority order. Moreover, proceedingin this way,Sj for task
τj ∈ hp(i) is available when considering taskτi.

Sinceτ1 is the highest priority task, all its subjobs will never be preempted, hence
S1 = sm

1 . For the remaining tasks in the system, each valueSi,j (1 ≤ j ≤ mi)
is calculated using Theorem 2. Then, the stack usage for the subsethep(i) can be
computed according to Equation (1).

Corollary 1. The maximum system stack usageS is equal to the stack needed to fea-
sibly schedule taskτn together with the other tasks inhp(n), that is

S = Sn. (11)

Proof. It directly follows from Equation (2) and Lemma 1.

8

3.3 The algorithm implementation

Using the results presented above, this section describes how to compute the maximum
stack space required by the system. A procedureset threshold(i, j), shown in
Figure 2, is used to compute the threshold priorityPi,j for subjobFi,j . The main
algorithm,stack size(), is presented in Figure 3.

Procedure: setthreshold(i, j)
Input : Task set parameters.
Output : Pi,j(1 < i ≤ n, 1 ≤ j ≤ mi).
begin

k = i
while k > 1 do

k = k − 11

if qi,j > βk then return Pk+12

end
return P1

end
Figure 2: Procedure for computingPi,j .

The while loop in Figure 2 scans all tasks with priority higher thanPi to verify
whether they are feasible whenFi,j is executed non-preemptively. According to The-
orem 1, ifqi,j ≤ βk, taskτk remains feasible and priority is raised to the next level,
otherwise Line 2 returns the priority of the previous levelPk+1. If all tasks are found
to be schedulable, thenPi,j is assigned the highest priorityP1.

The algorithm in Figure 3 considers tasks in decreasing priority order, fromτ1 to
τn. The values ofS0 andS1 are initialized in Line 1. For each taskτi(1 < i ≤ n),
subjobsFi,j(1 ≤ j ≤ mi) are checked sequentially, by increasing index ofj. In
particular,Pi,j is computed at Line 2 using the algorithm in Figure 2. Then,Si,j is
computed for subjobFi,j at Line 3, according to Theorem 2. The stack usageSi is
derived using Equation (1). In this way, Line 4 keeps the record of Si and updates it
when necessary. Finally, Line 5 returnsSn as the system stack usage, according to
Corollary 1.

In terms of complexity, calculating the blocking tolerances requires pseudo-polynomial
complexity, as showed in [9, 26]. Hence, the complexity of theset threshold pro-
cedure is pseudo-polynomial. In the main algorithm, stack is computed task by task
and, within each task, subjob by subjob, hence the complexity of this procedure is
O(n ∗mi). Therefore, the overall complexity of the algorithm is pseudo-polynomial.

3.4 Motivation example revisit

The motivation example presented in Section 2 is revisited here to illustrate the pro-
posed approach. The blocking tolerancesβi, computed using the algorithm in [26], are
reported in the last column of Table 1.

The stack usage ofτ1 can be easily derived asS1 = sm
1 = 5. For τ2, asq2,1 and

q2,2 are both less thanβ1, subjobsF2,1 andF2,2 can always execute non-preemptively

9

Algorithm: stack size()
Input : Task set parameters.
Output : Maximum system stack usageS.
begin
S0 = 0, S1 = sm

11

for i← 2 to n do
Si = si,1

for j ← 1 to mi do
Pi,j = set threshold (i, j)2

Si,j =max{si,j + Shp(Pi,j), si,0 + Si−1}3

Si = max{Si,Si,j}4

S = Sn5

end
Figure 3: Algorithm for computingS.

(P2,1 = P2,2 = P1). The maximum stack usage forF2,1 is whenτ1 starts after the
completion ofF2,1, hence,

S2,1 = max{s2,1 + S0, s2,0 + S1} = s2,0 + S1 = 6.

Whenτ1 starts afterF2,2 finishes,F2,2 does not have the stack usage ofs2,0 as current
instance finishes. Hence,

S2,2 =max{s2,2 + S0,S1}≤max{s2,2 + S0, s2,0 + S1}=7.

Therefore, the stack usageS2 is 7 (the maximum betweenS2,1 andS2,2). For taskτ3,
sinceq3,1 < β2 andq3,1 > β1, we haveP3,1 = P2 and

S3,1 = max{s3,1 + S1, s3,0 + S2} = max{4 + 5, 1 + 7} = 9.

Finally, beingq3,2 ≤ β1 andq3,2 < β2, F3,2 can be executed non-preemptively and
P3,2 = P1, hence:

S3,2 =max{s3,2 + S0,S2}≤max{s3,2 + S0, s3,0 + S2}=8.

andS3 = max{S3,1, S3,2} = 9. Therefore the maximum system stack usage is
S = S3 = 9.

A possible scheduling trace for the task set in Table 1 is reported in Figure 4, which
also shows the system stackS and the dynamic priority ofτ3 as a function of time.
Each subjob is represented by a different filling pattern. Notice that, since tasks are
sporadic, all preemption patterns are possible, dependingon the specific arrival times.
At time t = 12, p3 = P3,1 = P2, hence subjobF3,1 resumes afterτ1 finishes. As a
consequence,S remains ats3,1. At time t = 15, subjobF3,1 ends andp3 decreases to
P3, thus taskτ2 starts executing. Notice that, in this way, the stack increases froms3,0,
but not froms3,1. The priority ofτ3 remains atP3 for the entire execution ofτ2, then
increases toP3,2 = P1 at timet = 19, asF3,2 starts executing.

10

S

3,2 = P1
P3,1 = P2

 P3

0 5 10 20 3015 25

p3

τ

τ
τ
ττ

τ
ττ
ττ
τ2

τ1

3

t

0

9

3

t

6

P

Figure 4: A sample task set with the stack usage and the dynamic priority of taskτ3.

Table 2 summarizes the maximum system stack usage and the result of schedula-
bility test, when the task set is scheduled by different methods. In particular,SNPS

denotes the stack bound computed under non-preemptive scheduling and,SNSJ the
stack bound computed when preemption can occur only betweensubjobs. These two
values can be computed by Equation (5) and (6), respectively. Notice that these two
methods can achieve higher stack saving, but cannot make thetask set schedulable.
The maximum stack usage produced by our proposed approach isrepresented asS. It
achieves the lowest system stack usage among the listed methods with the schedulabil-
ity still preserved.

SNPS SNSJ S SPT S SFPS

System Stack 7 9 9 13 18
Schedulability N N Y Y Y

Table 2: Results of different methods.

The performance of these methods is further investigated byextensive simulations
reported in Section 5.

4 Integrating with Stack Resource Policy (SRP)

The proposed approach can be easily extended to work under shared resources, pro-
vided that each critical section is confined within one subjob. In fact, if SRP is used
to access critical sections, the limited preemptive methodused to reduce stack can be
easily implemented by introducing a set ofpseudo-resources.

Tasks may share a set ofr (real) mutually exclusive resourcesρ1, ρ2, . . . , ρr, which
are accessed and released within subjobs, thus no resourcesare locked between sub-
jobs. Letωk

i,j be the length of the longest critical section of resourceρk in subjobFi,j .
No knowledge is assumed on the position of critical sectionswithin subjobs, so the
start time of critical sections is unknown to the designer.

11

Under SRP, each taskτi is assigned a static preemption levelπi and, under fixed
priority scheduling, preemption levels can be set to the nominal priorities (πi = Pi).
SRP guarantees that each job is blocked at most once, at the time it attempts to preempt.
The maximum blocking time for taskτi under SRP can be calculated as the longest
critical sectionωk

l,j accessed by tasks with lower preemption levels and with ceiling
higher than or equal to the preemption level ofτi:

Bi = max
∀τl∈T ,∀j,k

{ωk
l,j| πi > πl ∩ πi ≤ ceil(ρk)}. (12)

In the approach proposed in this paper,Pi,j has a strong similarity with the ceiling of a
resource. WhenFi,j starts, the tasks having priorities lower than or equal toPi,j cannot
start executionas if a resource were locked and the system ceiling were raised. After
Fi,j ends, tasks blocked byFi,j can start executingas if the resource were released and
the system ceiling were reduced to the previous value.

This is equivalent to assuming that each subjobFi,j accesses a pseudo-resource
ρi,j with length equal toqi,j and static ceiling equal toPi,j . Such a pseudo-resource
is locked whenFi,j starts executing and unlocked whenFi,j ends. The system ceil-
ing is also updated accordingly, considering the other resources. Notice that, the real
local resourcesρr are shared among the tasks in the system and the resource ceiling
is decided accordingly, depending on which tasks access this resource, whereas, the
pseudo-resourceρi,j is added only to one subjob, with the ceiling computed off line
according to Equation (7).

Such an extension is referred to as SRP with fixed subjob division (SRP-F). Under
SPR-F, thesystem ceilingis computed as

Πs = max
j∈[1,n]

{

{

max
i∈[1,r])

{ceil(ρi)}
}

∪ {pj|τj is active}
}

where the first part represents the ceiling of the real sharedresources while second part
the pseudo-resource, depending on which subjobs are active. The pseudo-resources
added in SRP-F are compatible with the traditional SRP resources, hence, all properties
under SRP are automatically retained under SPR-F.

Since we introduce another set of pseudo-resources, each task has more chance
to be blocked. Indeed, now blocking may occur for two reasons: i) the real local
resources and ii) the pseudo-resources. In the first case, Equation (12) still holds and the
feasibility can be verified using the methods introduced in [6]. In the second case, the
blocking can be calculated in a similar way, and the ceiling for each pseudo-resource
is computed in such a way that the system feasibility is always guaranteed.

5 Simulation Results

This section presents some experimental results performedon synthetic task sets to
evaluate the effectiveness of our algorithm with respect the ones listed in Table 2. The
proposed method is referred to asSRP-F.

12

5.1 Simulation setup

In order to simplify the simulation, each taskτi is assumed to have the same number
of subjobs and the same minimum/maximum stack usage, that is, ∀i ∈ [1, n], mi =
m, sm

i = sm andsi,0 = s0. Moreover, another parameter,α = sm/s0, has been
introduced to represent the level of fluctuation on task stack usage. In all simulations,
sm is set to 1024 ands0 is computed according to the value ofα.

Subjob computation timesqi,j are generated as a random numbers uniformly dis-
tributed in [100,500], then tasks computation times are derived by summing the subjob
durations. Each subjob stacksi,j is randomly distributed within(s0, s

m] and then the
largest one is set tosm so that the maximum stack usage is guaranteed to be used.

Individual task utilization factorsUi are generated using the UUniFast algorithm
[10] given a desired total utilizationU . Task periods are computed asCi/Ui and then
deadlines are generated as random integers within(Ci, Ti]. Finally, the unfeasible task
sets under fully preemptive mode are discarded. In all graphs, each point represents the
average value over 1000 runs.

5.2 Exp 1: Overall performance of SRP-F

In a first experiment, the average system stack usage of the proposed algorithm has
been monitored as a function ofα andU . α was varied from 2 to 20 in step of 2, and
U from 0.4 to 0.85 in step of 0.05. The task set includes ten tasks (n = 10), and each
task has four subjobs (m = 4).

0
10

20 0.4 0.5 0.6 0.7 0.8 0.9

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

U: System total Utilization
α: Ratio of sm over s

0

A
ve

ra
ge

 S
ys

te
m

 S
ta

ck
 U

sa
ge

Figure 5: Stack of SRP-F whenn = 10 andm = 4.

As clearly showed in Figure 5, the proposed algorithm can significantly reduce the
system stack usage whenα increases. In fact, higher values ofα denote higher stack
fluctuations due to lower stack usage between subjobs (s0). The stack usage slightly
increases with the system utilization, as tasks have more chances to be preempted, but
the increment is not significant.

The following experiments compareSRP-F againstPTS andNSJ for different
parameters values. Notice thatFPS andNPS are not reported in the graphs, because
the corresponding required stacks can easily be computed asSFPS = n ∗ sm and
SNPS = sm, respectively.

13

5.3 Exp 2: Comparing stack usage

In a second experiment,SRP-F was compared againstPTS andNSJ as a function of
the total system utilizationU , whenn = 8, m = 5 andα = 10. Results are shown in
Figure 6.

0.4 0.5 0.6 0.7 0.8 0.9
1500

2000

2500

3000

3500

4000

4500

U: System Total Utilization

A
ve

ra
ge

 S
ys

te
m

 S
ta

ck
 U

sa
ge

PTS
SRP−F
NSJ

Figure 6: Average system stack at differentU whenn = 8, m = 5 andα = 10.

As clearly shown in the graph, stack required byPTS increases with the system
utilization at a much faster speed with respect toSRP-F. Also notice that, for small
utilizations (U < 0.5) PTS requires less stack thanSRP-F, because there is more
chance to group tasks into a small number of non-preemptive groups, thus saving some
unnecessarys0. For high workloads, however, to keep the task set schedulable, PTS
must increase the number of groups (each group requiringsm), whileSRP-F can allow
preemptions at a lower costs0. Notice thatNSJ is not affected byU , since preemptions
are always allowed between subjobs. Remember, however, that NSJ may not be able
maintain the task set schedulable.

2 4 6 8 10 12 14 16 18 20
1000

1500

2000

2500

3000

3500

4000

4500

5000

α: Ratio of sm over s
0

A
ve

ra
ge

 S
ys

te
m

 S
ta

ck
 U

sa
ge

PTS
SRP−F
NSJ

Figure 7: Average system stack at differentα whenn = 8, m = 5 andU = 0.7.

Figure 7 shows the stack usage as a function ofα whenU = 0.7, n = 8, andm =
5. Notice thatPTS is not affected byα, whereas bothSRP-F andNSJ significantly
reduce the stack space for large values ofα, taking advantage of the lower value of

14

s0 with respect tosm. AlthoughNSJ is able to save more stack space, the task set
may not be always schedulable, whileSRP-F can guarantee the system feasibility at a
reasonable cost of extra stack usage.

2 4 6 8 10 12 14 16 18 20
1600

1800

2000

2200

2400

2600

2800

3000

m: Number of Subjobs

A
ve

ra
ge

 S
ys

te
m

 S
ta

ck
 U

sa
ge

PTS
SRP−F
NSJ

Figure 8: Average system stack at differentm whenn = 8, α = 10 andU = 0.7.

Figure 8 shows the results when the number of subjobs (m) was changed from 2
to 20, keepingn, α andU at fixed values. As shown in the graph,SRP-F reduces the
stack significantly whenm increases. This is because larger values ofm imply shorter
subjob durations, with respect to task computation times, thus higher chances to be
executed non-preemptively. Since preemptions between subjobs only require small
stack overhead,SRP-F achieves a low overall stack. As usual,NSJ is able to achieve
better stack saving, but at the cost of missing deadlines. Notice thatPTS slightly
reduces the system stack for largerm, as tasks tend to have similar computation times.

4 6 8 10 12 14 16 18 20
1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

n: Number of Tasks

A
ve

ra
ge

 S
ys

te
m

 S
ta

ck
 U

sa
ge

PTS
SRP−F
NSJ

Figure 9: Average system stack at differentn whenm = 6, α = 10 andU = 0.7.

In the last simulation,n was varied from 4 to 20, whereasm, α andU were kept
fixed. The results plotted in Figure 9 show that, underSRP-F andNSJ, the stack us-
ages almost increase linearly withn, since both algorithms suffer thes0 stack overhead
for each task.PTS is less sensitive ton, since the number of non-preemptive groups
increases very slowly with the task set size, especially forlow utilizations.

Taking into account all the presented results above, our proposed methodSRP-F

15

shows its superiority especially when at large value ofα andm. Indeed, in this case,
subjobs have relatively short computation requirement andhence, the preemptions are
deferred to the end of subjobs, where stack usage is quite lowdue to large value ofα.
Another interesting result is that system stack usage underSRP-F increases relatively
slowly with utilization. Finally, when the system has a large number of tasks,PTS
has good performance since the number of non-preemptive groups grows very slowly.
However, in this case,SRP-F can provide high responsiveness as the blocking for a
task is the maximum subjob length from lower priority tasks,instead of the task length
underPTS. Actually, now the problem becomes a design choice, should more function
blocks be mapped into one task or not?

As illustrated by the motivation example,NSJ (andNPS) cannot always guarantee
the schedulability of the task set. The exact feasible ratiounderNSJ is not the main
focus of this paper, and it heavily depends on how the task setis generated, and espe-
cially on the deadlines. Also,NSJ can be considered as a very special case ofSRP-F,
occurring when all subjob threshold priorities are equal tothe highest possible level.
Therefore, the unschedulable ratio underNSJ can be qualitatively illustrated by the gap
between theNSJ andSRP-F curves. For example, in Figure 8 and 9, when the value
of m or n increases,NSJ has a larger chance to successfully schedule the task set and
the two curves become closer.

6 Related Work

Preemption threshold scheduling (PTS)was first introduced by Express Logic Inc. in
their real-time kernel ThreadX and then investigated academically by Wang and Sak-
sena [25]. According to this method, each task has two priority levels: a nominal
priority and a preemption threshold, used during task execution. Then, preemption is
allowed to take place only when the nominal priority of an arriving task is higher than
the threshold of the running task. In this way, a task has the possibility of disabling pre-
emption up to a given priority level, equal to its threshold.The authors also proposed
an algorithm to assign the optimal preemption thresholds and priorities for a given task
set.

Based on the idea of a dual-priority scheme, Saksena and Wang[24] and Davis et
al. [12] independently addressed the problem of reducing the stack space required by
the task set. Tasks are partitioned into groups, within which tasks are not allowed to
preempt each other, so that the stack required by each group is equal to the maximum
stack requirement of the tasks within the group. In this way,the overall stack required
by the task set is given by the sum of the stacks required by thegroups. In partic-
ular, Saksena and Wang [24] also proposed an algorithm that minimizes the number
of groups, showing that, for task sets with random attributes, the number of groups
increases much more slowly than the number of tasks.

Unfortunately, Gai et al. [15, 16] showed that minimizing the number of groups
does not minimize the overall stack usage. The authors also presented an algorithm,
having exponential complexity in the worst case, to minimize the total amount of re-
quired stack.

Regehr [23] introduced two novel scheduling abstractions –task clusters and task

16

barriers – that provide better timing robustness. In his work, the execution time vari-
ance was also investigated and an algorithm to find fault-tolerant preemption thresholds
was presented. Ghattas and Dean [17] proposed a unified framework using preemption
thresholds under both static and dynamic scheduling. Theirmethod allows optimizing
the selection of preemption thresholds and reducing the average worst-case response
times, for systems with limited memory and reduced stack.

While most of the approaches are built upon the dual-priority scheme, there exist
other methods that focus on reducing the stack usage. Middhaet al. [22] proposed
the multi-task stack sharing technique (MTSS) that grows the stack of a particular task
into other tasks in the system. Hänninen et al. [18] presented an approximate stack
analysis method to derive a safe upper bound on the shared stack usage, in offset-
based hybrid (interrupt- and time-driven) fixed priority preemptive systems. Finally,
Bohlin et al. [11] introduced some techniques to exploit precedence and offset relations
between tasks, thus limiting preemption patterns and bounding the amount of shared-
stack usage.

In all the papers considered above, the internal structure of the tasks is never consid-
ered in the analysis, and the stack level is always assumed tobe equal to its maximum
size when a task is preempted. Conversely, to comply with thecommon industrial
practice for modular software development, this work assumes that each task consists
of a sequence of functions, with given computational and stack requirements. Then,
exploiting the results achieved on limited preemptive scheduling, this work presents a
scheduling protocol for limiting the preemption among tasks and reducing the overall
system stack usage.

The scheduling protocol proposed in this paper is integrated with the Stack Re-
source Policy (SRP) [6], proposed by Baker to bound priorityinversion among real-
time tasks that share mutually exclusive resources. Gai et al. [16] showed how SRP
can be extended to support preemption thresholds, with all properties of SRP still pre-
served. Baruah [7] and Bertogna et al. [9] considered the problem of reducing the re-
source holding times under EDF+SRP, by raising the system ceiling either statically or
dynamically during runtime. In this paper, SRP is extended to limit preemption within
subjobs as much as possible, to reduce stack usage while preserving schedulability.

6.1 Distinctions from prior results

The idea ofblocking tolerancewas first used in [9] and [26] with the purpose of bound-
ing the maximal length of the non-preemptive regions for each task. In this paper,
however, the blocking tolerance is used to compute the highest priority at which each
subjob can run, to limit preemptions and stack usage. As showed by the example in
Table 1, subjobF3,1 can only be preempted immediately by taskτ1, but not byτ2. The
algorithm in this paper is more similar to [9], however, in that work the main objective
was to compute and minimize the resource holding times, rather than stack size. More-
over, that work considered critical sections inside the task code, rather than subjobs.

A similar approach is also used in [8], which takes into account both the preemption
related delays and system schedulability. The strategy adopted in that paper is to make
each task chunk totally non-preemptive, by statically inserting potential preemption
points inside the code. Our paper differs from that work in several ways. In our task

17

model, the subjob division comes from the system functionaldesign, as input to our
algorithm. Hence, we do not manually add preemption points inside the code, instead,
we compute the maximum priority each subjob can raise.

The subjob threshold priority shares similarities with thework on preemption thresh-
olds [24, 25], however, these two differ both in the valid range and the values. With
subjob threshold priority, the task instance has a varying priority during its execution,
depending on which subjob is executing, and the priority will return to the nominal
one between subjobs. On the contrary, preemption thresholdis valid for the entire task
instance, from its start time to its completion. The group-based task set partition strat-
egy, adopted in [16, 23, 24], cannot be applied here in a straightforward way. In fact,
the longest subjob imposes the strongest constraint on the timing requirement and the
maximum subjob stack directly affects the final optimization result. Since these two
subjobs may not be the same, the problem is clearly combinatorial, thus requiring high
computational complexity.

7 Conclusions

This paper presented an approach for reducing the stack usage of a set of real-time
sporadic tasks running on a uniprocessor system under fixed priority scheduling. With
respect to other approaches available in the literature, this work considered each task
consisting of a set of functions (or subjobs), each characterized by a maximum stack
requirement. This made it possible to prohibit arbitrary preemptions through a dynamic
priority protocol, which rises the priority of each subjob to the maximum possible level
to reduce the the system stack, while still guarantee feasibility. Resource synchroniza-
tion was also considered and an extension of the Stack Resource Policy, called SRP-F,
was presented to arbitrate the access to mutually exclusiveresources while reducing
the overall stack space.

The idea of splitting each task into a sequence of subjobs with different stack re-
quirements allows taking advantage of internal stack fluctuations, trying to prohibit pre-
emptions within a subjob, unless this is necessary for guaranteeing the schedulability of
the task set. Simulation results show that, for most task setparameters, SRP-F achieves
much smaller stack usage with respect to preemption threshold scheduling (PTS). Non-
preemptive scheduling (NPS) and non-preemptive subjob scheduling (NSJ) have also
been considered in the experiments, but only as references,since they cannot always
guarantee the feasibility of the task set.

There are also particular situations in which PTS achieves more stack saving with
respect to SRP-F. For example, when the stack fluctuation is not high (small values of
α), the stacks0 required between subjobs has a large influence on SRP-F, thusdegrades
the performance, whereas PTS is not affected byα. Also, when the task set utilization
is low (U < 0.5) or the number of tasks is high (n > 15), task computation times
become small and PTS has more chances to reduce the number of groups, so saving
more stack than SRP-F.

In conclusion, simulation results suggest that, by analyzing the characteristics of
the task set, it is possible to select the algorithm that achieves the smallest stack usage.

As a future work, we plan to extend the proposed methodology to multi-core sys-

18

tems and apply it to industrial applications to precisely measure how much memory
space can be saved in real embedded systems.

References

[1] Evidence Srl. Web page:http://www.evidence.eu.com.

[2] Unicoi Systems. Web page:http://www.unicoi.com.

[3] ETAS Group. Web page:http://www.etas.com.

[4] AUTOSAR Consortium. Web page:http://www.autosar.org.

[5] OSEK Group. Web page:http://www.osek-vdx.org.

[6] T. P. Baker. Stack-based scheduling of real-time processes.Real-Time Systems,
3(1):67–100, March 1991.

[7] S. K. Baruah. Resource sharing in edf-scheduled systems: A closer look. InRTSS
’06: Proc. of 27th Real-Time Systems Symposium, pages 379–387, 2006.

[8] M. Bertogna, G. Buttazzo, M. Marinoni, G. Yao, F. Esposito, and M. Caccamo.
Preemption points placement for sporadic task sets. InECRTS ’10: Proc. of
Euromicro Conf. on Real-Time Systems, July 2010. to appear.

[9] M. Bertogna, N. Fisher, and S. Baruah. Resource holding times: computation and
optimization.Real-Time System, 41(2):87–117, 2009.

[10] E. Bini and G. C. Buttazzo. Measuring the performance ofschedulability tests.
Real-Time System, 30(1-2):129–154, 2005.

[11] M. Bohlin, K. Hanninen, J. Maki-Turja, J. Carlson, and M. Nolin. Bounding
shared-stack usage in systems with offsets and precedences. In ECRTS ’08: Proc.
of Euromicro Conf. on Real-Time Systems, pages 276–285, July 2008.

[12] R. Davis, N. Merriam, and N. Tracey. How embedded applications using an rtos
can stay within on-chip memory limits. InProc. of Industrial Experience Session,
Euromicro Conf. on RealTime Systems, pages 43–50, 2000.

[13] M. Di Natale. Optimizing the multitask implementationof multirate simulink
models. InRTAS ’06: Proc. of the 12th IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium, pages 335–346, 2006.

[14] A. Ferrari, M. D. Natale, G. Gentile, G. Reggiani, and P.Gai. Time and memory
tradeoffs in the implementation of autosar components. InDATE ’09: Proc. of
Design, Automation and Test in Europe, pages 864–869, 2009.

[15] P. Gai.Real-Time Operating System design for Multiprocessor system-on-a-chip.
PhD thesis, SSSA, Pisa, Italy, 2004.

19

[16] P. Gai, G. Lipari, and M. D. Natale. Minimizing memory utilization of real-time
task sets in single and multi-processor systems-on-a-chip. In RTSS ’01: Proc. of
Real-Time Systems Symposium, pages 73–83, 2001.

[17] R. Ghattas and A. G. Dean. Preemption threshold scheduling: Stack optimality,
enhancements and analysis. InRTAS ’07: Proc. of the 13th IEEE Real Time and
Embedded Technology and Applications Symposium, pages 147–157, 2007.

[18] K. Hanninen, J. Maki-Turja, M. Bohlin, J. Carlson, and M. Nolin. Determining
maximum stack usage in preemptive shared stack systems. InRTSS ’06: Proc. of
the 27th Real-Time Systems Symposium, pages 445–453, 2006.

[19] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm: Ex-
act characterization and average case behavior. InProc. of the Real-Time Systems
Symposium, pages 166 – 171, CA, USA, Dec 1989.

[20] J. Leung and J. Whitehead. On the complexity of fixed-priority scheduling of
periodic real-time tasks.Performance Evaluation, 2(4):237–250, 1982.

[21] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a
hard-real-time environment.Journal ACM, 20(1):46–61, 1973.

[22] B. Middha, M. Simpson, and R. Barua. Mtss: Multitask stack sharing for embed-
ded systems.ACM Trans. Embedded Computing System, 7(4):1–37, 2008.

[23] J. Regehr. Scheduling tasks with mixed preemption relations for robustness to
timing faults. InProc. of the 23rd IEEE Real-Time Systems Symposium, pages
315–326, 2002.

[24] M. Saksena and Y. Wang. Scalable real-time system design using preemption
thresholds. InRTSS ’00: Proc. of Real-Time Systems Symposium, pages 25–34,
2000.

[25] Y. Wang and M. Saksena. Scheduling fixed-priority taskswith preemption thresh-
old. In Proc. of Conf. on Embedded and Real-Time Computing Systems and Ap-
plications, pages 328–335, 1999.

[26] G. Yao, G. Buttazzo, and M. Bertogna. Bounding the maximum length of non-
preemptive regions under fixed priority scheduling. InProc. of Conf. on Embed-
ded and Real-Time Computing Systems and Applications, pages 351–360, China,
2009.

20

	Testo1: Technical Report RETIS-TR-10-02, RETIS Lab, Scuola Superiore Sant'Anna, Pisa, Italy, February 2010
	Testo4:

