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Abstract—The problem of partitioning a parallel application
on a parallel machine optimizing the available resources has
been proved to be NP-hard in the strong sense. In this paper, we
propose a polynomial-time heuristic algorithm for allocating a
real-time application consisting of a set of tasks with precedence
relations on a multi-core platform. To make the proposed
method independent of a specific architecture, the allocation is
performed on a set of virtual processors, achieved through a set
of uniprocessor reservations. The performance of the proposed
heuristics is evaluated through simulation experiments against
the optimal partioning (implemented through a branch and
bound algorithm) and a naif approach.

I. INTRODUCTION

Multi-core platforms represent a promising challenge for
next generation embedded systems, since they provide a
means for increasing the computational capacity with a
contained power dissipation. However, new programming
and design methodologies are required to fully exploit the
available resources. Moreover, when a complex system is
composed by different software components, resource reser-
vation techniques are highly desired for isolating the tem-
poral behavior of each module. On a uniprocessor system,
resource reservation [15], [1] is a technique able to use a
fraction of a processor as a virtual processor with reduced
speed.

In a multiprocessor environment, however, the meaning
of reservations has to be revisited, and different resource
models have been proposed in the literature to describe
the computational power supplied by a parallel machine.
Such abstractions are called virtual multiprocessors. Funk
et al. [11] proposed to abstract a set of virtual processors by
their speed only. However, this abstraction cannot be prac-
tically implemented, because it requires an infinitely small
reservation period. Shin et al. [20] introduced the period in
the abstraction of the virtual multiprocessor. Leontyev and
Anderson [13] proposed to abstract a virtual multiprocessor
by the cumulative speed that it provides. Bini et al. [5] pro-
posed to abstract a virtual multiprocessor with a maximum
degree of parallelism m with a set of m cumulative supply
functions, called parallel supply functions.

When the application has to be partitioned into different
processors, each portion of the application is required to
execute on the same physical core, to avoid migration
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costs. For this reason, in this paper we abstract a virtual
multiprocessor by the multi-supply function [7], which is a
collection of m single-processor supply functions [10], [14],
[21], each linked to a physical processor.

Partitioning and scheduling tasks with precedence con-
straints onto a multiprocessor system has been shown to be
NP-Complete in general [19], and various heuristic algo-
rithms have been proposed in the literature to reduce the
complexity [2], [9], [12], but their objective was to mini-
mize the total completion time of the task set, rather than
guaranteeing timing constraints under temporal isolation.

Baruah and Fisher [3] proposed a heuristic to partition a
set of deadline-constrained sporadic tasks in a multiproces-
sor system, but no precedence constraints were considered.

In this paper, we propose a method for allocating a real-
time application consisting of a set of tasks with precedence
relations on a multi-core platform. To achieve modularity
and portability on different architectures, the allocation is
performed on top of a virtual platform, abstracted by the
Multi Supply Function (MSF) [7]. Also, to be independent
of a particular reservation algorithm, each virtual processor
reservation is expressed by a bounded-delay time partition,
denoted by the pair (α, Δ), where α is the allocated band-
width and Δ is the maximum service delay. This method,
originally proposed by Mok et al. [16], is general enough to
express several types of resource reservation servers.

To better exploit the parallelism available in the com-
puting platform, the application is partitioned into a set of
flows, each consisting of a subset of tasks to be sequentially
executed on a virtual processor. For each flow, we determine
its computational requirements and compute the minimum
server bandwidth needed for executing it. Since determining
the set of flows that optimizes the available resources is
NP-hard in the strong sense, we propose a polynomial-time
heuristic algorithm to partition the application into flows.
The performance of the proposed heuristics is evaluated
through simulation experiments against a branch and bound
technique and a naif approach.

The rest of the paper is organized as follows. Section II
presents the system model and the notation used throughout
the paper; Section III describes the proposed approach to
partition the application into flows; Section IV illustrates
some experimental results to evaluate the proposed algo-
rithms; and Section V states our conclusions.
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II. SYSTEM MODEL

We consider an application Γ consisting of a set of n tasks
with given precedence relations expressed by a Directed
Acyclic Graph (DAG). The application is sporadic, meaning
that it is cyclically activated with a minimum interarrival
time T and must complete within a given relative deadline
D, which can be less than or equal to T . This allows
asserting that only one instance of the application is running
at any time.

Each task τi can be preempted at any time and is charac-
terized by a worst-case execution time Ci, a deadline di and
an activation time ai, both relative to the activation time of
the application. Tasks are scheduled by EDF.

Notation τi ≺ τj denotes that τi is a predecessor of
τj , whereas τi → τj denotes that τi is an immediate
predecessor of τj . The following parameters are defined for
an application.

• Path P . It is any subset of tasks P ⊆ Γ that is totally
ordered according to R; i.e., ∀τi, τj ∈ P either τi ≺ τj

or τj ≺ τi.
• Execution time function C(·). It is a function C :

P(Γ) → R that, applied to any subset A of Γ, returns
the total execution time of the tasks in A:

∀A ⊆ Γ C(A) def=
∑
τi∈A

Ci.

• Sequential Execution Time Cs. It is the minimum
time needed to complete the application on a unipro-
cessor, by serializing all tasks in the DAG. It is equal
to the sum of all tasks computation times:

Cs def= C(Γ).

• Parallel Execution Time Cp. It is the minimum
time needed to complete the application on a parallel
architecture with an infinite number of cores. It is equal
to

Cp def= max
P is a path

C(P ). (1)

Notice that the application relative deadline cannot be
less than Cp, otherwise it is missed even on an infinite
number of cores.

• Critical path (CP). It is a path P having C(P ) = C p.
• Virtual processor VPk. It is an abstraction of a sequen-

tial machine achieved through a resource reservation
mechanism characterized by a bandwidth αk ≤ 1 and
a maximum service delay Δk ≥ 0.

• Flow Fk. It is a subset of tasks Fk ⊆ Γ allocated
on virtual processor VPk, which is dedicated to the
execution of tasks in Fk only. An application Γ is
partitioned into m flows.

• Flow computation time CF
k . It is the cumulative

computation time of the tasks in flow Fk:

CF
k

def= C(Fk).

III. PROPOSED APPROACH

To evaluate the effectiveness of different partitioning al-
gorithms, the following sequence of steps is used to compute
the overall cost function:

1) Partition the application into a set of flows using a
specific algorithm;

2) Assign intermediate deadlines to tasks;
3) Assign intermediate activation times to tasks;
4) Compute the bandwidth required by each flow;
5) Compute the overall cost function.

Notice that partitioning the application into flows does
not require modifying the tasks, since the source code for
inter-task communication can be properly generated by the
runtime support once flows are allocated on specific cores.
The following sections explain how the different steps are
performed.

A. Partitioning an application into flows

This section describes four methods with decreasing com-
plexity for partitioning a parallel application into a set of
sequential flows. The four methods will be later compared
by simulations to evaluate their performance and runtime
cost.

1) Optimal partitioning: The optimal partitioning is im-
plemented through a branch and bound search algorithm that
explores all feasible partitions, as illustrated in Figure 1.

......... ......... ...........................
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Figure 1. The search tree.

At the root level (level 1), task τ1 is associated with flow
F1. At level 2, τ2 is assigned either to the same flow F1

(left branch) or to a newly created flow F2 (right branch).
In general, at each level i, task τi is assigned either to one of
the existing flows, or to a new created flow. Hence, the depth
of the tree is equal to n, the number of tasks composing
the application, whereas the number of leaves of the tree is
equal to the number of all the possible partitions of a set of
n members, given by the Bell Number bn [18]. The average
complexity of the search can be reduced by using pruning
conditions to cut unfeasible and redundant branches for
improving the runtime behavior of the algorithm. Whenever
a node has a flow with bandwidth greater than one, the whole
branch can be pruned, since no feasible partitioning can
be found in the subtree. Moreover, the pruning efficiency
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can be further improved by allocating tasks by decreasing
computation times.

The following lemma provides a lower bound on the
number of flows in any feasible partition:

Lemma 1: In any feasible partitioning, the number of
flows satisfies

m ≥
⌈

Cs

D

⌉
. (2)

Proof: In any feasible partitioning {F1, . . . , Fm}, we
have

C(Fk)
D

≤ 1. (3)

Adding equations (3) for all the flows, we have∑
k C(Fk)

D
=

Cs

D
≤ m

And since m is integer,

m ≥
⌈

Cs

D

⌉
.

We also prune a subtree when the number of flows
exceeds a given bound mmax. A tight value of mmax is not
easy to find, hence we adopted the following heuristic value:

mmax =
⌈
δ
Cs

D

⌉
(4)

where δ ≥ 1 is a parameter for tuning the size of the
search tree. A value of δ close to one allows a significant
improvement in terms of execution time, but at the price
of losing optimality. Larger values of δ permit reaching
optimality at the price of a higher execution time.

2) First heuristic algorithm: Although the pruning con-
ditions, the worst-case complexity of the branch and bound
algorithm is exponential and the method is practically not
usable for applications larger than about 15 tasks. For this
reason, here we propose a first heuristic algorithm (H1)
to partition the applications into flows. The main idea
behind the algorithm is that, if Mlow is the lower bound
on the number of cores needed by the application, then the
application must contain at least Mlow flows. Hence, the
algorithm starts constructing Mlow flows using the longest
paths in the precedence graph. At the beginning, the critical
path is inserted into flow F1. Then, the second critical path in
the remaining graph is put in a second flow F2, and so on, up
to flow FMlow

. Notice that, being D > Cp, all constructed
flows are feasible. Then, the remaining tasks in the graph
are selected by decreasing computation times and put in the
existing flows using a Best Fit policy. If the schedulability
cannot be guaranteed within any of the existing flows, a new
flow is created. Note that,

Mlow = max{nh, 	U
},
where nh is the number of heavy tasks (having U i =
Ci/D > 0.5) and U = Cs/D.

for all (nodes without successors) set di = D;
while (there exist nodes not set) {

select a task τk with all successors modified;
set dk = min

j:τk→τj

(dj − Cj/Up);

}

Figure 2. Deadline assignment algorithm.

3) Second heuristic algorithm: A second heuristic algo-
rithm (H2) we propose is to starts with a single flow F1

containing the critical path, and then proceeding as before
selecting the task with the longest computation time and
inserting it in one of the current flows using Best Fit. If
the schedulability cannot be guaranteed within any of the
existing flows, a new flow is created.

4) A naif algorithm: A third naif heuristic algorithm
is used just for comparison. The naif algorithm builds
the various flows putting the remaining tasks one by one
using Next Fit, without considering precedence relations and
computation times.

B. Assigning intermediate deadlines

Given a partition {F1, . . . , Fm} of the application into m
flows, activation times ai and deadlines di are assigned to
all tasks to meet precedence relations and timing constraints.
The assignment is performed according to the algorithm
illustrated in Figure 2, which is a variation of the rule
proposed by Chetto-Silly-Bouchentouf [8], adapted to work
on multi-core systems and slightly modified to reduce the
bandwidth requirements. Note that U p = Cp/D.

C. Assigning activation times

Activation times are set in a similar fashion, taking
into account that different flows can potentially execute in
parallel on different cores. Clearly, τi cannot be activated
before all its predecessors have finished.

Let τj be a predecessor of τi and let Fk be the flow τi

belongs to. If τj ∈ Fk, then the precedence constraint is
already enforced by the deadline, hence it is sufficient to
make sure that τi is not activated earlier than τj . In general,
we must ensure that

ai ≥ max
τj→τi,τj∈Fk

{aj} def= aprec
i . (5)

On the other hand, if τj /∈ Fk, we cannot assume that τj

will be allocated on the same physical core as τi, thus we
do not know its precise finishing time. Hence, τi cannot be
activated before τj deadline, that is

ai ≥ max
τj→τi,τj /∈Fk

{dj} def= dprec
i . (6)

In general, ai must satisfy both (6) and (5). Moreover a i

should be as early as possible so that the resulting demand

Proc. of the First Int.l Workshop on Adaptive Resource Management (WARM 2010), Stockholm, Sweden, April 12, 2010. 



bound function is minimized [4]. Hence, we set

ai = max {aprec
i , dprec

i } . (7)

The algorithm starts by assigning activation times to root
nodes, i.e., tasks without predecessors. For such tasks, the
activation time is set equal to the application activation time
that we can assume to be zero, without loss of generality.
Then, the algorithm proceeds by assigning activation times
to a task for which all predecessors have been considered.

D. Bandwidth requirements for a flow

Once activation times and deadlines have been set for
all tasks, each flow can be independently executed on a
different virtual processor under EDF, in isolation, ensuring
that precedence constraints are met.

To determine the reservation parameters that guarantee
the feasibility of the schedule, we need to characterize the
computational requirement of each flow. To do that we use
the concept of demand bound function [4]. The processor
demand of a task τi in any interval [t1, t2] is defined as the
computation time gi(t1, t2) requested by those instances of
τi activated in [t1, t2] that must be completed in [t1, t2]. That
is,

gi(t1, t2)
def=

(⌊
t2 − ai − di

Ti

⌋
−

⌈
t1 − ai

Ti

⌉
+ 1

)
0

Ci.

where (x)0 denotes max{0, x}. The overall demand bound
function of a subset of tasks A ⊆ Γ is

h(A, t1, t2)
def=

∑
τi∈A

gi(t1, t2).

As suggested by Rahni et al. [17], a more compact formu-
lation of the demand bound function can be expressed as
follows:

dbf(A, t) def= max
t1

h(A, t1, t1 + t). (8)

Using Equation (8), we have that a flow F is schedulable
on the virtual processor VPk characterized by bandwidth αk

and delay Δk if and only if:

∀t ≥ 0 dbf(F, t) ≤ αk(t − Δk)0. (9)

Now the problem is to select the (αk, Δk) parameters
among all possible pairs that satisfy Eq. (9). We propose to
select the pair that minimizes the effective bandwidth Bk

used by the virtual processor (including overhead). If σ is
the runtime overhead required for a context switch, and P k

is the server period, the effective server bandwidth can be
computed as:

Bk = αk +
σ

Pk
.

Expressing Pk as a function of αk and Δk we have

Pk =
Δk

2(1 − αk)
.

Hence,

Bk = αk + 2σ
1 − αk

Δk
. (10)

Hence, the best (α, Δ) pair is the solution of the following
minimization problem:

minimize α + ε
1 − α

Δ
subject to dbf(F, t) ≤ α(t − Δ)0, ∀t ≥ 0,

(11)

with ε = 2σ.
This problem has been shown [6] to have a very efficient

solution that exploits the convexity of the domain and the
quasi-convexity of the cost function.

E. Optimization goals

Two possible optimization objectives have been consid-
ered. As a first optimization goal, we considered minimizing
the overall bandwidth requirement of the selected flows, that
is

B =
m∑

k=1

Bk =
m∑

k=1

(
αk + 2σ

1 − αk

Δk

)
. (12)

Clearly, the number m of flows has to be determined as well.
As a second optimization goal, we considered minimizing

the fragmentation of the partitioning, defined as

β = max
k=1,...,m

∑m
i=k Bi

Bk
. (13)

The selection of this metric is inspired by the global EDF
test on uniform multiprocessors [11]. In fact, in uniform
multiprocessor scheduling, if B1 ≥ B2 ≥ . . . ≥ Bm are the
speeds of the processors, a platform with a low value of β
has higher chance to schedule tasks due to the lower degree
of fragmentation of the overall computing capacity 1.

To show the benefit of adopting the cost of Equation (13),
let us consider a virtual platform with m identical proces-
sors, each providing Bk = B/m. While the cost according
to Eq. (12) is B, hence independent of the number of virtual
processors, the cost according to Eq. (13) is m. It follows
that the minimization of β leads to the reduction of number
of flows in which the application is partitioned. Nonetheless,
the minimization of β also implicitly implies the selection
of a partitioning with low overall bandwidth requirement B.
In fact we have that

B =
m∑

i=1

Bi ≤
∑m

i=1 Bi

B1
≤ max

k=1,...,m

∑m
i=k Bi

Bk
= β.

Hence β is also an upper bound of the overall bandwidth
B, and a minimization of β leads indirectly to the selection
of a low value of B as well.

1Note that in [11] λ = β − 1 is used to express the parallelism of the
platform.

Proc. of the First Int.l Workshop on Adaptive Resource Management (WARM 2010), Stockholm, Sweden, April 12, 2010. 



IV. EXPERIMENTAL RESULTS

To illustrate the effectiveness of the proposed heuristics,
this section presents a number of experiments aimed at com-
paring the performance and the run time of the algorithms.

In a first experiment, we considered the application with
n = 9 tasks illustrated in Figure 3. The worst-case execution
time Ci of each task was generated as a uniform random
variable in [1, 10] and the context switch overhead σ was
set to 1.6 time units.

τ1

τ2

τ3

τ4

τ5

τ6

τ7

τ8

τ9

Figure 3. Sample application with 9 tasks.

Figure 4 reports the averaged bandwidth B (over 60
repetitions) achieved by all algorithms as a function of the
normalized deadline ρ, defined as ρ = (D−C p)/(Cs−Cp).
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Figure 4. Bandwidth achieved by the algorithms.

The figure shows that the first heuristic algorithm (H1)
achieves a bandwidth quite close to the one obtained by the
optimal partitioning algorithm in most cases. Moveover, the
both heuristics perform better than the naif approach.

Figure 5 reports the results of a second experiment, in
which we evaluated the performance of the algorithms with
respect to the second optimization goal, β, as a function
of the normalized deadline ρ. Also in this case, each point
is computed as the average over 60 repetitions. The results
indicate that, in most cases, the β achieved by the heuristic
algorithms is close to the one of the optimal partition.

In a third experiment, we tested the run time of the
algorithms using a fully parallel application (i.e., without
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Figure 5. Degree of fragmentation β achieved by the algorithms.

precedence relations) with random computation times gen-
erated with uniform distribution in [1,10]. The application
deadline was set equal to D = (Cp +Cs)/2 and the context
switch overhead was set to σ = 1.6. For each method,
the run time was measured in milliseconds as a function
of the number of tasks. The branch and bound algorithm
was measured for different values of the pruning parameter
δ. The results of this experiment are shown in Figure 6,
which clearly shows that the heuristic algorithm significantly
reduces the running time compared with the optimal search,
even when an aggressive pruning condition (low δ) is used.
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Figure 6. Run time of the algorithms.

V. CONCLUSIONS

In this paper, we presented two heuristic algorithms
for allocating a parallel real-time application to a multi-
core platform in a way that is independent of the number
of physical cores available in the hardware architecture.
Independency is achieved through the concept of virtual
processor, which abstracts a resource reservation mechanism
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by means of two parameters, α (the bandwidth) and Δ (the
maximum service delay).

The major contribution of this work was the develop-
ment of a heuristic algorithm that automatically partitions
the application into flows, in order to meet the specified
timing constraints and minimize either the overall required
bandwidth B or the degree of fragmentation β. The compu-
tational requirements of each flow were derived through the
processor demand criterion, after defining intermediate acti-
vation times and deadlines for each task, properly selected
to satisfy precedence relations and timing constraints.

Simulation experiments showed the effectiveness of the
proposed approach, which can be adopted to efficiently use
the available resources (e.g., reducing the required band-
width) also in large real-time applications.
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