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Abstract—A full exploitation of the computational power avail-
able in a multicore platform requires the software to be specified
in terms of parallel execution flows. At the same time, modern
embedded systems often consist of more parallel applications with
timing requirements, concurrently executing on the same platform
and sharing common resources. To prevent reciprocal interference
among critical activities, a resource reservation mechanism is
highly desired in the kernel to achieve temporal isolation.

In this paper, we propose a general methodology for abstracting
the total computing power available on a multicore platform by a
set of virtual processors, to allocate applications independently of
the physical platform. The application, described as a set of tasks
with precedence relations expressed by a directed acyclic graph, is
automatically partitioned into a set of subgraphs that are selected
to minimize either the overall bandwidth consumption or the re-
quired number of cores.

Index Terms—Multiprocessor, partition algorithm, real-time
systems, resource reservation.

I. INTRODUCTION

I N EMBEDDED systems, optimizing the available re-
sources while meeting a desired performance is a crucial

design objective, which can have a significant impact on the
overall system cost, in terms of money, energy, space, weight,
etc., depending on the specific application domain. Moreover,
the continuous increase of complexity and the higher perfor-
mance requirements of the new products is pushing the industry
to adopt multicore platforms in several domains, like consumer
electronics, and automotive systems. As a consequence, the
analysis of these platforms is receiving growing attention both
in the research and industrial community [1].

Multicore architectures provide an efficient solution to the
problem of increasing the processing speed with a contained
power dissipation. In fact, increasing the operating frequency of
a single processor would cause serious heating problems and a
considerable power consumption. In a multicore platform, how-
ever, the way tasks are allocated to processors significantly af-
fects the number of active cores required for running the appli-
cation, hence, minimizing such a number is of crucial impor-
tance for different design objectives, such as guaranteeing the
feasibility of the system under given performance requirements,
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applying energy-aware strategies by turning some cores off, or
fitting large applications into platforms with reduced number of
cores.

On the other hand, analyzing multicore systems is not trivial
and the research community is still working to produce new the-
oretical results or extend the well established theory for unipro-
cessor systems developed in the last 30 years. Also, fully ex-
ploiting the computational power available in a multicore plat-
form requires new programming paradigms, which should allow
expressing the intrinsic parallel structure of the applications in
order to optimize the allocation of parallel execution flows to
different cores.

Moreover, the complexity of modern embedded systems is
growing continuously and the software is often structured in a
number of concurrent applications, each consisting of a set of
tasks with various characteristics and constraints and sharing
the same resources. In such a scenario, isolating the temporal
behavior of real-time applications is crucial to prevent a recip-
rocal interference among critical activities.

Temporal isolation can be achieved through a Resource
Reservation technique [2], [3], according to which the CPU
processing capacity can be partitioned into a set of reservations,
each equivalent to a virtual processor with reduced speed. In
particular, a reservation is a couple indicating that
units of time are available every period . This means that the
virtual processor has an equivalent bandwidth .
The main advantage of this approach is that an application
allocated to a virtual machine can be guaranteed in “isolation”
(i.e., independently of the other applications in the system)
only based on its timing requirements and on the amount of
allocated bandwidth. In this way, overruns occurring in an
application do not affect the temporal behavior of the other
applications. Resource reservation is a powerful methodology
that can be applied to isolate the behavior of real-time, as well
as non real-time applications [4].

When moving to multiprocessor systems, however, the
meaning of reservations has to be revisited and the research
community just started to address this issue. The most natural
abstraction of a multicore platform is probably the uniform
multiprocessor model proposed by Funk et al. [5], where a col-
lection of sequential machines is abstracted by their speeds. In
this paper, the authors also showed that a set of tasks scheduled
by the global Earliest Deadline First (EDF) algorithm (with
migrations) and requiring an overall bandwidth of 120% has
higher chances to be successfully scheduled upon two virtual
processors with bandwidth 100% and 20%, rather than on other
two with the same bandwidth of 60%. However, when no task
migration is allowed, packing the bandwidth into full reserva-
tions is not always the best approach. In fact, consider a periodic
application consisting of five tasks with computation times
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1, 1, 5, 6, 6 and period equal to 10 (deadline = period). In this
case, the bandwidth required by the application is
and a feasible schedule can be found using three reservations,
equal to 80%, 60%, and 50%. However, no feasible solution
exists if the bandwidth is provided by two reservations equal to
100% and 90%.

Although several approaches have been proposed in the liter-
ature to partition real-time applications over a set of processing
elements [6]–[8], they mainly concentrated on the problem of
achieving a feasible schedule or minimizing the maximum re-
sponse time among the tasks, but did not address the problem of
minimizing the computational resources. With the rapid devel-
opment of multicore embedded systems, minimizing the avail-
able resources is of crucial importance to save energy or keep
chip temperature under control.

A. Contribution of This Work

This paper describes a method for partitioning a parallel
real-time application into a set of sequential flows, with utiliza-
tion less than one, that can be allocated to specific processors
to minimize resource consumption (in terms of overall compu-
tational bandwidth or number of processors). An application is
described as a set of tasks with time and precedence constraints
and represented through a directed acyclic graph. To achieve
modularity and simplify portability on different architectures,
the partitioning process is performed on a virtual platform,
which abstracts the physical platform using a set of unipro-
cessor reservations described through the Multisupply Function

model proposed by Bini et al. [9]. Reservations can
then be implemented by an aperiodic server or any resource
reservation mechanism.

The advantage of using a virtual platform is that, if the
hardware platform is replaced with another one with a different
number of cores, the partitioning process does not need to be
changed and only the mapping of the reservations to physical
processors has to be done. Moreover, to be independent of a
particular reservation algorithm, a virtual processor reservation
is expressed by a bounded-delay time partition, denoted by the
pair , where is the allocated bandwidth and is the
maximum service delay. This method, originally proposed by
Mok et al. [10], is general enough to express several types of
resource reservation servers.

The work presented here considerably extends a previous
paper [11] by adding several key contributions. Since the
original branch and bound search algorithm is too complex
to handle applications with more than 20 tasks, this paper
proposes some heuristic algorithms with reduced complexity
that can find suboptimal partitions of applications consisting
of hundreds of tasks, hence making the approach more usable
for practical purposes. Also, a detailed explanation has been
added to illustrate how to solve the optimization problem for
selecting the best alpha-delta parameters of a virtual processor.
The pseudocode of the proposed algorithms is included for
completeness and a set of new simulation experiments has
been reported for evaluating the performance of the proposed
heuristics with respect to the branch and bound search.

Since the proposed methodology is independent of the phys-
ical platform, all results presented in this paper apply to both

multicore and multiprocessor systems. Finally note that, the de-
scribed methodology can be fruitfully integrated within more
complex design and verification tools, as the one presented in
[12].

B. Organization of the Paper

The rest of this paper is organized as follows. Section II
presents the system model, the terminology and the notation
used throughout the paper and recalls some background con-
cepts. Section III describes the proposed method for selecting
the optimal reservation parameters and the algorithm for par-
titioning the application into flows. Section IV presents some
heuristics to achieve the same goal with reduced complexity.
Section V illustrates some experimental results to validate
the proposed approach. Section VI discusses some related
work. Finally, Section VII states our conclusions and possible
extensions for a future work.

II. SYSTEM MODEL AND BACKGROUND

A real-time application is modeled as a set of tasks with given
precedence constraints, specified as a Directed Acyclic Graph
(DAG). Note that the DAG represents a description of the ap-
plication considering the maximum level of parallelism. This
means that each task represents a sequential activity to be exe-
cuted on a single core. Tasks can be preempted at any time and
do not call blocking primitives during their execution. Notice
that preventing the use of blocking primitives inside the task
code does not necessarily mean preventing data sharing among
the tasks. In fact, tasks can communicate through nonblocking
mechanisms that use memory duplication to avoid blocking on
critical sections. An example of such a mechanism is repre-
sented by the Cyclic Asynchronous Buffer (CAB) [13].

A. Terminology and Notation

First, to shorten the expressions, we may denote
as . Moreover, throughout this paper we adopt the following
terminology.

Application : It is a set of tasks with given precedence
relations expressed by a Directed Acyclic Graph (DAG). The
application is sporadic, meaning that it is cyclically activated
with a minimum interarrival time (also referred to as period)
and must complete within a given relative deadline , which
can be less than or equal to . This allows asserting that only
one instance of the application is running at any time.

Task : It is a portion of code that cannot be parallelized
and must be executed sequentially. can be preempted at any
time and is characterized by a known worst-case execution time

. is also assigned a deadline and an activation time
relative to the activation of the first task of the application.

This means that if the application is activated at the task
must execute in . The assignment of deadlines
and activation times is investigated in Section III-A. Tasks are
scheduled by EDF.

Precedence Relation : It is formally defined as a partial
ordering . Notation denotes that is a
predecessor of , meaning that cannot start executing before
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Fig. 1. A sample application represented with a DAG.

Fig. 2. Timeline representation.

the completion of . Notation denotes that is an
immediate predecessor of , meaning that and

Fig. 1 illustrates an example of DAG for an application con-
sisting of five tasks, with execution times

The entire application starts at time and is periodically
activated with a period . We consider a relative deadline

equal to the period.
To better illustrate the parallel execution of an application and

identify the maximum number of required processors, we adopt
a different description that visualizes the computation times of
each task in the timeline, as in a Gantt chart. In such a diagram,
denoted as the timeline representation, each task starts as soon
as possible on the first available core, assuming as many cores
as needed. For the application shown in Fig. 1, the timeline rep-
resentation is illustrated in Fig. 2, where synchronization points
coming from the precedence graph are represented by arrows.

An advantage of the timeline representation is that it clearly
visualizes the intrinsic parallelism of the application, showing in
each time slot the maximum number of cores needed to perform
the required computation. This means that adding other cores
will not reduce the overall response time, because the DAG al-
ready expresses the maximum level of parallelism.

In addition, we define the following notation.
Path : It is any subset of tasks totally ordered

according to ; i.e., either or .
Sequential Execution Time : It is the minimum time

needed to complete the application on a uniprocessor, by seri-
alizing all tasks in the DAG. It is equal to the sum of all tasks
computation times

For the application illustrated in Fig. 1, we have .

Fig. 3. Parallel flows in which the application can be divided.

Parallel Execution Time : It is the minimum time
needed to complete the application on a parallel architecture
with an infinite number of cores. It is equal to

(1)

Notice that the application relative deadline cannot be less than
, otherwise, it is missed even on an infinite number of cores.

For the application in Fig. 1, we have .
Critical Path (CP): It is a path having .

Notice that in the example of Fig. 1 the critical path is
.

Virtual Processor : It is an abstraction of a sequen-
tial machine achieved through a resource reservation mecha-
nism characterized by a bandwidth and a maximum
service delay .

Flow : It is a subset of tasks allocated on virtual
processor , which is dedicated to the execution of tasks in

only. is partitioned into flows.
Flow Computation Time : It is the cumulative compu-

tation time of the tasks in flow

Dividing an application into parallel flows allows several op-
tions, from the extreme case of defining a single flow for the
entire application (where no parallelism is exploited/necessary
and all tasks are sequentially executed on a single core) to the
case of having a flow per task (maximum parallelism). The way
in which flows are defined may affect the total bandwidth re-
quired to execute the application. Hence, we now address the
problem of finding the best partition of flows that minimizes the
total bandwidth requirements.

Intuitively, grouping tasks into large flows improves schedu-
lability, as long as each flow has a bandwidth less than or equal
to one. To better explain each step of the process, we consider
a reference application consisting of five tasks, previously illus-
trated in Fig. 1. For this example, we divide the application in
two flows, as illustrated in Fig. 3. Notice that there can be several
ways for selecting flows in the same application. An alternative
solution is shown in Fig. 4.

B. Demand Bound Function

Since EDF is used as a scheduler, here we recall the concept
of demand bound function that is used to estimate the amount
of required computational resource. The processor demand of a
task that has activation time , computation time , period

, and relative deadline , in any interval is defined to
be the amount of processing time requested by those
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Fig. 4. An alternate parallel flow selection.

instances of activated in that must be completed in
. That is [14]

The overall demand bound function of a subset of tasks
is

where we made it depend on the beginning and the length of the
interval.

As suggested by Rahni et al. [15], we can use a more compact
formulation of the demand bound function that depends only on
the length of the time interval

(2)

C. The Server

Mok et al. [10] introduced the “bounded delay partition” to
describe a reservation by the bandwidth and the delay . The
bandwidth measures the amount of resource that is assigned to
the demanding application, whereas represents the worst-case
service delay.

Before introducing the and parameters, it is necessary to
recall the concept of supply function [16], [17], that represents
the minimum amount of time that a generic virtual processor
can provide in a given interval of time.

Definition 1 ([10 , Def. 9], [16, Th. 1], [18, (6)]): Given a vir-
tual processor , its supply function is the minimum
amount of time provided by the reservation in every time in-
terval of length .

The supply function can be defined for many kinds of reserva-
tions, as static time partitions [10], [19], periodic servers [16],
[17], or periodic servers with arbitrary deadline [18]. For ex-
ample, for the simple case of a periodic reservation that allo-
cates units of time every period , we have [16], [17]:

(3)

with .
Given the supply function, the bandwidth and the delay

can be formally defined as follows.

Definition 2 (Compare Def. 5 in [10]): Given with
supply function , the bandwidth of the virtual processor
is defined as

(4)

The parameter provides a measure of the responsiveness, as
proposed by Mok et al. [10].

Definition 3 (Compare Def. 14 in [10]): Given with
supply function and bandwidth , the delay of the vir-
tual processor is defined as

(5)

Informally speaking, given a VP with bandwidth , the delay
is the minimum horizontal displacement such that the line

is a lower bound of .
Once the bandwidth and the delay are computed, the supply

function of can be lower bounded as follows:

(6)

If the server is implemented through a periodic server
that allocates a budget every period , then the bandwidth

is equal to and a delay , as shown
in [16] and [17]. In practice, however, a portion of the processor
bandwidth is wasted to perform context switches every time a
server is executed. If is the runtime overhead required for a
context switch and is the server period, the effective server
bandwidth can be computed as

Expressing as a function of and , we have

Hence

(7)

From previous results [17], we can state that a subset is
schedulable on the virtual processor characterized by bandwidth

and delay , if and only if

(8)

III. PARTITIONING AN APPLICATION INTO FLOWS

This section describes the method proposed in this paper to
determine the optimal partition of an application into flows. A
sample partition is depicted in Fig. 5.

The possible partitions into flows are explored through a
branch and bound search algorithm, whose details are given
later in Section III-D.
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Fig. 5. A sample partition into three flows.

Fig. 6. The deadline assignment algorithm.

For a given partition (i.e., selection of flows), we first trans-
form precedence relations into timing constraints by assigning
suitable deadlines and activation times to each task, as illustrated
in Section III-A.

Once deadlines and activations are assigned, the overall com-
putational requirement of each flow is evaluated through
its demand bound function and the parameters of the corre-
sponding virtual processor are computed, as explained in
Section III-C.

Then, if the objective is to minimize the total bandwidth, the
overall bandwidth required by the entire partition is computed
by summing the bandwidths computed for each flow using (7)
and finally, the partition with the minimum bandwidth is deter-
mined as a result of the branch and bound search algorithm. A
different metrics is also presented in Section III-D to minimize
the fragmentation of the application.

A. Assigning Deadlines and Activations

Given a partition of the application into
flows, activation times and the deadlines are assigned to
all tasks to meet precedence relations and timing constraints.
The assignment is performed according to a method originally
proposed by Chetto et al. [20], adapted to work on multicore
systems and slightly modified to reduce the bandwidth require-
ments. The algorithm starts by assigning the application dead-
line to all tasks without successors. Then, the algorithm pro-
ceeds by assigning the deadlines to a task for which all suc-
cessors have been considered. The deadline assigned to such a
task is

(9)

The pseudocode of the deadline assignment algorithm is illus-
trated in Fig. 6.

Fig. 7. The activation assignment algorithm.

For the application shown in Fig. 1, considering that the
overall deadline is , by applying the transforma-
tion algorithm, we get

Activation times are set in a similar fashion, but we slightly
modified the Chetto–Silly–Bouchentouf’s algorithm to take into
account that different flows can potentially execute in parallel
on different cores. Clearly, cannot be activated before all its
predecessors have finished.

Let be a predecessor of and let be the flow belongs
to. If , then the precedence constraint is already enforced
by the deadline assignment given in (9). Hence, it is sufficient
to make sure that is not activated earlier than . In general,
we must ensure that

(10)

On the other hand, if , we cannot assume that will
be allocated on the same physical core as , thus we do not
know its precise finishing time. Hence, cannot be activated
before ’s deadline, that is

(11)

In general, must satisfy both (10) and (11). Moreover,
should be as early as possible so that the resulting demand bound
function is minimized [14]. Hence, we set

(12)

Notice that, since depends on tasks belonging to other
flows, it can be .

The algorithm starts by assigning activation times to root
nodes, i.e., tasks without predecessors. For such tasks, the ac-
tivation time is set equal to the application activation time that
we can assume to be zero, without loss of generality. Then, the
algorithm proceeds by assigning activation times to a task for
which all predecessors have been considered. Fig. 7 illustrates
the pseudocode of the algorithm.

Indeed, the transformation algorithm proposed by
Chetto et al. was designed to guarantee the precedence con-
straints, regardless of the processor demand. In fact, it assigns
deadlines as late as possible. However, activations may coincide
with some deadline as well, according to (12). If an activation
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is too close to the corresponding deadline, then the demand
bound function can become very large. To address this issue,
in this work we propose an alternative deadline assignment
that reduces the processor demand of the flow by distributing
tasks deadlines more uniformly along the timeline. If is the
computation time of a critical path and is defined as

we propose to assign task deadlines as follows:

(13)

instead of according to (9).
Experimental results reported in Section V show that the

modified assignment (referred to as Chetto*) is able to achieve
better performance with respect to the classical Chetto assign-
ment, especially for applications with complex precedence
relations.

The following lemma shows that such a deadline assignment
is sound, in the sense that all relative deadlines are greater than
or equal to the cumulative computation time of the preceding
tasks in a path.

Lemma 1: If each task of a path is assigned a relative
deadline

where , then it is guaranteed that all the tasks in
have relative deadlines greater than or equal to the cumulative
execution time of the preceding tasks, that is

Proof: Given any node , let , be the
sequence of successors of such that is a leaf node (hence

) and

Then, we have

If is a path including , , we can write

and since , we have

Since for any and , we have

Thus, the lemma follows.

B. Example

This section presents an example to show how to derive the
computational demand of a partition for the application illus-
trated in Fig. 1, characterized by the following parameters:

Let us consider the partition depicted in Fig. 3, consisting of two
flows: and .

Applying the proposed deadline transformation algorithm
[(13)], the following intermediate deadlines can be assigned:

Similarly, intermediate activation times result to be

The demand bound functions of the two flows are derived
according to (2) and are illustrated in Figs. 8 and 9, respectively.

C. Bandwidth Requirements for a Flow

Once activation times and deadlines have been set for all
tasks, each flow can be independently executed on different vir-
tual processors under EDF, in isolation, ensuring that prece-
dence constraints are met.

To determine the reservation parameters that guarantee the
feasibility of the schedule, we need to characterize the compu-
tational requirement of each flow. By using the demand bound
function defined in (2), we have that a flow is schedulable
on the virtual processor characterized by bandwidth and
delay if and only if

(14)
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Fig. 8. Demand bound function of flow � .

Fig. 9. Demand bound function of flow � .

Since the is a step function, it is enough to ensure that (14)
is verified at all the steps. If is the set of time instants
where the has a step, then (14) can be equivalently ensured
by

(15)

Now, the problem is to select the parameters among
all possible pairs that satisfy (14). We propose to select the pair
that minimizes the bandwidth used by the virtual processor,
as given by (7), which accounts for the cost of the server over-
head. Hence, the best pair is the solution of the following
minimization problem:

(16)

with .
Such a minimization problem can be solved very efficiently,

thanks to the good properties of both the constraint and the cost
function. We first prove the convexity of the constraint.

Lemma 2: Given , let be defined as

(17)

Fig. 10. Examples of the regions ���� ��.

then is convex.
Proof: We start observing that

(18)

because . To prove the convexity of we use the
property that

(19)

In fact, we have

Now

because of (18). Hence, from the property of (19), the Lemma
follows.

Fig. 10 shows examples of the domains .
Regarding the cost function, we first recall the following def-

inition.
Definition 4 [21, Section III-D]): A function is

called quasi-convex if its domain and all its sublevel sets
, for , are convex.

Notice that convexity implies quasi-convexity, but the vicev-
ersa is not true [21].

Lemma 3: The cost function of problem (16)

is quasi-convex.
Proof: We first notice that the domain of , that is

is convex. From the definition of quasi-con-
vexity, we have to prove that all the level sets

are convex (see Fig. 11 for graphical representation). Since is
interpreted as the overall bandwidth used by the reservation, we
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Fig. 11. Examples of the regions � .

only need to prove this for . If , then . When
, we have that

and from the property of (19)

since .
We have

that is greater than or equal to zero, because and .
This proves the convexity of the level sets and the quasi-
convexity of as required.

Since the cost function of the problem of (16) is quasi-convex
(see Lemma 3) and the feasibility region is the intersection of
convex regions (from Lemma 2), then the minimization problem
is a standard quasi-convex optimization problem [21], which
can be solved very efficiently by standard techniques. Our pro-
posed solution is an adaptation of the dual simplex algorithm to
convex problems. The details are not reported here due to lack
of space. The interested reader can, however, find the details in
[22].

D. The Branch and Bound Algorithm

This section illustrates the algorithm used for selecting the
best partition of the application into flows. Two different objec-
tives have been considered in the optimization procedure.

As a first optimization goal, we considered minimizing the
overall bandwidth requirement of the selected flows, that is

(20)

Clearly, the number of flows has to be determined as well.
As a second optimization goal, we considered minimizing the

fragmentation of a partition, defined as

(21)

Fig. 12. The search tree.

where the bandwidths are assumed to be ordered by
non-increasing values. The selection of this metric is inspired by
the global EDF test on uniform multiprocessors [5]. In fact, in
uniform multiprocessor scheduling, if
are the speeds of the processors, a platform with a low value of

has higher chance to schedule tasks due to the lower degree
of fragmentation of the overall computing capacity.1

To show the benefit of adopting the cost of (21), let us con-
sider a virtual platform with identical processors, each pro-
viding . While the cost according to (20) is , hence
independent of the number of virtual processors, the cost ac-
cording to (21) is . It follows that the minimization of leads
to the reduction of number of flows in which the application is
partitioned. Nonetheless, the minimization of also implicitly
implies the selection of a partitioning with low overall band-
width requirement . In fact we have that

Hence, is also an upper bound of the overall bandwidth
and a minimization of leads indirectly to the selection of a
low value of as well.

The search for the optimal flow partition is approached
by using a branch and bound algorithm, which explores the
possible partitions by generating a search tree, as illustrated in
Fig. 12.

At the root level (level 1), task is associated with flow .
At level 2, is assigned either to the same flow (left branch)
or to a newly created flow (right branch). In general, at each
level , task is assigned either to one of the existing flows, or
to a newly created flow. Hence, the depth of the tree is equal
to the number of tasks composing the application, whereas
the number of leaves of the tree is equal to the number of all
the possible partitions of a set of members, given by the Bell
Number [23], recursively computed by

(22)

To reduce the average complexity of the search, we use some
pruning conditions to cut unfeasible and redundant branches for
improving the runtime behavior of the algorithm.

1Notice that in [5] the authors use � � � � � to express the parallelism of
the platform.
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We first observe that if, at some node, there is a flow with
bandwidth greater than one

(23)

then the schedule of the tasks in that flow is unfeasible, since

(24)

Hence, whenever a node has a flow with bandwidth greater than
one, we can prune the whole subtree, since no feasible parti-
tioning can be found in the subtree. Moreover, the pruning effi-
ciency can be further improved by allocating tasks by decreasing
computation times, because this order allows pruning a subtree
satisfying (23) at the highest possible level.

The following lemma provides a lower bound on the number
of flows in any feasible partition.

Lemma 4: In any feasible partitioning, the number of flows
satisfies

(25)

Proof: In any feasible partitioning , we have

(26)

Adding (26) for all the flows, we have

Since is an integer

Nonetheless, much of the complexity of the algorithm lies
in the horizontal expansion of the tree: in fact, the search tree
keeps adding possible new flows (at the rightmost branch) even
when the number of flows is higher than the parallelism that
can be possibly exploited by the application. Hence, we prune a
subtree when the number of flows exceeds a given bound .
A tight value of is not easy to find, hence we adopted the
following heuristic value:

(27)

where is a parameter for tuning the size of the search
tree. A value of close to one allows a significant improvement
in terms of execution time, but at the price of losing optimality.
Larger values of permit reaching optimality with reasonable
execution times. As illustrated in the next section, our simula-
tion results show that the optimal solution is often achieved with

.

Fig. 13. Pseudocode of the algorithm for finding the optimal partition.

The pseudocode of the branch and bound algorithm with
pruning conditions is shown in Fig. 13. In the pseudocode,
represents a partition, i.e., a set with flows as its elements
and gives the cardinality of the set . is the
optimal partition and is the optimal value of the objective,
being either bandwidth or fragmentation . The objective is
selected by using the argument having a value of either
BANDWIDTH or FRAGMT. Besides, , and are calcu-
lated using (7), (20), and (21), respectively.

IV. HEURISTIC PARTITIONING

In spite of the pruning conditions, the complexity of the
branch and bound algorithm is still exponential and limits its
applicability to applications consisting of no more than 15–20
tasks. To deal with larger applications, in this section we pro-
pose two polynomial-time heuristic algorithms for partitioning
a real-time application into a set of virtual processors. The two
methods will be later compared by simulations to evaluate their
performance and runtime cost.

1) First Heuristic Algorithm: The main idea behind the first
heuristic algorithm (H1) is that, if is the lower bound on
the number of cores needed by the application, then the appli-
cation must contain at least flows. Hence, the algorithm
starts constructing flows using the longest paths in the
precedence graph. At the beginning, the critical path is inserted
into flow . Then, the algorithm tries to fit the critical path of
the remaining graph into one of the existing flows. If this is not
possible (i.e., the resulting schedule is not feasible), the current
critical path is put into a new flow. The procedure is repeated
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Fig. 14. Pseudocode of the heuristic algorithms.

until flows are created. Then, the remaining tasks in the
graph are selected by decreasing computation times and put in
the existing flows using a Best Fit policy. If the schedulability
cannot be guaranteed within any of the existing flows, a new
flow is created. Note that can be computed as

where is the number of heavy tasks (i.e., tasks having
) and .

2) Second Heuristic Algorithm: A second heuristic algo-
rithm (H2) starts with a single flow containing the critical
path and then proceeds as before by selecting the task with the
longest computation time and inserting it into one of the current
flows using Best Fit. If the schedulability cannot be guaranteed
within any of the existing flows, a new flow is created.

3) A Naif Algorithm: For the sake of completeness, besides
the two proposed heuristics (H1 and H2), a third naif heuristic
algorithm is used for comparison. Such a naif algorithm builds
the various flows putting the remaining tasks one by one using
Next Fit, without considering precedence relations and compu-
tation times. The Naif algorithm is not part of the literature and
has been introduced to evaluate the improvement of the pro-
posed heuristics with respect to a very simple method. In this
way, it is possible to position the performance of the heuristics
not only with respect to optimality, but also with respect to a
very simple approach.

The pseudocode of the heuristic algorithms is shown in
Fig. 14, where the operator denotes the set subtraction and

is the resulting partition. Notice that the only difference
between the proposed heuristics is in the value of , i.e.,
the number of flows to be filled with critical paths before best
fitting individual tasks. In particular, is set to for
H1, to 1 for H2 and to 0 for the naif algorithm.

From the pseudocode, it is clear that the complexity of the
heuristic algorithms is polynomial in the number of tasks. In

Fig. 15. Total bandwidth as a function of the application deadline.

fact, each loop executes at most times and the feasibility check
inside the FITorNEW function has complexity, since the
maximum in the function [see (2)] is performed at most for
all activation times and deadlines.

V. EXPERIMENTAL RESULTS

To illustrate the effectiveness of the proposed search algo-
rithm, this section presents a number of experiments aimed at
comparing the performance of the produced solution (in terms
of number of flows and required bandwidth) and the efficacy
of the pruning rules (in terms of reducing the runtime). For the
sake of generality, all timing parameters are expressed in generic
time units, which can be millisecond, microsecond, or number
of clock cycles.

A. Evaluation of the Partition Method

To evaluate the performance of the proposed optimal partition
method, several experiments were conducted.

In a first experiment, we considered the application shown
in Fig. 5, consisting of tasks with computation times

, , , , , ,
, , and . From the DAG of the application,

it results that the sequential execution time is and
the parallel execution time is , corresponding to the
critical path . Notice that the ratio
provides an indication of the maximum level of parallelism of
the application. In this example, we have . Clearly,
when the application deadline is less than , the schedule
is infeasible on any number of cores, whereas when

, the number of cores cannot be less than 4 (see Lemma 4).
Fig. 15 reports the bandwidth required by the optimal par-

tition (including the context switch overhead ), as a function
of the application deadline (ranging from to ), using
the first optimization goal expressed by (20). The figure also
reports the minimum theoretical bound (without over-
head) and the worst-case bandwidth obtained by selecting one
flow per task. Notice that the solution found by the algorithm is
always very close to the ideal one and significantly better than
the worst-case curve.

Considering the second optimization goal, expressed by the
cost function reported by (21), Fig. 16 reports the optimal
achieved by the search algorithm, as a function of the applica-
tion deadline, for different values of .
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Fig. 16. � as a function of the application deadline.

Fig. 17. � as a function of precedence number.

The difference between the bandwidth achieved by the
second and the first optimization goal was also measured, but
it was never found larger than 0.12. Hence, in the following
experiments was used as a performance metrics, since also
aimed at reducing fragmentation among different cores.

To investigate the effectiveness of the proposed method for
assigning deadlines (denoted as Chetto*), other two tests were
performed against the original Chetto’s method (denoted as
Chetto) and Simulated Annealing (denoted as SA). An appli-
cation with 16 tasks was generated, with computation times
uniformly distributed in . The tasks were connected with
25 precedences, giving , , and .
The application deadline was set to 42 and the context switch
overhead was set to 0.1.

The first test was aimed at monitoring as a function of the
complexity of the precedence graph, measured as the number of
the precedence links. At each step of the simulation, a random
precedence link in the application was dropped, excluding those
in the critical path, which was kept during the whole simula-
tion to keep constant. Then, the optimal was computed
using the three deadline assignment methods. Each point on the
graph, was computed as the average on ten simulations (dif-
fering on the sequence of random precedence link deletions).
The results of this first test are reported in Fig. 17, which shows
that increases with the number of precedence links. How-
ever, the obtained by Chetto* is smaller than that achieved
by Chetto and close to the value found by simulated annealing.

Fig. 18. Comparison of Chetto* and SA.

Fig. 19. Degree of fragmentation � achieved by the algorithms.

Differences become more significant as the number of prece-
dence links increases.

The second test was aimed at evaluating the gap between
Chetto* and SA, as a function of the application deadline. All
25 precedence links were kept and the application deadline was
varied from 27.6 to 97.6 with steps of 2.5. The results reported in
Fig. 18 show that the difference of obtained by Chetto* and SA
is quite small, meaning that the proposed deadline assignment
method is close to the optimal deadline assignment and can be
confidently used in practice.

B. Evaluation of the Heuristics

To illustrate the effectiveness of the proposed heuristics, this
section presents a number of experiments aimed at comparing
the performance of the heuristic algorithms.

In this experiment, we considered the application with
tasks illustrated in Fig. 5. The worst-case execution time of
each task was generated as a uniform random variable in
and the context switch overhead was set to 0.1 time units.

Fig. 19 reports the averaged bandwidth (over 60 repetitions)
achieved by all algorithms as a function of the normalized dead-
line , defined as . The results indicate
that, in most cases, the achieved by the first heuristic algorithm
(H1) achieves better results than H2 and is close to the one of
the optimal partition. In addition, both heuristics perform better
than the naif approach.
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Fig. 20. Runtime of the algorithms.

Fig. 21. Runtime of H1.

C. Evaluation of the Complexity

To test the runtime behavior of the search algorithm and the
heuristics, as well as the efficiency of the pruning rule, we ran
another experiment considering a fully parallel application (i.e.,
without precedence relations) with random computation times
generated with uniform distribution in . The application
deadline was set equal to and the context
switch overhead was set to . For each method, the run-
time was measured in milliseconds as a function of the number
of tasks. The branch and bound algorithm was measured for dif-
ferent values of the pruning parameter . The results of this ex-
periment are shown in Fig. 20, which clearly shows that a con-
siderable amount of steps are saved when small values of are
used. It is worth mentioning that using a small value of results
in negligible bandwidth loss. Intuitively, this can be justified by
considering that a high number of flows often requires a high
total . Furthermore, the heuristic algorithm significantly re-
duces the running time compared with the optimal search, even
when an aggressive pruning condition is used.

In a final experiment, we tested heuristic H1 for a large .
As shown in Fig. 21, the runtime grows as , confirming the
polynomial-time complexity of the algorithm.

VI. RELATED WORK

The problem of partitioning a task set over a set of processing
elements has been considered by many researchers under dif-
ferent models and assumptions.

Peng and Shin [6] proposed two branch-and-bound al-
gorithms for partitioning a set of periodic real-time tasks,
described by a task graph, on a distributed system. The method
is optimal in the sense that it minimizes the maximum normal-
ized task response time, but no bandwidth requirements were
taken into account. Ramamritham [7] proposed a heuristic
search to allocate and schedule periodic tasks in a distributed
system, taking precedence, communication and replication
requirements into account. Abdelzaher and Shin [8] presented
an approach to partition large real-time applications on hetero-
geneous distributed systems. The scalability of the proposed
method was achieved by heuristically clustering processors and
tasks and assigning the clustered tasks to clustered processors
in a recursive way.

The main difference with respect to the work presented here
is that all the algorithms mentioned above did not consider
resource requirements into account, whereas the proposed
algorithm can achieve a feasible partition while minimizing
either the overall application bandwidth requirements or the
total number of processors.

Baruah and Fisher [24] proposed a heuristic to partition a
set of deadline-constrained sporadic tasks in a multiprocessor
system, but no precedence constraints were considered.

Otero et al. [25] applied the resource reservation paradigm
to interrelated resources (processor cycles, cache space, and
memory access cycles) to achieve robust, flexible, and cost-ef-
fective consumer products.

Shin et al. [26] proposed a multiprocessor periodic resource
model to describe the computational power supplied by a par-
allel machine. In their work, a resource is modeled using three
parameters , meaning that an overall budget is pro-
vided by at most processors every period .

Bertogna et al. [27] considered the problem of executing a
set of independently designed and validated applications upon a
common platform under resource constraints. Each application
is characterized by a virtual processor speed , jitter tolerance

and a resource holding time . However, no precedence con-
straints are considered and the underlying platform is composed
of a single processor and shared resources, rather than multiple
processors.

Schranzhofer et al. [28] presented a method for allocating
tasks to a multiprocessor platform, aiming at minimizing the av-
erage power consumption. However, the application is modeled
without considering timing constraints.

Leontyev and Anderson [29] proposed a multiprocessor
scheduling scheme for supporting hierarchical reservations
(containers) that encapsulate hard and soft sporadic real-time
tasks. Recently, Bini et al. [9] proposed to abstract a set of
virtual processors by the set of the supply functions [16],
[17], [19] of each virtual processors. In this paper, we borrow
such an abstraction of a virtual multicore platform. In all these
works, however, the application is modeled as a collection
of sporadic tasks and no precedence relations are taken into
account.

A more accurate task model (generalized multiframe task)
considering conditional execution flows, expressed by DAG,
has been proposed by Baruah et al. [30]. However, multiple
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branches outgoing from a node denote alternative execution
flows rather than parallel computations.

The problem of managing real-time tasks with precedence
relations was addressed by Chetto et al. [20], who proposed a
general methodology for assigning proper activation times and
deadlines to each task in order to convert a precedence graph
into timing constraints, with the objective of guaranteeing the
schedulability under EDF. Their algorithm, however, is only
valid for uniprocessor systems and does not consider the pos-
sibility of having parallel computations.

Partitioning and scheduling tasks with precedence constraints
onto a multiprocessor system has been shown to be NP-Com-
plete in general [31] and various heuristic algorithms have been
proposed in the literature to reduce the complexity [32]–[34],
but their objective is to minimize the total completion time of
the task set, rather than guaranteeing timing constraints under
temporal isolation. One category of such algorithms, called List
scheduling [32], [33], is based on proper priority assignments
to meet the application constraints. Another technique, called
Critical Path Heuristics [31], [34], was developed to deal with
non-negligible communication delays between tasks. The idea
is to assigns weights to nodes to reflect their resource usage and
to edges to reflect the cost of interprocessor communication and
then shorten the length of the Critical Path of a DAG by reducing
the communication between tasks within a cluster.

Collette et al. [35] proposed a model to express the paral-
lelism of a code by characterizing all possible durations a com-
putation would take on different number of processors. Schedu-
lability is checked under global EDF, but no precedence rela-
tions are considered in the analysis.

Lee and Messerschmitt [36] developed a method to statically
schedule synchronous data flow programs, on single or multiple
processors. Precedence relations are considered in the model,
but no deadline constraints are taken into account and temporal
protection is not addressed.

Jayachandran and Abdelzaher [37] presented an elegant and
effective algebra for composing the delay of applications mod-
eled by DAGs and scheduled on distributed systems. However,
they did not provide temporal isolation among applications.

Fisher and Baruah [38] derived near-optimal sufficient
tests for determining whether a given collection of jobs with
precedence constraints can feasibly meet all deadlines upon
a specified multiprocessor platform under global EDF sched-
uling, but partitioning issues and resource reservations were
not addressed.

VII. CONCLUSION AND FUTURE WORK

This paper presented a general methodology for allocating a
parallel real-time application to a multicore platform in a way
that is independent of the number of physical cores available in
the hardware architecture. Independence is achieved through the
concept of virtual processor, which abstracts a resource reserva-
tion mechanism by means of two parameters, (the bandwidth)
and (the maximum service delay).

The major contribution of this work was the development of
an algorithm that automatically partitions the application into
flows, in order to meet the specified timing constraints and min-
imize either the overall required bandwidth or the fragmenta-

tion . The computational requirements of each flow are derived
through the processor demand criterion, after defining interme-
diate activation times and deadlines for each task, properly se-
lected to satisfy precedence relations and timing constraints.

The optimal reservation parameters of each flow
have been computed by solving a quasi-convex optimization
problem, resulting in a minimum bandwidth on the virtual
processor that hosts the flow.

Given the high complexity of the algorithm, two heuristics
have also been proposed to deal with real-time applications with
a large number of tasks. Simulation experiments showed that the
heuristic algorithms significantly reduces the running time com-
pared with the optimal search, even when an aggressive pruning
condition (low ) is used.

As a future work, we plan to extend the virtual processor allo-
cation algorithm under high throughput requirements, achieved
through pipelined executions, possibly using the methods in
[37].

We also plan to integrate the communication cost into the
system model. This should be possible since adding commu-
nication costs to precedences in the DAG will only affect the
deadlines and activations of the tasks, while the calculation of
the Demand Bound Function and the optimization of the
of each flow remain unchanged.

REFERENCES

[1] S. Schliecker, M. Negrean, and R. Ernst, “Response time analysis on
multicore ECUs with shared resources,” IEEE Trans. Ind. Informat.,
vol. 5, no. 4, pp. 402–413, Nov. 2009.

[2] C. W. Mercer, S. Savage, and H. Tokuda, “Processor capacity reserves
for multimedia operating systems,” Carnegie Mellon Univ., Pittsburg,
PA, Tech. Rep. CMU-CS-93-157, 1993.

[3] L. Abeni and G. Buttazzo, “Resource reservation in dynamic real-time
systems,” Real-Time Syst., vol. 27, no. 2, pp. 123–167, Jul. 2004.

[4] L. Abeni, L. Palopoli, C. Scordino, and G. Lipari, “Resource reserva-
tions for general purpose applications,” IEEE Trans. Ind. Informat., vol.
5, no. 1, pp. 12–21, Feb. 2009.

[5] S. Funk, J. Goossens, and S. Baruah, “On-line scheduling on uniform
multiprocessors,” in Proc. 22nd IEEE Real-Time Syst. Symp., London,
U.K., Dec. 2001, pp. 183–192.

[6] D. T. Peng and K. G. Shin, “Static allocation of periodic tasks with
precedence constraints in distributed real-time systems,” in Proc. 9th
Int. Conf. Distrib. Comput. Syst., Newport Beach, CA, USA, Jun. 1989,
pp. 190–198.

[7] K. Ramamritham, “Allocation and scheduling of precedence-related
periodic tasks,” IEEE Trans. Parallel and Distrib. Syst., vol. 6, pp.
412–420, Apr. 1995.

[8] T. F. Abdelzaher and K. G. Shin, “Period-based load partitioning and
assignment for large real-time applications,” IEEE Trans. Comput., vol.
49, no. 1, pp. 81–87, Jan. 2000.

[9] E. Bini, G. C. Buttazzo, and M. Bertogna, “The multi supply function
abstraction for multiprocessors,” in Proc. 15th IEEE Int. Conf. Em-
bedded and Real-Time Comput. Syst. Appl., Beijing, China, Aug. 2009,
pp. 294–302.

[10] A. K. Mok, X. Feng, and D. Chen, “Resource partition for real-time
systems,” in Proc. 7th IEEE Real-Time Technol. Appl. Symp., Taipei,
Taiwan, May 2001, pp. 75–84.

[11] G. Buttazzo, E. Bini, and Y. Wu, “Partitioning parallel applications
on multiprocessor reservations,” in Proc. 22nd Euromicro Conf. Real-
Time Syst., Bruxelles, Belgium, Jul. 2010, pp. 24–33.

[12] D. Cancila, R. Passerone, T. Vardanega, and M. Panunzio, “Toward cor-
rectness in the specification and handling of non-functional attributes
of high-integrity real-time embedded systems,” IEEE Trans. Ind. In-
format., vol. 6, no. 2, pp. 181–194, May 2010.

[13] G. Buttazzo, “Achieving scalability in real-time systems,” IEEE
Comput., vol. 39, no. 5, pp. 54–59, May 2006.

[14] S. K. Baruah, R. Howell, and L. Rosier, “Algorithms and complexity
concerning the preemptive scheduling of periodic, real-time tasks on
one processor,” Real-Time Syst., vol. 2, pp. 301–324, 1990.



BUTTAZZO et al.: PARTITIONING REAL-TIME APPLICATIONS OVER MULTICORE RESERVATIONS 315

[15] A. Rahni, E. Grolleau, and M. Richard, “Feasibility analysis of non-
concrete real-time transactions with EDF assignment priority,” in Proc.
16th Conf. Real-Time and Network Syst., Rennes, France, Oct. 2008,
pp. 109–117.

[16] G. Lipari and E. Bini, “Resource partitioning among real-time applica-
tions,” in Proc. 15th Euromicro Conf. Real-Time Syst., Porto, Portugal,
Jul. 2003, pp. 151–158.

[17] I. Shin and I. Lee, “Periodic resource model for compositional real-time
guarantees,” in Proc. 24th Real-Time Syst. Symp., Cancun, Mexico,
Dec. 2003, pp. 2–13.

[18] A. Easwaran, M. Anand, and I. Lee, “Compositional analysis frame-
work using EDP resource models,” in Proc. 28th IEEE Int. Real-Time
Syst. Symp., Tucson, AZ, 2007, pp. 129–138.

[19] X. Feng and A. K. Mok, “A model of hierarchical real-time virtual re-
sources,” in Proc. 23rd IEEE Real-Time Syst. Symp., Austin, TX, Dec.
2002, pp. 26–35.

[20] H. Chetto, M. Silly, and T. Bouchentouf, “Dynamic scheduling of real-
time tasks under precedence constraints,” Real-Time Syst., vol. 2, no.
3, pp. 181–194, Sep. 1990.

[21] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge,
U.K.: Cambridge Univ. Press, 2004.

[22] E. Bini, G. Buttazzo, and Y. Wu, “Selecting the minimum consumed
bandwidth of an EDF task set,” in Proc. 2nd Workshop on Composi-
tional Real-Time Syst., Washington, DC, Dec. 2009.

[23] G. Rota, “The number of partitions of a set,” Amer. Math. Monthly, vol.
71, no. 5, pp. 498–504, 1964.

[24] S. Baruah and N. Fisher, “The partitioned multiprocessor scheduling
of deadline-constrained sporadic task systems,” IEEE Trans. Comput.,
vol. 55, no. 7, pp. 918–923, Jul. 2006.

[25] C. P. Otero, M. Rutten, L. Steffens, J. van Eijndhoven, and P.
Stravers, “Resource reservations in shared-memory multiprocessor
SoCs,” in Dynamic and Robust Streaming in and Between Connected
Consumer-Electronic Devices, B. S. P. Research, Ed. New York:
Springer, 2006, ch. 5, pp. 109–137.

[26] I. Shin, A. Easwaran, and I. Lee, “Hierarchical scheduling framework
for virtual clustering multiprocessors,” in Proc. 20th Euromicro Conf.
Real-Time Syst., Prague, Czech Republic, Jul. 2008, pp. 181–190.

[27] M. Bertogna, N. Fisher, and S. Baruah, “Resource-sharing servers
for open environments,” IEEE Trans. Ind. Informat., vol. 5, no. 3, pp.
202–219, Aug. 2009.

[28] A. Schranzhofer, J.-J. Chen, and L. Thiele, “Dynamic power-aware
mapping of applications onto heterogeneous MPSoC platforms,” IEEE
Trans. Ind. Informat., vol. 6, no. 4, pp. 692–707, Nov. 2010.

[29] H. Leontyev and J. H. Anderson, “A hierarchical multiprocessor band-
width reservation scheme with timing guarantees,” in Proc. 20th Eu-
romicro Conf. Real-Time Syst., Prague, Czech Republic, Jul. 2008, pp.
191–200.

[30] S. K. Baruah, D. Chen, S. Gorinsky, and A. K. Mok, “Generalized
multiframe tasks,” Real-Time Syst., vol. 17, no. 1, pp. 5–22, Jul. 1999.

[31] V. Sarkar, Partitioning and Scheduling Parallel Programs for Multi-
processors. Cambridge, MA: MIT Press, 1989.

[32] T. L. Adam, K. M. Chandy, and J. R. Dickson, “A comparison of list
schedules for parallel processing systems,” Commun. ACM, vol. 17, no.
12, pp. 685–690, 1974.

[33] H. El-Rewini and T. G. Lewis, “Scheduling parallel program tasks onto
arbitrary target machines,” J. Parallel and Distrib. Comput., vol. 9, no.
2, pp. 138–153, 1990.

[34] Y. k. Kwok and I. Ahmad, “Dynamic critical-path scheduling: An ef-
fective technique for allocating task graphs to multiprocessors,” IEEE
Trans. Parallel and Distrib. Syst., vol. 7, no. 5, pp. 506–521, May 1996.

[35] S. Collette, L. Cucu, and J. Goossens, “Integrating job parallelism in
real-time scheduling theory,” Information Process. Lett., vol. 106, no.
5, pp. 180–187, May 2008.

[36] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous
data flow programs for digital signal processing,” IEEE Trans.
Comput., vol. 36, no. 1, pp. 24–35, 1987.

[37] P. Jayachandran and T. Abdelzaher, “Delay composition algebra: A
reduction-based schedulability algebra for distributed real-time sys-
tems,” in Proc. 29th IEEE Real-Time Syst. Symp., Barcelona, Spain,
Dec. 2008, pp. 259–269.

[38] N. Fisher and S. Baruah, “The feasibility of general task systems with
precedence constraints on multiprocessor platforms,” Real-Time Syst.,
vol. 41, no. 1, pp. 1–26, 2009.

Giorgio Buttazzo (SM’05) graduated with a Degree
in electronic engineering from the University of
Pisa, Pisa, Italy, in 1985. He received the M.S.
degree in computer science from the University of
Pennsylvania, Philadelphia, in 1987 and the Ph.D.
degree in computer engineering from the Scuola
Superiore Sant’Anna of Pisa, in 1991.

He is a Full Professor of Computer Engineering at
the Scuola Superiore Sant’Anna of Pisa. From 1987
to 1988, he worked on active perception and real-time
control at the G.R.A.S.P. Laboratory, University of

Pennsylvania. He has authored six books on real-time systems and over 200
papers in the fields of real-time systems, robotics, and neural networks.

Prof. Buttazzo has been Program Chair and General Chair of major interna-
tional conferences on real-time systems. He is Editor in Chief of Real-Time Sys-
tems, Associate Editor of IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS,
and Chair of the IEEE Technical Committee on Real-Time Systems.

Enrico Bini (M’09) received the Laurea degree in
computer engineering from the Università di Pisa,
Pisa, Italy, in 2000 and the Ph.D. degree in computer
engineering from the Scuola Superiore Sant’Anna
in Pisa in October 2004, and completed graduate
studies in Mathematics in January 2010.

He is an Assistant Professor at the Scuola Supe-
riore Sant’Anna in Pisa. In 2003 he was a visiting stu-
dent at University of North Carolina at Chapel Hill,
collaborating with Prof. S. Baruah. He has published
more than 50 papers on scheduling algorithms, real-

time operating systems, sensitivity analysis in embedded systems design, and
optimization techniques.

Yifan Wu (M’10) received the B.E. and M.E.
degrees in control science and engineering from
Zhejiang University, Zhejiang, Hangzhou, China, in
2003 and 2006, respectively, and the Ph.D. degree
in computer engineering from the Scuola Superiore
Sant’Anna of Pisa, Pisa, Italy, in January 2010.

He is an Assistant Professor at Hangzhou Dianzi
University, Hangzhou, China. In 2009, he was a vis-
iting student at the Department of Automatic Con-
trol, Lund University. His research interests include
real-time control systems, scheduling algorithms, re-

source management, and dataflow programming model.


