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Abstract
The calculation of a decompression schedule, accord-
ing to the Varying Permeability Model (VPM) with 
Boyle’s Law compensation extension, requires many 
sophisticated arithmetic operations. Therefore if it is 
calculated with a limited arithmetic instruction set on a 
microcontroller, a decompression schedule cannot be 
calculated in an acceptable time frame. This paper 
describes the principles behind an optimisation in 
calculation speed of the VPM with the Boyle’s Law 
compensation extension for the determination of decom-
pression schedules on a low power microcontroller. It 
was accomplished in three independent steps: con-
verging the cubic root equation of the Boyle’s Law 
compensation algorithm; using a set of predictive 
models to calculate the adapted bubble radius without 
using a cubic root solver; and pre-calculating the 
exponential terms of the Haldane and Schreiner equa-
tions, in order to reduce processing time and dynamic 
adjustment of the step size within the iterative process 
of the decompression schedule calculation. The modi-
fied algorithm was tested on an Atmel ATmega644P 
running at 8MHz. Calculating decompression sched-
ules with these enhancements were approximately five 
times faster than with the original algorithm.

Keywords: decompression theory, Varying Permea-
bility Model (VPM), Reduced Gradient Bubble Model 
(RGBM), bubble model

1. Introduction
During diving, the pressure that the body is exposed 
to is increased (10m of depth is equivalent to a 
pressure increase of 1bar) and inert gas, such as 
nitrogen and in the case of mixed-gas diving, helium, 
is taken up by the body (Henry’s Law). These inert 
gases are normally stored in the form of physical 
solution in the tissues and liquids of the body.

During ascent, the ambient pressure decreases 
and the excess inert gases come out of solution, 
called ‘offgassing’. Normally most offgassing occurs 
during exhalation, but if inert gas is forced to come 
out of solution too quickly, bubbles are formed 
inside the body which may lead to decompression 
illness (DCI) (Ehm et al., 2003). To avoid DCI dur-
ing ascent, decompression stops are added at vari-
ous depths, and the maximum ascent speed is 
typically limited to a value less than 10msw/min 
(Bühlmann, 1984). Decompression algorithms are 
used to calculate the depth and duration of these 
decompression stops to predict safe decompres-
sion schedules.

To be able to predict a decompression schedule, 
the inert gas absorption in the bodily tissue has to 
be modelled. For constant ambient pressure, this 
is typically done by the Haldane equation. For 
linearly varying ambient pressure, the inert gas 
absorption is calculated by the Schreiner equation 
(Baker, 2001).

Presently a wide range of decompression algo-
rithms exist which can basically be classified as 
either Haldane or bubble models. Haldane decom-
pression models (e.g. Workman, 1965, or Bühlmann, 
2002), are mostly based on empirical models, which 
are described by mathematical functions. In con-
trast to Haldanian decompression models, which 
try to predict decompression schedules, so that no 
DCI occurs, bubble driven models simulate the 
physical behaviour of bubbles during pressure 
changes. Based on that, decompression schedules 
are calculated in order to limit the total volume of 
gas that is allowed to be present in the form of bub-
bles. The most well-known bubble models are the 
Reduced Gradient Bubble Model (RGBM) (Wienke, 
1990, 2003) and the Varying Permeability Model 
(VPM) (Yount et al., 1999).

Although bubble models are seemingly popular 
and a multitude of PC decompression software are 
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based on them, only a few diving computers take 
advantage of them. Some recreational diving com-
puter manufacturers claim to use RGBM in their 
products, but they actually use a folded version of 
the RGBM, which is in principle a Haldane model 
with modified M-values (Wienke and O’Leary, 
2002). The reason for this might be that bubble 
driven models require much more computational 
processing power than Haldanian models, which 
standard dive computers do not currently possess. 
For example, one important aspect of a dive com-
puter is battery lifetime, as a computer should be as 
power efficient as possible. The consequence of this  
efficiency is that these standard dive computers 
hold very little computational power.

The present work describes a way to simplify the 
VPM in order to allow quasi-real-time calculation of 
decompression schedules on power efficient dive 
computers.

2. Functionality of the VPM
The development of the VPM, ranging from theo-
retical background, descriptions of the basic func-
tionality, to all the various adjustments, can be 
found in literature. This section gives an overview 
of the major functionalities of VPM that are partic-
ularly important for the further understanding of 
this paper, while a summary of the whole model 
can be found elsewhere (e.g. Watts, 2007).

VPM uses the same dissolved gas tissues as those 
found in Bühlmann’s ZH-L16 decompression 
model (Bühlmann, 1984). Sixteen hypothetical 
tissue compartments simulate the dissolved inert 
gas pressures of inert gases absorbed by the body 
during a dive and expelled during ascent. In addi-
tion to that traditional approach, VPM adds one 
‘simulated bubble’ of each inert gas to each tissue 
compartment.

The simulated bubble has specific properties, 
the most important of which are the following:

•	The bubble is assumed to have a specific size 
indicated by its initial radius at the beginning of 
a dive.

•	Ordinarily the bubble is gas-permeable. Dissolved 
gases from the tissue compartment can move 
across the bubble’s skin and into the bubble.

•	 If too much pressure is applied to the bubble 
(e.g. as can occur during deep dives), the mol
ecules of the bubble’s skin are squeezed together 
and the gas is no longer able to diffuse. As a 
consequence, the bubble’s skin becomes imper-
meable and the gas is trapped inside the bubble. 
The onset of impermeability of the bubble is dive-
profile dependent and has to be calculated by 

solving a cubic equation (Yount and Strauss, 1976; 
Yount, 1979; Yount and Hoffmann, 1986; Baker, 
2000; Yount and Yeung, 1981).

The gas pressure inside the bubble (pbub) is calcu-
lated by Equation 1:

pbub = pamb + S/r� (1)

where pbub is gas pressure inside the bubble, pamb is 
ambient pressure, S is the properties of the bubble’s 
skin (a constant) and r is the bubble radius.

The bubble is surrounded by liquid holding vari-
ous levels of dissolved gases. Dissolved gases in each 
tissue compartment diffuse across the skin into  
the bubble, thus inflating it if the compartment’s tis-
sue tension (pt) exceeds the bubble pressure (pbub). 
The VPM bubble does not grow if the dissolved gas 
tension in a compartment is not allowed to exceed 
the pressure inside the bubble (pt < pamb + S/r). 
Therefore the term pt - pamb defines the super satura-
tion of a tissue compartment, which means that the 
dissolved gas tension exceeds the ambient pressure.

As an ascent strategy, VPM tracks the dissolved 
gases and bubble radii. During the ascent, the bub-
ble pressure (pbub) is calculated continuously. The 
diver is stopped whenever a compartment’s tissue 
tension (pt) exceeds the compartment’s bubble 
pressure (pbub).

The resulting decompression schedule is very 
conservative, and the overall decompression time is 
quite long (especially for short dives). The human 
body can handle a certain volume of free gases. 
This hypothesis is defined in the critical volume 
algorithm (CVA) and permits the gas phase to 
inflate during decompression, under the constraint 
that the total volume of free gas never exceeds 
some critical value. The CVA defuses the compart-
ment’s tissue tension limit in an iterative way. The 
decompression schedule calculation is repeated 
with the relaxed allowed tissue tensions until the 
calculated volume of free gas matches the pre
defined critical volume parameter (l) (Yount and 
Hoffmann, 1983).

The computed decompression schedules of the 
VPM (especially for schedules of deep dives) have 
shown that the VPM in the aforementioned form 
produces very aggressive decompression schedules 
in comparison to schedules produced using RGBM 
or Bühlmann with gradient factors methods. In 
2002, Baker (2002) expanded the VPM by adding a 
Boyle’s Law compensation algorithm (VPM-B). The  
bubble radius is increased during ascent according 
to Boyle’s Law. The Boyle’s Law compensation 
algorithm introduces longer decompression stops, 
thus resulting in more conservative decompression 
schedules (Baker, 2002).
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Computations within the VPM-B are calculated 
in an iterative way. A final decompression schedule 
is the product of several previous calculated decom-
pression schedules with adjusted input parameters. 
Within the algorithm, several cubic root equations 
and exponential functions have to be solved to 
compute the final bubble radii and to solve the 
Schreiner and Haldane equations. This is very time 
consuming on a microcontroller with low process-
ing performance. Thus the main objectives of this 
paper are to: converge the results of the cubic root 
equations; pre-solve the exponential functions; and 
reduce the amount of iterations within the algorithm 
to reduce overall processing time.

3. Methods
The VPM-B algorithm used in this work was, in gen-
eral, a straight translation of Baker’s original Fortran 
code (Baker, 2003) to Atmel AVR 8-bit microcon-
troller compatible C. For an integrated development 
environment (IDE), the IAR Embedded Workbench 
(IAR Systems) was selected, which is a set of devel-
opment tools for developing embedded applica-
tions. It allows easy debugging and simulation, and 
provides compiler and stack configuration capabili-
ties, which are useful when optimising the VPM-B 
for a low power microcontroller.

3.1. Analysis
Several fictive dive profiles were calculated with the 
original VPM-B algorithm and analysed to assess 
processing time and to identify possible bottlenecks 

in the code. The whole decompression calculation 
procedure was simulated and analysed with the IAR 
profiling and performance analysis tools in the 
debugger of the IAR Embedded Workbench. For 
the microcontroller, an Atmel ATmega644P 8-bit 
RISC microprocessor (4kB SRAM; 2kB EEPROM; 
up to 20MIPS throughput at 20MHz; power con-
sumption at 1MHz, 0.4mA in active mode) running 
at 8MHz, was chosen.

Fig 1 presents all the functions, the amount of 
calls during one loop, the corresponding total 
accumulated runtime in CPU cycles and the per-
centage of a 70msw/20min dive with TX20/40 and 
nominal conservatism (standard VPM-B, no addi-
tional conservatism). Table 1 shows the correspond-
ing decompression schedule. The dive was planned 
without decompression gas on purpose to keep it 
simple and easy to compare.

The analysis (Fig 1) showed clearly that the 
Boyle’s Law compensation algorithm, which includes 
a root finder method to calculate the new adjusted 
bubble radii, was one of the biggest bottlenecks. The 
second bottleneck was the decompression stop func-
tion, which computes the decompression time for 
one decompression step (which includes the Hal-
dane and Schreiner equations). 

For an in-depth analysis of the VPM-B algorithm, 
it was translated to MATLAB R2008a (MathWorks). 
MATLAB is a numerical computing environment 
and programming language, which allows easy 
implementation of algorithms, programming sched-
ules, matrix manipulation and plotting of functions 
and data. 

Fig 1:  Analysis of the VPM-B implementation for a 70msw/20min with TX20/40 dive, showing a list of 
methods, which are executed within the VPM-B during the calculation of a decompression schedule,  
and the workload of each method
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3.2. Converging Boyle’s Law 
compensation algorithm
The VPM tries to simulate the bubble growth 
dependent on a specific dive profile. To calculate a 
decompression schedule, the gas pressure inside the 
bubble is relevant. To get this, the bubble radius has 
to be computed by solving a cubic root equation. 

The Boyle’s Law compensation algorithm is one 
of the most time consuming functions in the VPM-B,  
because it solves a cubic root equation to deter-
mine the new radius of a gas bubble due to the 
reduction in pressure between each decompres-
sion step. A cubic root equation is solved by conver-
gence of the result in an iterative fashion. This is 
basically done by either the Newton-Raphson 
method, or the bisection method for cases where 
the Newton-Raphson method takes the solution 
out of bounds or does not converge fast enough 
(Press et al., 1992). 

Since the VPM-B calculates 16 tissues for nitro-
gen and helium (and a decompression dive may 
have many decompression steps and many itera-
tions during the CVA), this procedure is very time 
consuming. For example, in the 70msw/20min 
with TX20/40 dive example, the Boyle’s Law com-
pensation algorithm was called 52 times (first itera-
tion + 2 more iterations within the CVA until it 
converged + final iteration to compute the decom-
pression schedule = 4 × 13 decompression stops). 
During these 52 calls, the cubic root equation was 
solved for two gas components (He and N2) and 16 
tissues each (2 × 16 × 52 = 1664 calls in total).

Converging the result of the root finder sub
routine using a form of linear predictive models 
would accelerate this computation, because linear 
equations can be solved in a much faster way. The 
cubic root equation, which has to be solved to get 

the final bubble radius, has the following form 
(Equation 2):

Ar 3 - Br 2 - C = 0� (2)

Equation 2 describes the relation between com-
pression energy and the radius of gas nucleus 
(Baker, 2000). A closer look at the A, B and C  values 
shows that only C is a dive profile dependent 
variable. A is the ambient pressure of the next 
scheduled decompression step in Pa. Since decom-
pression steps are typically a multiple of three (3m, 
6m, 9m, etc.), A can be calculated prior to a dive. B 
is constant and equal to -2 × g (surface tension of 
the bubble). C is the only parameter, which varies. 
It is defined in Equation 3:

C = (pamb + (r/2g)) × r 3� (3)

where pamb is ambient pressure of the first decom-
pression stop in C (constant for each stop), g is sur-
face tension of the bubble (constant) and r is the 
bubble radius at the first decompression stop (dive 
profile dependant).

The final bubble radius is computed by a cubic 
root equation, where two of the three parameters 
are constant. Thus the first approach to improve 
the calculation speed of the Boyle’s Law compensa-
tion algorithm was to determine the bubble radius 
by a predictive model, which described the rela-
tionship between the bubble radius and the C  value 
for a predefined decompression step. 

Plotting the C values with the corresponding 
bubble radii of a simulated dive in MATLAB, it can 
be seen that the values lie approximately on a 
slightly curved line for each decompression stop 
depth. In Fig 2, all C  values and the corresponding 
bubble radii for nitrogen of a 50msw/30min/
EAN21 dive were plotted using a scatter plot, which 
showed several lines. Each line corresponded to 
one decompression step. Since the first decompres-
sion step was at 27m for a 50msw/30min/EAN21 
dive computed by the VPM-B at nominal conserva-
tism, the graph showed nine different lines.

In a next step, all the C values and correspond-
ing bubble radii of 1000 dive profiles were simu-
lated and logged. Dive profiles were calculated 
between 30 and 100msw depth, 20 and 100min bot-
tom time, different gas mixes and descent/ascent 
speeds. For the sake of simplicity, only one gas mix-
ture per dive was used. 

Since it purported that all C values and the cor-
responding bubble radii lay almost on a line, linear 
regression was used to fit a predictive model to the 
observed dataset of C and r  values. Input parame-
ter for the predictive model was C and the output 
value was r. Fitting was done using the least-squares 
method for a linear model provided in the curve 

Table 1:  Decompression schedule calculated by 
VPM-B of a 70msw/20min with TX20/40 dive at 
nominal conservatism (no additional conservatism), 
implemented on a 8-bit RISC microprocessor

Depth (msw) Time (min)

39   1
36   1
33   1
30   2
27   2
24   2
21   3
18   4
15   6
12   7
  9 11
  6 18
  3 34
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fitting toolbox of MATLAB. (A detailed explanation 
of the least-squares method can be found in the 
MATLAB R2008a Product Help (Mathworks, 2008).

The correlation coefficient, which is a quantity 
that gives the quality of a least-squares fitting to the 
original data, was then calculated. For a perfect fit, 
the correlation coefficient is ±1. If there is no lin-
ear correlation or a weak linear correlation, the 
correlation coefficient is close to 0.

The fitted model was shifted in parallel to the 
maximum critical outlier of the dataset (the one 
which corresponds to the largest bubble radius). 
This guaranteed that this algorithm simplification 
was more conservative than the original Boyle’s 
Law compensation algorithm, because it finally 
computed larger bubble radii and thus longer 
decompression times (Fig 3). 

3.3. Pre-calculating exponential functions
The second bottleneck of the VPM-B was the 
decompression stop function, which computed the 
decompression time for one decompression step. 
As the decompression stop time cannot be calcu-
lated directly, an iterative approach was used to esti-
mate the time of one stop and then the overall 
ascending time (time to surface). During this func-
tion the exponential function of the C library 
(<math.h>) was called several times (e.g. during a 
70msw/20min with TX20/40 dive at nominal con-
servatism: time to surface (TTS) × gases × tissues × 
iterations = ~16 242 times) to solve the Haldane 
and Schreiner equations.

It calculated the tissue tension for the corre-
sponding decompression step and the ascent 
between the decompression steps iteratively by 

desaturating the tissues for n minutes, until a safe 
ascent to the next decompression step is possible.  
A typical iteration step is equal to 1min. 

As an example, the Haldane equation is 
expressed in Equation 4:

pt = p0 + (pi - p0)(1 - e-kt)� (4)

where pt is compartment tissue tension (final); p0 is 
initial compartment inert gas pressure; pi is inspired 
compartment inert gas pressure; t is time (of expo-
sure or interval); k is time constant (in this case, half-
time constant); and e is base of natural logarithms.

Solving an exponential function on a low power 
8-bit microcontroller requires many CPU cycles, 
which is time consuming. As an example, the 
ATmega644P operating at 8MHz needed 5250 CPU 
cycles (~0.67ms) to solve one single exponential 
function (IAR C/C++ Compiler for AVR 5.11B).

The second approach to reduce the processing 
time for calculating a VPM-B decompression sched-
ule was to pre-calculate the exponential terms of 
the Haldane equation. This was possible because 
during the iterative calculation, the step size was 
constant and equal to 1min. Pre-calculated terms 
were stored in the flash memory of the micro
controller and thus did not need to be calculated 
during program execution. This technique is often 
referred to as dynamic programming (Bellman, 
1957). The same pre-calculated terms could be used 
for solving the Schreiner equation within the decom-
pression area if the ascent speed is constant.

Fig 2:  Correlation between C values and bubble 
radius at a 50msw/30min/EAN21 dive
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3.4. Dynamic step size adjustment
A decompression schedule is calculated in several 
iterations. In the original Baker VPM-B code, the 
step size of the decompression time per iteration is 
freely selectable but constant. A high step size value 
leads to a low resolution, and conversely a small 
step size value leads to a high resolution of the 
approximated decompression schedule. The typi-
cal step size is 1min, but the iterative calculation 
takes a long time, especially in the case of long 
decompression schedules. The third approach 
used in this paper was to accelerate the calculation 
by dynamically increasing the step size (decom-
pression time per iteration) in relation to the total 
decompression time. This approach allowed using 
a reduced amount of iterations for the calculation 
of a decompression schedule. 

For a diver, the most important parameter is the 
ceiling depth that has to be observed, as this is the 
depth to which the diver can safely ascend accord-
ing to the model. The iterations with variable step 
sizes are only used to predict the TTS. The variable 
step size approach leads to slightly longer TTS pre-
dictions (maximum of 10% longer). It is important 
to understand that this modification of the algo-
rithm (with variable step sizes) does not influence 
the ceiling calculation, as this is independent of the 
step size. Thus, the third idea was to increase the 
step size dynamically according to the overall TTS. 
A typical value of the step size is about 10% of the 
overall TTS (see Table 2). 

The advantage of increasing the step size of the 
decompression time is that the decompression stop 
time can be computed in a lesser amount of itera-
tions, thus reducing the computational time.

4. Results
The optimised VPM-B algorithm was verified in 
several ways. Firstly, the fitted linear least-square 
models were reviewed by their corresponding cor-
relation coefficients, which are quantities that give 
the quality of a least-squares fitting to the original 
data. For a perfect fit, the correlation coefficient is 

±1. If there is no linear correlation or a weak one, 
the correlation coefficient is close to 0. In this 
paper no calculated correlation coefficient fell 
below 0.99.

Secondly, the decompression schedules com-
puted by the VPM-B algorithms with Boyle’s Law 
compensation convergence were compared to reg-
ular VPM-B profiles. All simulated dives resulted in 
similar decompression schedules. Table 3 shows 
the mean deviation, standard deviation and range 
of 50 simulated dive profiles between the VPM-B 
algorithms with converged Boyle’s Law compensa-
tion algorithm and the original VPM-B algorithm. 

Table 4 shows the TTS differences between the 
optimised VPM-B algorithm (with all changes 
explained earlier) and the original VPM-B algo-
rithm. Since the optimised VPM-B algorithm com-
putes slightly bigger bubble radii during the Boyle’s 
Law compensation algorithm and the step size dur-
ing the TTS calculation is dynamically adjusted to a 
bigger value, the optimised algorithm consequently 
computes longer runtimes.

Table 5 illustrates the speed improvements ver-
sus dive runtime changes according to the example 
of a 70msw/20min with TX20/40 dive with nomi-
nal conservatism (without decompression gas). All 
improvements are switched on successively. 

5. Discussion
The introduced modifications of the VPM-B decom-
pression model demonstrated an approach for cal-
culating the VPM-B model on a 8-bit low power 

Table 2:  Increase of the decompression step
size according to the decompression time; short 
decompression times are calculated in small steps 
and long decompression times are calculated in 
big steps
Decompression time (min) Step size resolution (min)

1–10 1
11–20 2
21–30 3
>30 5

Table 3:  VPM-B with converged Boyle’s Law 
compensation compared to the original VPM-B
Decompression 
steps

Mean deviation 
(VPM-B Boyle’s 
Law compensation 
converged -
VPM-B) in min

Standard 
deviation 
in min

Range

Total TTS    1.14 1.18 +5/0
3msw    0.48 0.84 +3/-1
6msw    0.35 0.64 +2/-1
9msw    0.07 0.68 +1/-1
12msw    0.08 0.54 +1/-1
15msw    0.09 0.38 +1/-1
18msw    0.16 0.37 +1/-1
21msw    0.03 0.33 +1/-1
24msw    0.04 0.20 +1/-1
27msw -0.05 0.22 +1/-1
30msw    0.05 0.22 +1/-1
33msw -0.06 0.25 +1/-1
36msw    0.10 0.32 +1/0
39msw    0.00 0.00 0
42msw    0.00 0.00 0
45msw    0.00 0.00 0
48msw    0.00 0.00 0
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Table 4:  Optimised VPM algorithm compared to VPM-B
Depth (msw) Time (min) Mix Descent 

(m/min)
Ascent 
(m/min)

Conservatism 
level

TTS VPM-B 
(min)

TTS converged 
VPM-B (min)

55 15 EAN21 18   9 0   58   63
50 20 EAN21 18   9 0   71   75
45 30 EAN21 18   9 0   99 100
40 40 EAN21 18   9 0 118 120
35 60 EAN21 18   9 0 153 155
70 15 TX19/40 25   7 1   99 105
65 20 TX19/40 25   7 1 125 130
60 20 TX19/40 25   7 1 112 115
55 25 TX19/40 25   7 1 126 130
50 15 TX19/40 25   7 1   61   63
40 45 EAN32 15 10 2   94   96
35 45 EAN32 15 10 2   81   82
30 60 EAN32 15 10 2   94   96
28 45 EAN32 15 10 2   62   63
25 75 EAN32 15 10 2 101 101
90 10 TX17/40 30   8 1 101 110
85 15 TX17/40 30   8 1 145 150
80 17 TX17/40 30   8 1 158 165
75 20 TX17/40 30   8 1 168 175
70 23 TX17/40 30   8 1 178 185

Table 5:  Speed improvements versus dive runtime changes for a 70m/20min 
with TX20/40 dive at nominal conservatism
Algorithm Number of CPU 

cycles
Calculation time 
at 8Mhz (sec)

Dive runtime 
(min)

VPM-B 238 214 043 29.78 115
VPM-B + dynamic programming (DP) 142 214 320 17.78 115
VPM-B + DP + Boyle’s Law
  compensation convergence (BLCC)

  65 363 296   8.17 116

VPM-B + DP + BLCC + dynamic
  deco step size

  49 225 972   6.15 120

microcontroller in quasi real time. This paper has 
explained a way to replace the time intensive root 
finder method within the Boyle’s Law compensa-
tion algorithm by a set of predictive models.

In this paper, the process of creating a lookup 
table of predictive models for dives between 30 and 
100msw with a bottom time between 20 and 100min 
has been explained (outside that range, the origi-
nal algorithm has to be used). The correlations 
between C  values and bubble radii for each decom-
pression step and inert gas were projected in linear 
equations, which were created by linear regression. 
Additionally, the conservatism was improved by 
parallel shifting these linear equations to the big-
gest critical outlier in the dataset, in order to be 
consistently more conservative than the original 
decompression algorithm. The modifications con-
cern only the Boyle’s Law compensation algorithm, 
which calculates the bubble growth for one decom-
pression step to another. 

Furthermore, dynamic adjustment of the step 
size within the iterative process of the decompression 

schedule calculation was added to the optimised 
VPM-B algorithm to save additional computation 
time. It is important to clarify that this adjustment 
is only applied to predict the TTS. The tissue satu-
ration is still calculated in normal intervals (i.e. 
every second), so that a later TTS calculation – when  
the decompression time converges to 0 during the 
ascent – will produce again a more accurate TTS 
(in sequential order: long TTS; big step size; inex-
act decompression schedule, but more conservative/
short TTS; small step size; more exact decompres-
sion schedule). 

Finally, it is essential that the modifications 
described in this paper should not be seen as an 
improvement of the VPM-B. It is simply a way to 
approximate intermediate results so that decom-
pression schedules can be calculated quickly, but 
with similar output to the original algorithm, as 
compared to the folded RGBM, which is computed 
like a Haldanian decompression model, but pro-
duces decompression schedules similar to RGBM 
(Wienke and O’Leary, 2002).
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6. Conclusion
This paper introduces a new speed optimised 
approach for real-time calculation of VPM-B decom-
pression schedules addressing diving computers 
featuring a low power microcontroller. It was accom-
plished in three independent steps, first by converg-
ing the cubic root equation of the Boyle’s Law 
compensation algorithm with a set of predictive 
models to calculate the adapted bubble radius with-
out using a cubic root solver. Additionally, pre-
calculation of the exponential terms of the Haldane 
and Schreiner equations was done, in order to reduce 
processing time and dynamic adjustment of the step 
size within the iterative process of the decompres-
sion schedule calculation. The modified algorithm 
was tested on an Atmel ATmega644P, running at 
8MHz. Calculating decompression schedules with 
this enhancement was approximately five times 
faster than with the original algorithm.
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