
Multi-Moded Resource Reservations

Luca Santinelli1,2, Giorgio Buttazzo1 Enrico Bini1

1Scuola Superiore Sant’Anna, Pisa, Italy; email: {name.surname}@sssup.it
2INRIA Nancy Grand Est, Nancy, France; email: luca.santinelli@inria.fr

Abstract—Often real-time systems can run in different modes
depending on the external environment or their internal state.
Each operational mode is characterized by a set of tasks with
different computational demand, resource requirements, and
resource availability. When resource reservation is used to
achieve temporal isolation among applications, the reservation
parameters may need to change from mode to mode. Hence,
an additional guarantee is required to ensure feasibility not
only of the applications, but also of the reservations.

This paper presents a schedulability analysis to predict the
timing behavior of a multi-moded resource reservation, whose
parameters may change due to a mode transition. Resource
provisioning is analyzed in all the operational modes and
also during mode-changes in order to guarantee a minimum
amount of resources and derive a feasibility condition for real-
time applications and reservations. Theoretical results are also
illustrated with examples and test cases.

I. INTRODUCTION

Nowadays, real-time systems are becoming highly dy-
namic, running applications that can adapt their behavior
at run-time by changing their functionality. Often, real-time
systems are characterized by different operational modes,
designed to achieve different functionalities or to respond to
changes in the environment. Each mode specifies functional
and non-functional characteristics and consists of specific
computational demands, resource requirements and resource
availabilities.

As a consequence, the overall computational load and
the allocated resources may change over time depending on
the operational mode selected for the system. For example,
adding a new task into the system at run-time may result
in a reduction of the computational resources allocated to
the other tasks. Other examples comes form the energy
consumption policy where in order to save energy, the
system may be required to discard some of its functionalities
and redistribute the resources among its components at run-
time.

A change in the system state, e.g., from start-up to
normal, or from normal to energy saving, or from normal
to shut-down, may also require re-allocating the computa-
tional resources among the tasks composing the application.
Changing one or more parameters in the system components

This research has been supported by the European Commission under the
ArtistDesign Network of Excellence (214373) and the PREDATOR project
(FP7/2008/ICT/216008).

at run-time must also be considered a mode change, because
it affects the system load and hence modifies the timing
behavior of the application and the system itself.

Multi-moded real-time systems require a more accurate
analysis with respect to classical single-mode systems, be-
cause of the criticality of mode transitions. In fact, there
are situations in which, although timing constraints can be
guaranteed to be met within each individual mode in steady
state conditions, deadlines can still be missed during mode
transitions. It is therefore essential to analyze the system in
order to guarantee feasibility not only within each mode, but
also across modes.

If a resource reservation approach [1], [2] is adopted in
the system to achieve temporal isolation between different
application components, then a mode transition may also
require changing reservation parameters, e.g., to re-distribute
the available resources whenever a new component is dy-
namically activated. In this situation, achieving predictability
means not only providing guarantee between components
(i.e., at the reservation level) before, after, and during mode
transitions, but also within each component, before, after,
and during mode transitions.

Whereas resource reservation manages applications by
supplying the resource they require, adaptive applications
must rely on adaptive resource reservations to meet their
changing resource requirements. Changing a reservation
means changing the corresponding resource reservation pa-
rameters to adapt the resource provisioning to the new
requirements demanded by the system and its applications.
Consequently, the reservation passes from one mode to
the new one with a consequent mode transition stage.
The resource reconfigurations need to be performed online
without jeopardizing schedulability. It is therefore essential
to develop appropriate resource reconfiguration criteria and
algorithms to manage the criticality of the transition stage.

A. Related Work

The problem of timing analysis across mode changes has
been addressed in the real-time literature under different as-
sumptions and system models [3], [4], [5], [6]. For instance,
Fohler [7] investigated the problem of mode changes in the
context of pre run-time scheduled hard real-time systems,
where a table-driven schedule is constructed for each oper-
ational mode and an appropriate time must be selected to

2011 17th IEEE Real-Time and Embedded Technology and Applications Symposium

1080-1812/11 $26.00 © 2011 IEEE

DOI 10.1109/RTAS.2011.12

37

start a new mode and avoid deadline misses. Crespo et al.
[8] presented a survey of mode change protocols for unipro-
cessor systems under fixed-priority scheduling and proposed
a new protocol along with their own schedulability analysis.
Guangming [9] computed the earliest time at which a new
task can be safely added to the system under the Earliest
Deadline First (EDF) scheduling, without jeopardizing the
feasibility of the task set. The underline idea behind such
solutions is to wait for a certain amount of time before
changing the schedule, identifying a safe time instant where
the new mode can be activated without causing deadline
misses.

A considerable amount of work has been recently ad-
dressed to the analysis of resource reservation mechanisms
for achieving temporal protection in real-time systems. The
concept of reservations was originally introduced by Mercer,
Savage, and Tokuda [10], and later formalized by Rajkumar
et al. [11] as a generic kernel mechanism to allocate a
fraction of a computational resource to a set of tasks. Feng
and Mok [12] adopted resource reservations for achieving
hierarchical partitioning of computational resources.

Resource reservation is typically implemented through a
server mechanism, which allocates a budget Q every period
P to the served application. Several resource provisioning
algorithms have been proposed in the literature, both under
fixed priority systems, like the Polling Servers (PS) [13],
the Deferrable Server (DS) [14] and the Sporadic Server
(SS) [15], and under EDF, like the Dynamic Sporadic Server
(DSS) [16] and the Constant Bandwidth Server (CBS) [2].

Fixed reservation paradigms (static reservations) are not
appropriate to achieve the desired performance with ap-
plications in which the computational demand is highly
variable. To cope with such dynamic systems, Buttazzo et
al. [17] proposed an elastic scheduling methodology for
adapting the rates of a periodic task set to different workload
scenarios, without affecting the system schedulability. Abeni
et al. [18] presented a framework for dynamically allocating
the CPU to tasks whose execution times are not known a
priori. Adaptive reservation techniques based on feedback
scheduling have also been investigated by the same authors
[19].

To the best of our knowledge, however, none of the
proposed reservation mechanisms has been analyzed to
predict the timing behavior of the served application during a
reconfiguration process. Clearly, a safe approach could be to
delay the mode change at the next idle time in the system, as
done in the FRESCOR framework [20]. However, the delay
could be too long and it is highly unlikely that the idle time
occurs at the same time for all the applications.

Recently, some mechanisms have been proposed to dy-
namically change the server models at run-time. For in-
stance, de Olivera et al. [21] addressed the problem of
dynamically reconfiguring reservation parameters, offering
support for multi-moded and adaptive real-time applications.

Valls et al. [22] presented an adaptation protocol based
on the definition of a contract model for filtering peaks
in resource demands. However, in both frameworks no
schedulability guarantee is provided during reconfigurations.
The FRESCOR project [23] has proposed mode change
protocols for sporadic servers, but they are not as general
as the results presented in this paper, which can cope with
arbitrary activation patterns.

Finally, in [24] Stoimenov et al. have tackled with the
problem of adaptive resource reservation mechanisms in case
of TDMA servers. Resource provisioning guarantees are
investigated during the mode changes of the TDMA server
paradigm.

Contributions: This paper addresses the problem of
modifying reservation parameters to comply with different
system requirements, specified through a set of operational
modes. Provided that, the schedulability can be guaranteed
within each mode in the steady state condition, our objec-
tive is to extend the schedulability analysis during mode
transitions, under EDF scheduling. Thus, we first derived
resource reservation functions to bound the server resource
provisioning before, after, and during mode transitions.
Then, such functions are used to guarantee the resource
provisioning in all the working conditions and to check the
application feasibility.

Organization of the paper: Section II states the prob-
lem addressed in this work and illustrates some examples
showing possible anomalies that could occur during server
reconfigurations. Section III presents the basic concepts used
in our analysis in terms of generic supply and demand
bound functions. Section IV classifies some of the server
mechanisms and the resource they provide through a com-
mon model. Section V illustrates the mode change problem
with servers and mostly the critical mode change transition.
Section VI shows how to apply the analysis to guarantee
real-time constraints in case of mode transitions. Finally,
Section VII states our conclusions.

II. PROBLEM STATEMENT

The objective of the mode change analysis with resource
reservation mechanisms is to guarantee that the server pro-
vides enough resource to its application in order to keep it
feasible not only during the steady states, but also along the
transition stages.

The next motivational examples illustrate situations in
which the system is feasible within each mode, but during
the mode transition either a reservation server cannot use
all its available budget within its period or the served
application cannot meet its timing constraints.

Example 2.1: A multi-moded real-time system is com-
posed by two servers SA and SB scheduled by EDF (with
deadlines equal to periods). In mode I, SA has a period of
10 time units and it provides a budget of 5 time units each
period, that is SI

A(5, 10), whereas SI
B(3, 6). In mode II, we

38

have SII
A (4, 8) and SII

B (3, 6). The first server SA changes
from mode I to mode II at time t = 8.

The two servers can provide all their computational re-
source to the application they manages in both their modes
because the total utilization 5

10 + 3
6 is less than 1. During

the mode change the second server cannot provide entirely
its budget during a transition period, as showed in Figure 1.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

SA

SB

Figure 1. EDF server scheduling: unfeasible mode change at t = 8 from
SA = (5, 10), SB = (3, 6) to SA = (4, 8), SB = (3, 6).

This example illustrates that reconfiguring a server may
cause capacity miss of other servers, which means that the
budget is not delivered to the applications within the server
period.

Example 2.2: Consider a polling server SA that can oper-
ate in two modes, SI

A(3, 10) and SII
A (1, 4), and must handle

an application consisting of a single aperiodic task τA, with
computation time of 3 ms and relative deadline of 15 ms.
Figures 2 illustrates the worst-case scenario that can occur
when τA arrives at time t = 5 ms. Note that, although
both the application and the server are schedulable in each
mode (in steady state conditions), the application can miss
its deadline during a mode change occurring at time t = 10
ms.

III. SYSTEM MODEL AND BACKGROUNDS

A real-time application is a set Γ = {τ1, · · · τn} of n
periodic or sporadic tasks. Every task τi is characterized by
a worst-case execution time Ci, a period (or minimum inter-
arrival time) Ti, and a relative deadline Di smaller than or
equal to the period. In this paper, tasks are assumed to be
independent and scheduled by EDF. We consider also as
resource the computation requested by the applications in
order to execute. Nonetheless, our reasoning applies to any
kind of resource such as the communication bandwidth, etc..

A. Demand Bound Function

The computational demand of a task set can be precisely
described by the demand bound function (dbf), introduced
by Baruah et al. [25]. It expresses the total computation that
must be executed by the processor in each interval of time
when tasks are scheduled by EDF. For any given periodic
task τi activated at time t = 0, its demand bound function
dbfτi(t) in any interval [0, t] is given by

dbfτi(t) = max
{

0,

(⌊
t − Di

Ti
+ 1

⌋
Ci

)}
.

The computational demand of a task set Γ of periodic tasks
synchronously activated at time t = 0 can be computed as

0 2 4 6 8 10 12 14 16 18 20 22 24 26

τA

SA

Figure 2. Unfeasible server and task scheduling with τ = (3, 15), SI =
(2, 4) and SII = (1, 4); mode change at treq = 10.

the sum the individual demand bound functions of each task,
that is

dbfΓ(t) =
∑
τi∈Γ

dbfτi(t).

B. Supply Bound Function

The computational resources are provided by reservation
servers. In this paper, we consider the class of server algo-
rithms that can be described by a periodic server abstraction.

Definition 3.1 (Periodic Server): A periodic server S is
characterized by two parameters (Q, P) where Q is the
maximum budget (or server capacity), and P is the server
period. A server must guarantee that Q units of time are
allocated in each period P to the served application, with
Q ≤ P .

Given server S, its supply bound function sbfS(t) is the
minimum amount of time provided by S in any interval of
length t ≥ 0 [12], [26], [27].

The resource provided by a reservation server can also be
described by the bounded-delay function (bdf) [12], [26],
[27] characterized by the pair (α, Δ), where α is the resource
provisioning rate of the server and Δ is the longest interval
with no resource provisioning itself. The bdf is defined in
the interval domain as

bdf(t) = max{0, α(t − Δ)} (1)

with

α = lim
t→∞

sbf(t)
t

Δ = inf{q | α(t − q) ≤ sbf(t) ∀t}.
The bounded-delay function bdfS of a server S is defined

as a linear approximation of the resource provisioning that
lower bounds the resource provisioning, ∀t bdfS(t) ≤
sbfS(t).

C. Feasibility analysis

Using the former abstractions the EDF schedulability of
a task set Γ within a server S can be guaranteed if:

∀t dbfΓ(t) ≤ sbfS(t). (2)

Note that the schedulability can also be tested using the
linear bounded-delay function bdf, which however provides
a more pessimistic condition, because of the approximation
applied. An example of demand bound function, supply

39

bound function and its bounded-delay approximation is
illustrated in Figure 3. In that example the application is
feasible under EDF, since in each interval of time the amount
of computational resource always exceeds the processor
demand of the application.

sbf

dbf

bdf

t

resource

Figure 3. Demand bound function, supply bound function, and its
bounded-delay approximation in the interval domain.

D. Mode-Change

Servers can change their parameters at run-time to cope
with the system changing conditions. Whenever a server S
switches from an old mode SI = (QI , P I) to a new mode
SII = (QII , P II), the equivalent supply bound function
changes from sbfIS(t) to sbfII

S (t). The supply bound function
that describes the computational resource provided by the
server across the mode transition is denoted by sbfTS (t),
the transition supply bound function. The parameters of the
corresponding bounded-delay functions are denoted by the
pairs (αI , ΔI), (αII , ΔII), and (αT , ΔT) respectively.

In the following, treq denotes the time instant at which
the mode change is requested. From this time on, all the
required changes in the system are initiated, while the new
mode begins at tgo after a delay δ ≥ 0 from the mode change
initiation, hence tgo = treq + δ. The mode transition is the
stage between the two steady modes, starting at time treq
and ending when the new mode becomes effective, at tgo.

A mode changing server can abort its resource provision-
ing any time during the mode transition [treq, tgo]. We focus
our attention on two extreme transition cases:

• transitionA: at treq the old mode aborts, interrupting the
resource provisioning until the new mode is effective,
see Figure 4(a).

• transitionB: the old mode server keeps on providing its
service until the new mode is effective, see Figure 4(b).

The two cases results in a different behavior of the server and
then of the whole system. The differences will be explained
in the next sections. All the intermediate cases, with abortion
time tab such that treq < tab < tgo can be easily inferred
from the transitionB case.

We assume that the system is feasible in each mode, that
is in both steady states conditions, and we want to derive the
condition in which feasibility can also be preserved during
mode transitions.

IV. RESOURCE RESERVATION

Although with different peculiarities, a lot of servers can
be modeled as periodic servers because they guarantee to

treq tgo

δmode I mode II

(a) TransitionA

treq tgo

δmode I mode II

(b) TransitionB

Figure 4. TransitionA and TransitionB; the service provisioning aborts or
continues after the mode change treq.

t

time

resource

Figure 5. Supply bound function and bounded-delay function for a periodic
server in the interval domain t and scheduling in the time domain time.

provide Q (and no more than Q) units of time in each
period P . Examples of periodic servers include the polling
server [13], the deferrable server [14] and the sporadic server
[15], which are scheduled using fixed priority. Example
of dynamic priority periodic servers include the Constant
Bandwidth Servers (CBS) [28] or the dynamic versions of
the Polling, Deferrable and Sporadic servers [13].

To achieve a more general result, we perform the analysis
in a worst-case scenario where the processor is allocated at
the beginning of the first period and then at the end of all
subsequent periods, as illustrated in Figure 5. Under this
condition, all the servers mentioned above have the same
supply bound function, thus we refer to them as generic
periodic servers. In the interval domain, the longest interval
where no resource is provided is 2(P−Q), while after 2(P−
Q) the server supplies the resource at a constant rate of Q

P .
The sbf of a periodic server, defined as the worst-case

resource supply in time interval [0, t), is

sbfS(t) = max{0, (k − 1)Q, t − (k + 1)(P − Q)} (3)

with k =
⌈

t−(P−Q)
P

⌉
. Such a resource supply bound can be

lower bounded by the bounded-delay function of (1), with

α =
Q

P
, Δ = 2(P − Q), (4)

as illustrated in Figure 5.
The computational resource the server provides is used

by the application of the server.
Definition 4.1 (Server Schedulability): A server is said to

be schedulable if its budget is provided on time within each
period.

Definition 4.2 (Application Schedulability): An applica-
tion is said to be schedulable by a server if all its tasks
are able to meet their deadlines.

40

treq tgo

δ
mode I mode IIγ

(a) TransitionA

treq tgo

δ
mode I mode IIγ

(b) TransitionB

Figure 6. Server mode change and mode transition cases. Worst-case
scenario resulting in the worst-case service provisioning during the mode
transition stage.

Definition 4.3 (System Schedulability): A system consist-
ing of multiple applications managed by a set of reservations
is said to be schedulable if both servers and applications are
schedulable.

V. SERVER MODE CHANGE

With multi-moded servers it is important to identify the
minimum amount of resource provided in any stage of the
server. This includes the transition between different modes,
where the service provisioning is affected from both the old
and the new mode. The transition supply bound function
sbfT is the resource provisioning during the transition stage,
while the transition bounded-delay function bdfT lower
bounds the transient service provisioning.

A. Transition Guarantees

The following theorems provide the sbfT functions for
the two types of transitions introduced in Section III-D
(transitionA and transitionB).

Theorem 5.1 (Mode Change sbf - transitionA): Let S be
a periodic server with steady states parameters (QI , P I) and
(QII , P II) and with corresponding supply bound functions
sbfI and sbfII . Let treq be the time at which the mode
change is requested and let tgo be the time at which the new
mode is started, after a delay δ, such that tgo = treq + δ.
If the server aborts the old mode at time treq (transitionA
case), then the resource provisioning during the transition
stage is lower bounded by

sbfT (t) = inf
0≤λ≤t

{sbfI(t − λ − γ + P I − QI)

+ sbfII(λ + P II − QII)}, (5)

being γ = treq − tlast + δ and tlast the initial instant of the
last period in the old mode.

Proof: Since the mode change can occur any time
during the period interval of the first mode, the worst-case
service provisioning occurs when the treq is at the beginning
of P I . The worst-case resource supply is when the old

mode provides its budget at the beginning of the last period
before the change, while the new mode provides resources
at the end of the subsequent periods. This leaves a hole
of γ + P I − QI + P II − QII in the service provisioning.
If R(t) is the amount of computation (in this case is the
computational resource considered) that has been delivered
up to time t (along any interval of length t), we are looking
upon a bound of such a resource in a generic interval [r, s)
with s = r + t centered in [treq, tgo].

R[r, s) = RI [r, tgo) + RII [tgo, s)
λ := s − tgo

= RI [r, s − λ) + RII [s − λ, s)
= RI [s − t, s − λ) + RII [s − λ, s)

and each R (RI is lower bounded by its
sbf. In this case, RI [s − t, s − λ) ≥
sbfI

(
t − λ − (γ + P I − QI − 2(P I − QI))

)
where the

service provisioning has a delay of γ + P I − QI . Instead,
RII [s − λ, s) ≥ sbfII

(
λ − (P II − QII − 2(P II − QII))

)
with a delay of P II − QII . Both cases are represented in
Figure 6(a). Thus

R[r, s) ≥ sbfI(t − λ − γ + P I − QI)
+sbfII(λ + P II − QII) ∀λ

≤ inf
0≤λ≤t

{sbfI(t − λ − γ + P I − QI)

+sbfII(λ + P II − QII)},
that proves the theorem.

Theorem 5.2 (Mode Change sbf - TransitionB): Let S
be a periodic server with steady states parameters (QI , P I)
and (QII , P II) and with corresponding supply bound
functions sbfI and sbfII . Let treq be the time at which
the mode change is requested and let tgo be the time at
which the new mode is started, after a delay δ, such that
tgo = treq + δ. If the server continues to provide its old
mode service until time tgo (transitionB case), then the
resource provisioning during the transition stage is lower
bounded by

sbfT (t) = inf
0≤λ≤t

{sbfI(t − λ − γ + 2P I − QI)

+ sbfII(λ + P II − QII)}, (6)

with γ = treq − tlast + δ and tlast the initial of the last period
of the old mode.

Proof: The worst-case service provisioning occurs
when the old mode provisions its resource at the beginning
of its last period, while the new mode provisions at the end
of its period. This leaves a hole in the service provisioning of
γ−QI +P II −QII ≤ δ+P II −QII . For any interval [r, s)
such that r ≤ treq ≤ tgo ≤ s the amount of computational

41

resource provided R(t) is

R[r, s) = RI [r, tgo) + RII [tgo, s)
λ := s − tgo

= RI [r, s − λ) + RII [s − λ, s)
= RI [s − t, s − λ) + RII [s − λ, s)

and each R is lower bounded by its sbf. In this case RI [s−
t, s − λ) ≥ sbfI

(
t − λ − (γ − QI − 2(P I − QI))

)
where

the service provisioning has a delay of γ − QI . Instead,
RII [s − λ, s) ≥ sbfII

(
λ − (P II − QII − 2(P II − QII))

)
with a delay of P II − QII . Both cases are represented in
Figure 6(b). Thus

R[r, s) ≥ sbfI(t − λ − γ + 2P I − QI)
+sbfII(λ + P II − QII) ∀λ

≤ inf
0≤λ≤t

{sbfI(t − λ − γ + 2P I − QI)

+sbfII(λ + P II − QII)},
that proves the theorem.

The obtained sbfT s can be used to guarantee the service
provisioning during the mode change transitions.

1) Transition Bounded-Delay Function: With the
bounded-delay modeling it is possible to derive the
transition bounded-delay functions. First, the same idea
of Equation (5) and Equation (6) can be applied with
bounded-delay functions obtaining

bdfTA(t) = inf
0≤λ≤t

{bdfI(t − λ + 2P I − γ − QI) +

bdfII(λ + P II − QII)},
bdfTB(t) = inf

0≤λ≤t
{bdfI(t − λ + 2P I − γ − QI) +

bdfII(λ + P II − QII)},
for transitionA and transitionB, respectively.

The transitionA resource supply results in (αT
A, ΔT

A)
where

αT
A = min{αI , αII}

ΔT
A = max{P I − QI + γ + P II − QII , 0}. (7)

For transitionB, we have:

αT
B = min{αI , αII}

ΔT
B = max{γ − QI + P II − QII , 0}. (8)

Both the transition supply bound function and the transi-
tion bounded-delay functions depends on the transition delay
δ, sbfT (t, δ) and bdfT (t, δ).

Equation (7) and (8) define the relationship between the
transition delay δ and the transition service provisioning
delay ΔT .

B. Server Schedulability

In multi-mode systems, an application can change its
resource demand from one mode to another, thus dbfI and
dbfII denote the resource demand of the application in the
two modes, and dbfT denotes its resource demand during the
mode transition [29]. An application managed by a server
is schedulable if and only if the resource demanded by the
application does not exceed the resource provided by the
server, in any possible stage of both the server and the
application. Since we are assuming feasibility for each mode
in a steady state condition, the following lemma states the
condition for a guaranteed transition in the case both the
application and the server change their mode at the same
time.

Lemma 5.3 (Mode Change EDF Schedulability): Given
a server S handling an application Γ that is feasible in each
in a steady state condition, if both S and Γ change their at
the same time, then the application is feasible during the
transition stage if

∀ t dbfTΓ (t) ≤ sbfTS (t). (9)

Using the the bounded-delay linear approximation, the fea-
sibility condition becomes:

∀ t dbfTΓ (t) ≤ bdfTS (t), (10)

Note that when the application increases its resource re-
quest, a short transition delay in the server adaptation is good
for the application. However, a too short delay could result
in a service over-provisioning that would steal bandwidth
from the other servers, so jeopardizing the schedulability
of the other applications during the transient. On the other
hand, a large delay in the server adaptation would affect the
schedulability of the application itself. In general, there is a
trade-off between schedulability of the application and the
schedulability of the servers.

1) Intra-Server Schedulability: By intra-server schedula-
bility we refer to the schedulability of the application based
on the resources provided by the server. From the analysis
performed by applying Condition (9) or Condition (10), we
can derive a maximum delay δ� after which the new mode
can safely start. For all δ ≤ δ� the server mode change is
feasible for the application because it will result in a larger
resource supply.

2) Inter-Server Schedulability: By inter-server schedula-
bility we refer to the schedulability of the servers when
they adapt their parameters, independently of the behavior of
the served applications. Such an analysis can be performed
using the results achieved for multi-mode task sets, which
is well known in the real-time literature (see Section I-A).
The analysis can easily be applied to periodic servers by
considering them as periodic tasks that must receive Q units
of computational resource every period P . Therefore, the
effect of a mode change in a server has to be investigated

42

with respect to the entire set of servers composing the
system.

Applying the results achieved in [9], [6] or [17], it is
possible to derive a minimum mode change delay δ� that
does not affect the schedulability of the other servers. Any
change performed with a delay δ ≥ δ� keeps the system
feasible because it reduces the amount of resource required
by the server during its transition.

Example 5.4: Consider two servers such that SI
1 = (2, 4)

and SII
1 = (4, 8), whereas SI

2 = SII
2 = (5, 10). If a mode

change is requested at time treq = 2 and applied with a delay
δ = 0 (with SII

2 starting at treq), the set of server results
unfeasible during the transition. By applying the utilization-
based approach proposed in [17], the minimum delay the
first server has to wait before changing parameters is δ� = 2.
For all delays larger than δ� the server set results feasible,
while ∀δ < δ� the server set may suffer deadline misses.

A real-time system with servers and applications is fea-
sible during mode transitions if the delay is less than or
equal to a threshold derived from the intra-server analysis
and greater than or equal to a threshold δ� derived from the
inter-server analysis; that is, δ ≤ δ� ∧ δ ≥ δ�. The resulting
feasibility region for δ is then

Φ =
{

0 if δ� > δ�

∀δ | δ� ≤ δ ≤ δ� if δ� ≤ δ� (11)

This result is stated in the following theorem.
Theorem 5.5: Consider a multi-mode system with m

servers Si, each managing an application Γi, such that the
system is feasible in any of its working mode. If server
Si performs a mode transition with a delay δ, the system
remains feasible if δ ∈ Φi, where Φi is the feasibility region
of server Si from Equation (11). If Φi is empty, the transition
is unfeasible under any condition.

Proof: The theorem directly comes form the construc-
tion of the region Φi. Since the δs in Φi have been obtained
by guaranteeing the feasibility of the set of servers in the
system, the theorem is easily proved.

Algorithm 1 describes how to compute a transition delay
that keeps the system feasible.

Algorithm 1 Algorithm to compute the transition delay for the
mode changing server Si. The policy is the strategy adopted by
the system to handle mode transitions.

Input: Γ, ΓS = {S1, . . . , Sm} and the mode changing server Si,
Si ∈ ΓS ;

Output: transition delay δ ∈ Ψ;
δ� = intra-serverSchedulability(Γi, Si);
δ� = inter-serverSchedulability(ΓS, Si);
δ = policy(δ�, δ�);

VI. RESOURCE RESERVATION ANALYSIS

The server and the application requirements during a
mode transition are encoded into the feasibility region Φ

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1

Δ

α

Earliest Deadline First Feasibility Region

Figure 7. Example of EDF feasibility region for the application Γ =
{τ1 = (0.5, 3), τ2 = (2, 8)}.

in terms of transition delays that the set of servers and the
applications can tolerate.

A. (α, Δ)-Space

A server Si can be described by the tuple (αi, Δi), where
αi represents its bandwidth and Δi the worst-case delay in
supplying the computational resource to the application. An
application can also be mapped into the (α, Δ)-space, as its
feasibility region, considered as the set of all service supply
pairs that guarantee the application timing constraints. Note
that such a region depends on the applied scheduling policy.

In the case of EDF, the application feasibility region is
defined by

∀t ∈ D : dbf(t) ≤ α(t − Δ),

meaning that

∀t ∈ D : Δ ≤ t − dbf(t)
α

Δ ≤ min
t∈D

{
t − dbf(t)

α

}
, (12)

where D is the set of deadlines in which the application
schedulability has to checked.

Equation (12) describes the feasibility region ΩΓ,sched of
the application in the (α, Δ)-space, which depends on the
application Γ and the scheduling algorithm sched, that in
our case is EDF.

An example of feasibility region for an application under
EDF scheduling is illustrated in Figure 7. The feasibility
region is the area below the bold curve, while the other
curves are those used to derive the region as the minimum
among them. All points within the feasibility region rep-
resent server parameters that can guarantee the application
timing constraints.

In this space, a mode change can be represented by
three points, corresponding to mode I, mode II, and the
transition. In particular, the transition point is computed

43

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Δ

α

Earliest Deadline First and Multi-Moded Servers

I

II

Δ�
A

Δ�
A

Figure 8. Feasibility region: application scheduled with EDF and server
changing from SI = (αI , ΔI) = (1, 2) to SII = (αII , ΔII) =
(0.45, 0.5). The application has two tasks τ1 = (0.5, 3) and τ2 = (1, 8).
The transitionA is represented, and the segment describes ΦA for the Δs.

through Equation (7) or (8), depending on the type of
transition. It is worth observing that it depends on the delay
δ with which the server adaptation is performed.

The problem addressed in this paper considers the case
where the two points corresponding to the steady state modes
fall in the feasibility region, and the proposed analysis allows
verifying the feasibility of the application also during the
transition stage, assuming it is performed with a given delay
δ. In the case the transition point falls outside the feasibility
region, the delay delta can be used as a design parameter to
reach feasibility during the transition, if possible.

B. Mode Change Resource Reservation

An example of mode change is illustrated in Figure 8
and Figure 9 for an application with two periodic tasks,
τ1 = (0.5, 3) and τ2 = (1, 8), handled by a server changing
from SI = (αI , ΔI) = (0.9, 2) to SII = (αII , ΔII) =
(0.45, 0.5). Supposing that the inter-server schedulability
analysis proves a minimum transition delay δ� = 0, which
means Δ�

A = 1.25 and Δ�
B = 0 respectively for transitionA

and transitionB. From the feasibility analysis of the server
and its application we obtain Δ� = 1.88 that in case of
transitionA correspond to δ�

A = 0.63, while for transitionB
is δ�

B = 10.63. The transitionA case results in a region
ΦA = [0, 0.63] while, the transitionB has ΦB = [0, 10.63].
Figure 8 shows the case of transitionA and the feasible
region for the delays δ in terms of bounded-delay function
delays Δ. Figure 9 shows the case of transitionB together
with the fact that transitionB is the best possible transition
because it provides the widest interval of feasible δ inside the
application feasibility region. As a matter of fact the whole
ΦB in terms of Δs stays inside the application feasibility
region.

The figure also reports the two values Δ� and Δ� (derived
from δ� and δ� through Equation (7) or (8)) which identify
the range of transition delays that make the application

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Δ

α

Earliest Deadline First and Multi-Moded Servers

I

II

Δ�
B

Δ�
B

Figure 9. Feasibility region: application scheduled with EDF and server
changing from SI = (αI , ΔI) = (1, 2.5) to SII = (αII , ΔII) =
(0.45, 0.5). The application has two tasks τ1 = (0.5, 3) and τ2 = (1, 8).
The transitionB is represented, and the segment describes ΦB for the Δs

feasible. For this application, the maximum Δ that can
guarantee a feasible transition is Δ = 1.88, corresponding to
a maximum transition delay of either δ = 0.63 or δ = 10.63,
respectively for transitionA or transitionB . The delays have
been computed considering a mode change starting at the
beginning of old mode period, treq = tlast.

The proposed analysis can be used to find the best δ in
accordance to a desired policy that reflects the requirements
of the system. The policy included in Algorithm 1 affects the
selection of δ in Ψ. In particular, if the goal is to minimize
the application response time, then the minimum delay can
be selected as δ = min{δ | δ ∈ Ψ}. If the goal is to minimize
the resource required during the transition (which could be
relevant for saving energy), then the maximum delay can be
selected as δ = max{δ | δ ∈ Ψ}.

Summarizing, a mode change framework for resource
reservations has different degrees of freedom for making
an unfeasible transition feasible.

• Resource reservation parameters: the resource reserva-
tion parameters before and after the transition affect the
transition itself and can be set to make an unfeasible
transition feasible.

• Kind of transition: the different transition types de-
termine different transition delays because of their
resource supply. In particular, transitionB provides a
larger service than transitionA, which means that a
larger delay can be afforded by the application when
transitionB is applied. By selecting the abortion time
during the transition it is possible to modulate the
solution in order to satisfy the delay requirements of
a system: if the allowed delays are small enough,
then transitionA has to be preferred; otherwise (if
intra-server analysis does not allow such small delays)
transitionB has to be applied.

• The server mechanism: the particular server mechanism

44

adopted for implementing a reservation affects the
resource provisioning, thus affecting the Φ region for
the delay. Hence an appropriate server can be chosen
to keep the system feasible during the transition and
satisfy the constraints of the problem.

C. Case Study

We now present a case study of a multi-moded resource
reservation. Let us consider two periodic servers S = (Q, P)
characterized by the following initial modes: SI

1 = (2, 4)
and SI

2 = (5, 10). The first server manages an application
Γ1 composed by two tasks τ1,1 = (2, 20), τ1,2 = (5, 30)
with relative deadlines equal to periods. The second server
manages a single task τ2,1 = (6, 12). At time t = treq = 2,
S1 is required to change its parameters from SI

1 = (2, 4) to
SII

1 = (4, 8), while S2 remains unchanged SII
2 = SI

2 . In
this case, the system is asking server S1 to provide more
resource with a larger period, but with the same bandwidth.
The second server guarantees the same resource provisioning
to its application during the system changes.

The transition bounded-delay function for the server S1

results to have the delay ΔT
B,1 = γ + 2 for transitionB.

The inter-server analysis provides a minimum delay δ� =
2 for guaranteeing the feasibility of the other server S2, see
Example 5.4 for more details about the computation of δ�.
In other words, adapting S1 no earlier than 2 time units from
the mode change request, the second server is not affected by
the mode change and its resource provisioning is guaranteed
also during transitions. This translates into bounded-delay
functions with a delay Δ�

B,1 = 6 for transitionB.
The intra-server analysis provides the maximum transition

delay δ� that keeps the served application feasible during the
transition. That is, δ� = max{γ | bdfT (t, γ) ≥ dbfT (t)} −
treq + tlast. For a transitionB it is δ�

B,1 = 12.
Hence, the feasibility regions is ΦB,1 = [2, 12] for

transitionB. The optimal transition delay δ can then be
chosen within these intervals, based on the adopted system
policy. In terms of Δ the interval is [6, 16] for transitions
like transitionB, as represented by Figure 11. Figure 10
shows that Γ1 is feasible in both modes of server S1 and the
bounded-delay functions requirements during the transitions.

0
5

10
15

0 10 20 30 40 50 60 70 80

dbf1bdfI1

bdf
�
B,1

bdf�
B,1

= bdfII
1

t

resource

Figure 10. Demand curves (dbf) of the application Γ1 and resource curves
(bdf) for both the transitions and the steady states of server S1.

 0

 5

 10

 15

 20

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Δ

α

Multi-Moded Server and Application

I

II
Δ�

B

Δ�
B

Figure 11. Feasibility region with EDF: bounds to server S1 parameters
in case of transition from mode I, SI = (2, 4) to mode II, SII = (4, 8).
The feasibility region for the delay δ is derived from the maximum ΔT

allowed, represented by the segment. TransitionB is represented.

VII. CONCLUSIONS

In this paper we have presented an analysis framework
that tackles multi-moded servers. Such a framework has been
developed in order to investigate the feasibility of real-time
applications in case of dynamic resource reservation policies.

The analysis defines the guarantees to the resource that
dynamic and periodic servers provide in any of their possible
modes and during their mode transitions. We apply two
representations for resource reservations: the periodic model
(Q, P) and the bounded-delay model (α, Δ), and by them
we have developed schedulability conditions during the crit-
ical mode transition stage. The bounded-delay model allows
also translating the schedulability of resource reservations
into the (α, Δ)-space. The analysis in the (α, Δ)-space
outlines the properties that multi-moded applications and
multi-moded resource reservation have to guarantee to keep
the system feasible in any condition.

The work represents a further step toward the full com-
prehension of dynamic systems by including multi-moded
resource reservations. In the future our framework will be
improved with the development of more accurate server
models and mostly by considering multiple transitions. Fur-
ther improvements have to take into account a resource
reservation manager that can define complex and dynamic
reservation strategies in order to cope with dynamic systems.
This component will allow to investigate complex server
transitions and the modification of multiple servers inside
the real-time system.

REFERENCES

[1] C. Mercer, R. Rajkumar, and J. Zelenka, “Temporal protec-
tion in real-time operating systems,” in Proceedings of the
11th IEEE Workshop on Real-Time Operating Systems and
Software (RTOSS’94), May 1994, pp. 79–83.

45

[2] L. Abeni and G. Buttazzo, “Resource reservation in dynamic
real-time systems,” Real-Time Syst., vol. 27, no. 2, pp. 123–
167, 2004.

[3] K. W. Tindell, A. Burns, and A. J. Wellings, “Mode changes
in priority pre-emptively scheduled systems,” in RTSS, 1992,
pp. 100–109.

[4] P. Pedro and A. Burns, “Schedulability analysis for mode
changes in flexible real-time systems,” in ECRTS, 1998, pp.
172–179.

[5] L. Sha, R. Rajkumar, J. Lehoczky, and K. Ramamritham,
“Mode change protocols for priority-driven preemptive
scheduling,” Real-Time Systems, vol. 1, no. 3, pp. 243–264,
1989.

[6] N. Stoimenov, S. Perathoner, and L. Thiele, “Reliable mode
changes in real-time systems with fixed priority or edf
scheduling,” in DATE, 2009.

[7] G. Fohler, “Changing operational modes in the context of pre
run-time scheduling (special issue on responsive computer
systems),” IEICE transactions on information and systems,
vol. 76, no. 11, pp. 1333–1340, 1993.

[8] J. Real and A. Crespo, “Mode change protocols for real-time
systems: A survey and a new proposal,” Real-Time Systems,
vol. 26, no. 2, pp. 161–197, 2004.

[9] Q. Guangming, “An earlier time for inserting and/or acceler-
ating tasks,” Real-Time Systems, 2009.

[10] C. W. Mercer, S. Savage, and H. Tokuda, “Processor capacity
reserves for multimedia operating systems,” Carnegie Mel-
lon University, Pittsburg, Tech. Rep. CMU-CS-93-157, May
1993.

[11] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa, “Resource
kernels: A resource-centric approach to real-time and multi-
media systems,” in Proceedings of the SPIE/ACM Conference
on Multimedia Computing and Networking, Vol. 3310, 1998,
pp. 150–164.

[12] X. Feng and A. Mok, “A model of hierarchical real-time
virtual resources,” in Proceedings of the 23rd IEEE Real-
Time Systems Symposium (RTSS 2002), December 2002, pp.
26–35.

[13] G. C. Buttazzo, Hard Real-Time Computing Systems: Pre-
dictable Scheduling Algorithms and Applications, Springer,
Ed. Springer, 1998.

[14] J. P. Lehoczky, L. Sha, and J. K. Strosnider, “Enhanced
aperiodic responsiveness in hard real-time environments,” in
Proceedings of the IEEE Real-Time System Symposium (RTSS
1987), December 1997.

[15] B. Sprunt, L. Sha, and J. P. Lehoczky, “Aperiodic task
scheduling for hard real-time systems,” Journal of Real-time
Systems, 1987.

[16] M. Spuri and G. Buttazzo, “Scheduling aperiodic tasks in
dynamic priority systems,” Real-Time Systems, vol. 10, pp.
179–210, 1996.

[17] G. Buttazzo and L. Abeni, “Adaptive rate control through
elastic scheduling,” in Decision and Control, 2000. Proceed-
ings of the 39th IEEE Conference on, vol. 5, 2000, pp. 4883–
4888 vol.5.

[18] L. Abeni and G. Buttazzo, “Adaptive bandwidth reservation
for multimedia computing,” in RTCSA ’99: Proceedings of
the Sixth International Conference on Real-Time Computing
Systems and Applications. Washington, DC, USA: IEEE
Computer Society, 1999, p. 70.

[19] ——, “Hierarchical qos management for time sensitive ap-
plications,” in RTAS ’01: Proceedings of the Seventh Real-
Time Technology and Applications Symposium (RTAS ’01).
Washington, DC, USA: IEEE Computer Society, 2001, p. 63.

[20] T. Cucinotta, L. Palopoli, and G. Lipari, “FRESCOR Deliv-
arable D-AQ2v2: control algorithms for coordinated resource-
level and application-level adaptation v2,” 2008.

[21] A. B. de Oliveira, E. Camponogara, and G. Lima, “Dynamic
reconfiguration in reservation-based scheduling: An optimiza-
tion approach,” in 15th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2009, pp.
173–182.

[22] M. G. Valls, A. Alonso, and J. A. de la Puente, “Mode change
protocols for predictable contract-based resource management
in embedded multimedia systems,” Embedded Software and
Systems, Second International Conference on, vol. 0, pp. 221–
230, 2009.

[23] M. G. Harbour, D. Sangorrn, and M. T. de Esteban, “FRES-
COR Delivarable D-AT2: schedulability analysis techniques
for distributed systems,” 2009.

[24] N. Stoimenov, L. Thiele, L. Santinelli, and G. Buttazzo, “Re-
source adaptations with servers for hard real-time systems,” in
International Conference On Embedded Software (EMSOFT),
2010.

[25] S. Baruah, R. R. Howell, and L. E. Rosier, “Algorithms and
complexity concerning the preemptive scheduling of periodic
real-time tasks on one processor,” Real-Time Systems, vol. 2,
1990.

[26] G. Lipari and E. Bini, “Resource partitioning among real-time
applications,” in ECRTS’03, IEEE Computer Society, 2003,
pp. 151–158.

[27] I. Shin and I. Lee, “Periodic resource model for compositional
real-time guarantees,” in Proceedings of the 24th Real-Time
Systems Symposium, Cancun, Mexico, Dec. 2003, pp. 2–13.

[28] L. Abeni and G. Buttazzo, “Integrating multimedia appli-
cations in hard real-time systems,” in Proceedings of the
19th IEEE Real-Time Systems Symposium, Madrid, Spain, dec
1998, pp. 4–13.

[29] S. Perathoner, N. Stoimenov, and L. Thiele,
“Reliable mode changes in real-time systems
with fixed priority or edf scheduling,” Computer
Engineering and Networks Laboratory, ETH Zurich,
ftp://ftp.tik.ee.ethz.ch/pub/publications/TIK-Report-292.pdf,
TIK Report 292, Sep. 2008.

46

