
Real-Time Syst (2011) 47: 198–223
DOI 10.1007/s11241-010-9113-6

Feasibility analysis under fixed priority scheduling
with limited preemptions

Gang Yao · Giorgio Buttazzo · Marko Bertogna

Published online: 14 January 2011
© Springer Science+Business Media, LLC 2011

Abstract Preemptive scheduling often generates a significant runtime overhead that
may increase task worst-case execution times up to 40%, with respect to a fully non-
preemptive execution. In small embedded systems, such an extra cost results in longer
and more variable response times that can significantly affect the overall energy con-
sumption, as well as the system predictability. Limiting preemptions is often possible
without jeopardizing schedulability. Although several authors addressed schedulabil-
ity analysis under different forms of limited preemptive scheduling, current results
exhibit two major deficiencies: (i) The maximum lengths of the non-preemptive re-
gions for each task are still unknown under fixed priorities; (i) The exact response
time analysis for tasks with fixed preemption points is too complex.

This paper presents the schedulability analysis of real-time tasks with non-
preemptive regions, under fixed priority assignments. In particular, two different pre-
emption models are considered: the floating and the fixed preemption point model.
Under each model, the feasibility analysis is addressed by deriving simple and effec-
tive schedulability tests, as well as an algorithm for computing the maximum length
of the non-preemptive regions for each task. Finally, simulation experiments are pre-
sented to compare the two models in terms of schedulability.

Keywords Limited preemption scheduling · Schedulability analysis · Fixed priority

This work has been partially supported by the European Community’s Seventh Framework
Programme FP7/2007-2013 under grant agreement No. 216008.

G. Yao · G. Buttazzo · M. Bertogna (�)
Scuola Superiore Sant’Anna, Pisa, Italy
e-mail: m.bertogna@sssup.it

G. Yao
e-mail: g.yao@sssup.it

G. Buttazzo
e-mail: g.buttazzo@sssup.it

Real-Time Syst (2011) 47: 198–223 199

1 Introduction

Most of the schedulability tests available for periodic task sets have been derived un-
der a fully preemptive model, where every task can be suspended in any point, and
at any time, in favor of a task with higher priority. When context switch overhead is
ignored in the analysis, as done in most scheduling papers, a fully preemptive sched-
uler is often more efficient in terms of achievable processor utilization. In practice,
however, arbitrary preemptions can introduce a significant runtime overhead and may
cause high fluctuations in task execution times, so degrading system predictability. In
particular, three different types of cost need to be taken into account at each preemp-
tion (Gebhard and Altmeyer 2007):

• a scheduling cost σ , due to the time taken by the scheduling algorithm to suspend
the running task, insert it into the ready queue, switch the context, and dispatch the
new incoming task;

• a pipeline cost π , due to the time taken to flush the processor pipeline when the
task is interrupted and the time taken to refill the pipeline when the task is resumed;

• a cache-related cost γ , due to the time taken to reload the cache lines evicted by
the preempting task. This time depends on the specific point in which preemption
occurs and on the number of preemptions experienced by the task (Altmeyer and
Gebhard 2008; Gebhard and Altmeyer 2007; Li et al. 2007).

Moreover, to avoid unbounded priority inversion when accessing shared resources,
preemptive scheduling requires the implementation of specific concurrency control
protocols, such as Priority Inheritance, Priority Ceiling (Sha et al. 1990), or Stack
Resource Policy (Baker 1991), which introduce additional overhead and complex-
ity, whereas non-preemptive scheduling automatically prevents unbounded priority
inversion.

On the other hand, fully non-preemptive scheduling is too inflexible for certain ap-
plications and could introduce large blocking times that would prevent guaranteeing
the schedulability of the task set.

To overcome such difficulties, different scheduling approaches have been pro-
posed in the literature to avoid arbitrary preemptions while limiting the length of
non-preemptive execution.

1) Fixed Preemption Points (FPP). According to this model, each task is divided
into a number of non-preemptive chunks (also called subjobs) by inserting prede-
fined preemption points in the task code. If a higher priority task arrives between
two preemption points of the running task, preemption is deferred until the next
preemption point.

2) Floating Non-Preemptive Regions (NPR). Another approach consists in consid-
ering for each task τi a number of NPRs, with a maximum length qmax

i , whose
location is unknown. In this model, NPRs can be considered to be floating in the
task code.

3) Preemption Thresholds (PT). A different approach for limiting preemptions is
based on the concept of preemption thresholds, proposed by Wang and Saksena
(1999) under fixed priority systems. This method allows a task to disable pre-
emption up to a specified priority, which is called preemption threshold. Each

200 Real-Time Syst (2011) 47: 198–223

task is assigned a regular priority and a preemption threshold, and the preemp-
tion is allowed to take place only when the priority of arriving task is higher than
the threshold of the running task. This work has been later improved by Regehr
(2002).

It is worth noting that, in the FPP model, the length of the final non-preemptive
chunk plays a crucial role for reducing the task response time. In fact, all higher
priority jobs arriving during the execution of the final chunk of the running task do
not cause a preemption, and their execution is postponed at the end of the task. In the
floating NPR model, instead, the exact location of each non preemptive region is not
known a priori, so that a task could be preempted even an arbitrarily small amount of
time before the end of the execution, increasing the resulting response time.

From a practical point of view, using fixed preemption points allows achieving
higher predictability. In fact, by properly selecting the preemption points in the code,
it is possible to reduce cache misses and context switch costs, therefore improving
the estimation of preemption overheads and worst-case execution times (Gebhard
and Altmeyer 2007).

In this paper, a simple and effective schedulability test is derived for both the FPP
and the floating NPR models, and an efficient algorithm for computing the maximum
length of the non-preemptive regions for each task is also illustrated.

a) Motivating example: Let us consider a task set consisting of three periodic
tasks, with relative deadlines equal to periods. The task set is described as T =
{τ1, τ2, τ3} = {(1,4), (1,6), (4,12)}, where the first number represents the task com-
putation time and the second the period.

Assuming a synchronous activation of the task set, the schedule produced by
Rate Monotonic in a fully preemptive mode (with zero preemption cost) is shown
in Fig. 1(a). As clear from the figure, τ3 is preempted twice and has a response time
equal to 8 units of time. When the preemption cost is not negligible, the response
time of τ3 in fully preemptive mode is higher than 9, since the increased execution
time causes τ3 to experience an additional preemption from the third instance of τ1,
as shown in Fig. 1(b). However, if the last 3 units of τ3 are executed non preemp-
tively, the two preemptions do not take place and the response time reduces to 6, as
illustrated in Fig. 1(c).

This simple example clearly shows that the last chunk of a task, when executed in
non-preemptive mode, can significantly reduce the interference from higher priority
tasks, thus reducing the task response time. However, a long non-preemptive region
can cause large blocking to higher priority tasks, possibly jeopardizing the system
feasibility.

The same example also shows that, under fixed priority assignments, limiting pre-
emptions may also improve schedulability, with respect to fully preemptive schedul-
ing. In fact, if the relative deadline of task τ3 is set to D3 = 7, the fully preemptive
schedules illustrated in Figs. 1(a) and 1(b) become infeasible, while the one shown in
Fig. 1(c), generated by FPP, is still feasible (for any task phase).

1.1 Contributions of the paper

This work provides multiple contributions. First, a schedulability test is provided for
fixed priority systems scheduled with limited preemptions, under the floating NPR

Real-Time Syst (2011) 47: 198–223 201

Fig. 1 Fully preemptive vs. FPP scheduling

model. Using this result, an efficient algorithm is derived to compute, for each task,
the maximum NPR length that allows all deadlines to be met. This information can
be used with a proper scheduler to decrease the number of preemptions of each task.

Under the FPP model, a new task interface is proposed to capture the relevant tim-
ing parameters that affect schedulability. A simplified feasibility test is presented for
task systems complying with this interface, by identifying the conditions under which
the feasibility check of a fixed-priority task set can be limited only to the first instance
of each task. This allows deriving a simpler and effective schedulability test, which
does not require checking multiple task instances within a certain period, as done in
the general case proposed by Bril et al. (2009). Based on this result, an algorithm
for computing a bound on the NPR length for each task is presented, discussing how
such a bound varies as a function of the length of the final NPR.

This work integrates two previous preliminary results obtained by the same au-
thors for the floating NPR model (Yao et al. 2009) and for the FPP model (Yao et
al. 2010). Moreover, it extends the schedulability analysis by introducing preemption
costs. However, for the sake of clarity the analysis is first presented without overhead,
and then extended by introducing preemption costs.

1.2 Paper organization

The rest of the paper is organized as follows. Section 2 presents some related work.
Section 3 describes the task model and the methodology adopted in the paper. Sec-
tion 4 presents the schedulability analysis for the floating NPR model. The FPP model
is analyzed in Sect. 5, deriving a set of conditions under which the response time

202 Real-Time Syst (2011) 47: 198–223

analysis of fixed priority tasks with given subjob division can be simplified. Section 6
illustrates, for both the floating and the fixed preemption point model, the algorithm
for computing the maximum NPR length for each task without violating the system
feasibility. Considerations regarding the differences between both preemptive mod-
els are presented in Sect. 7. Section 8 reports some simulation results. Finally, Sect. 9
states our conclusions and future work.

2 Related work

Most work on non-preemptive scheduling has typically focused on single-job models,
where tasks have precedence relations, are invoked only once, and must be completed
before a deadline (Frederickson 1983; Garey et al. 1981). Non-preemptive tasks were
considered in the Spring Kernel (Stankovic and Ramamritham 1991), where a heuris-
tic algorithm was used to find a feasible schedule or reduce the number of dead-
line misses. A more general characterization of periodic tasks has been considered
in Lawler and Martel (1981), Leung and Whitehead (1982). In this model, tasks may
have a deadline smaller than or equal to the next release time. For this more general
model, Mok (1983) has shown that the problem of deciding schedulability of a set of
periodic tasks with mutually exclusive sections of code is NP-hard.

Jeffay et al. (1991) showed that non-preemptive scheduling of concrete periodic
tasks1 is NP-hard in the strong sense. George et al. (1996) provided comprehensive
feasibility analysis on non-preemptive scheduling, however, the authors assumed ei-
ther a completely non-preemptive or a fully preemptive model. Davis et al. (2007)
considered typical applications of non-preemptive fixed priority scheduling on a CAN
bus, and presented the analysis to bound worst-case response times of real-time mes-
sages.

Fixed priority scheduling with deferred preemptions, allowed only at some prede-
fined points inside the task code, has been proposed and investigated by Burns (1994),
who however did not address the problem of computing the maximum length of non-
preemptive chunks. Bril et al. (2009) further improved the response time analysis
under this model. The authors identified a critical situation that may occur in the pres-
ence of non-preemptive regions, deriving the analysis to take such a phenomenon into
account. In particular, in certain situations, the execution of the last non-preemptive
chunk of a task τi can delay the execution of one or some higher priority tasks, which
can later interfere with the subsequent invocations of τi . Identifying such a situation,
later referred to as self-pushing phenomenon, requires a more complex test, since the
analysis cannot be limited to the first job of each task, but it must be performed on
multiple task instances within a certain period.

Under the floating NPR model, Baruah (2005) computed the longest non-
preemptive interval for each task that does not jeopardize the schedulability of the
task set under EDF. Yao et al. (2009) addressed the same problem, but under fixed
priorities. Later, Yao et al. (2010) extended the analysis under the FPP model and

1A concrete periodic task is a periodic task that comes with an assigned initial activation.

Real-Time Syst (2011) 47: 198–223 203

presented a comparative study to evaluate the impact on schedulability of different
limited preemptive methods (Yao et al. 2010).

When taking preemption overhead into account, the schedulability analysis be-
comes more complex, because cache-related preemption delays (CRPDs) signifi-
cantly increase worst-case execution times (Lee et al. 1998; Staschulat and Ernst
2004), which in turn affect the total number of preemptions (Ramaprasad and Mueller
2006), as clearly illustrated in Fig. 1(b). Under the FPP model, however, the negative
influence of CRPDs can be alleviated by appropriately selecting the potential preemp-
tion points. In Bertogna et al. (2010), a method is proposed to select the preemption
points, under the assumption of a fixed preemption cost at each preemption point.

3 Task model and methodology

In this section, we present the task model and the terminology used throughout the
paper.

3.1 Task model

We consider a set T = {τ1, τ2, . . . , τn} of n periodic or sporadic tasks that have to
be executed on a uniprocessor under fixed priority scheduling. Each task τi is char-
acterized by a worst-case execution time (WCET) Ci , a relative deadline Di , and a
period (or minimum inter-arrival time) Ti between two consecutive releases. Each
task consists of an infinite sequence of jobs τi,k (k = 1,2, . . .) with arrival time ri,k
and absolute deadline di,k = ri,k + Di . Tasks can be scheduled by any fixed-priority
assignment and are indexed by decreasing priority, meaning that τ1 is the highest
priority task. In particular, the following notation is used in the paper:

⎧⎨
⎩

hp(i) = {τj | j < i}
hep(i) = {τj | j ≤ i}
lp(i) = {τj | j > i}

Tasks can be preempted, but contain a set of non-preemptive regions (NPRs) where
preemption is disabled and deferred until the end of the region. Two kinds of non-
preemptive regions are considered:

• Floating Non-Preemptive Regions. With this model, the position of each NPR in-
side the task code is unknown. The only available information is the length qmax

i

of the longest NPR inside each task. This model has been adopted for instance in
Baruah (2005) for EDF scheduling.

• Fixed Non-Preemptive regions. With this model, the exact location of each NPR is
known, so that the schedulability analysis can potentially take advantage of it, as
done in Bril et al. (2007), Burns (1994).

It is worth noting that the first model is more constraining in terms of schedulability,
meaning that a feasible task set with floating NPRs is also feasible when the NPRs
are located in fixed positions.

204 Real-Time Syst (2011) 47: 198–223

The main objective of this work is to compute for each task the longest non-
preemptive region that preserves the schedulability with respect to the fully preemp-
tive case. The following notation is used throughout the paper:

qmax
i denotes the duration of the longest non-preemptive region of task τi .

Qi denotes the maximum possible value of qmax
i that preserves the feasibility of the

task set with respect to the fully preemptive case.
Bi denotes the blocking time of task τi due to the non-preemptive regions of lower
priority tasks.

Utot denotes the total utilization of the task set, that is, the sum of all tasks utiliza-
tions: Utot = ∑n

i=1 Ci/Ti .

Tasks may access shared resources, provided that each critical section is confined
within an NPR. Preemption cost is considered in the schedulability analysis by prop-
erly inflating task execution times. For the sake of clarity, however, the analysis is
first presented without overhead and later extended by introducing preemption costs.

The analysis for the floating model is presented in Sect. 4, while the analysis for
the FPP model is reported in Sect. 5. The rest of this section briefly recalls the main
elements used to perform the analysis.

3.2 Request bound function

Schedulability analysis is performed using the request bound function RBF(τi, t), de-
fined as the maximum cumulative execution request that can be generated by jobs of
τi within an interval of length t . In Lehoczky et al. (1989), it has been shown that

RBF(τi, t) =
⌈

t

Ti

⌉
Ci. (1)

The cumulative execution request of a task τi and all higher priority tasks over an
interval of length t is therefore bounded by:

Wi(t) = Ci +
∑

τj ∈hp(i)

RBF(τj , t). (2)

A necessary and sufficient schedulability test for fixed priority preemptive tasks
was derived by Lehoczky et al. (1989), by checking whether for every task τi

there exists a value t ≤ Di such that Wi(t) ≤ t . This is stated in the following
lemma (Lehoczky et al. 1989).

Lemma 1 A fixed-priority task set is feasible under fully preemptive scheduling if
and only if ∀τi ∈ T ,∃t ≤ Di, such that

Wi(t) ≤ t (3)

where Wi(t) is defined in (2).

The smallest t ∈ R
+ that satisfies (3) corresponds to the worst-case response time

WRi(Ci) of τi . The inequality does not need to be evaluated at every t ∈ (0,Di], but

Real-Time Syst (2011) 47: 198–223 205

only at those values of t at which RBF has a discontinuity, i.e., {t ∈ [Ci,Di] | t = k ·
Tj , k ∈ N and ∀Tj , j ≤ i}. Moreover, Bini and Buttazzo further reduced the number
of points to be checked to the following set (Bini and Buttazzo 2004):

T S(τi)
.= Pi−1(Di) (4)

where Pi (t) is defined by the following recurrent expression:

{P0(t) = {t}
Pi (t) = Pi−1(� t

Ti
�Ti) ∪ Pi−1(t).

(5)

The above set T S(τi) is referred to as the testing set for task τi . The size of T S(τi)

is pseudo-polynomial in the parameters of the task set (Bini and Buttazzo 2004). In
the remainder of this paper, T S(τi) is used to compute the longest NP region for each
task.

3.3 Worst-case occupied time

As shown by Bril et al. (2009), the worst-case response time WRi(Ci) of a task τi

can be also computed by considering the worst-case occupied time WOi(Ci), which
is the longest possible span of time from the release until the time at which the task
starts or resumes its execution after the completion of Ci units of computation time.
The following relation holds, by taking the limit from the left-hand side:

WRi(Ci) = lim
x↑Ci

WOi(x) (6)

where WOi(x) is the smallest t ∈ R
+ that satisfies

t = x +
∑

τj ∈hp(i)

(⌊
t

Tj

⌋
+ 1

)
Cj . (7)

Notice that, in (7), the only difference with respect to the worst-case response time
is that the ceiling function is replaced by the floor plus one. This essential difference
indicates that the response time is computed when the job finishes its execution, re-
gardless of whether other higher priority tasks are released at the end, whereas the
occupied time also accounts for the higher priority jobs arriving at the end of the
current job’s execution.

For example, in the schedule illustrated in Fig. 1, the worst-case response time of
τ3 is 8 in Fig. 1(a) and 6 in Fig. 1(c), whereas its worst-case occupied time is 9 in
both cases.

3.4 Blocking factor

In the presence of non-preemptive regions, Lemma 1 has to be modified to take into
account the additional blocking factor Bi that must be considered for each task τi .
This blocking factor is equal to the longest NPR belonging to lower priority tasks.

206 Real-Time Syst (2011) 47: 198–223

Definition 1 For each task τi , the subjob allowance αi is the length of the longest
subjob belonging to lower priority tasks in lp(i). That is,

αi = max
τk∈lp(i)

qmax
k (8)

where qmax
n+1 = 0 for completeness.

Therefore, the maximum blocking time that τi may experience is:

Bi = lim
ε↓o

(αi − ε)+ (9)

where ε is an arbitrary small number to guarantee that subjob from lp(i) actually
starts before τi . The downarrow in the equation denotes the right-hand limit and the
notation x+ stands for max{x,0}, indicating that the blocking time cannot be nega-
tive.

4 Floating non-preemptive regions model

The schedulability analysis in the presence of blocking factors has been extended by
Bini and Buttazzo (2004), where Theorem 4 can be restated as follows by considering
floating NPRs:

Theorem 1 A task set T with floating NPRs is schedulable with a fixed priority
algorithm if and only if ∀τi ∈ T there exists t ∈ T S(τi) such that

Wi(t) + Bi ≤ t. (10)

Notice that condition (10) is necessary and sufficient for guaranteeing the schedula-
bility when considering floating NPRs, whereas it becomes only sufficient when the
regions are fixed. The result of Theorem 1 can be used to determine the maximum
amount of blocking a task τi can tolerate without missing any of its deadlines. This
amount will be called the blocking tolerance of task τi and will be denoted with βi .
Thus,

βi = max
t∈T S(τi)

{t − Wi(t)}. (11)

Computing βi with (11) requires the evaluation of all points in the testing set T S(τi),
and has therefore pseudo-polynomial complexity.

Before showing how the blocking tolerance βi can be used to compute the maxi-
mum allowed non-preemptive chunk length of each task, the following section intro-
duces a simplified schedulability analysis for the FPP model. Then, the information
on the length of the last NPR is used to derive a larger blocking tolerance than the
one given by (11).

Real-Time Syst (2011) 47: 198–223 207

5 Fixed preemption points model

In the FPP model, each task τi consists of mi non-preemptive chunks (subjobs), ob-
tained by inserting mi −1 preemption points in the code. Thus, preemptions can only
occur at the subjobs boundaries. The kth subjob has a worst-case execution time qi,k ,
hence Ci = ∑mi

k=1 qi,k . In particular, the last subjob of job τi,k is denoted as Fi,k , and
its length with qlast

i = qi,mi
.

For task τi , the length qlast
i of the final subjob directly affects its response time.

In fact, all higher priority jobs arriving during the execution of τi ’s final subjob do
not cause a preemption, since their execution is postponed at the end of τi (see the
example in Fig. 1(c)).

In the schedulability analysis, there is no need to consider the length of all NPRs,
but just qlast

i and qmax
i . Therefore, each task is assumed to be characterized by the

following 5-tuple:

{Ci,Di, Ti, q
last
i , qmax

i }.
In the following, the superscript P and FPP will be used to denote that a specific

parameter or function refers to the preemptive and FPP model, respectively.

5.1 Critical instant

The feasibility check to determine whether a given task τi is schedulable under a cer-
tain scheduling policy is done under the worst-case scenario that leads to the largest
possible response time. The activation times of the tasks causing the worst-case re-
sponse time of τi is defined as the critical instant for τi (Liu and Layland 1973).

When tasks have non-preemptive regions, Bril (2004) showed that the critical in-
stant of τi occurs when it is released simultaneously with all higher priority tasks,
and the longest non-preemptive subjob of lower priority tasks starts an infinitesimal
time before the release of τi .

Bril et al. (2009) also showed that, when tasks have non-preemptive regions at the
end of their code, the worst-case response time may not occur in the first job. Hence,
the feasibility of a task set cannot be checked by analyzing only the first job of each
task, as done in fully preemptive systems, but it must be checked for multiple jobs
within a certain time interval, which introduces significant computation complexity.

5.2 Simplifying conditions

In this section, we prove that, under the FPP model, the feasibility test can be re-
stricted to the first job of each task, activated at its critical instant, if the following
conditions hold:

A1. (Constrained deadlines) Di ≤ Ti .
A2. (Preemptive feasibility) The task set is feasible under a fully preemptive model.

Notice that these conditions are not restrictive and are verified for most real-time
applications. Burns and Wellings also recognize their relevance in the analysis of non-
preemptive tasks (Burns and Wellings 2009), although they are not formally used to
derive the results.

208 Real-Time Syst (2011) 47: 198–223

Fig. 2 The self-pushing phenomenon

In the following, we formally prove that conditions A1 and A2 allow simplifying
the feasibility test by restricting the analysis to the first job of each task under the
critical instant. We first introduce the concept of Self-Pushing phenomenon and derive
a number of properties under such a condition, then we prove the main theorem.

5.3 Properties of the self-pushing scenario

Definition 2 Under fixed-priority scheduling, a self-pushing phenomenon on a task
τi is defined as the condition in which there exists a job τi,k , with k > 1, such that its
response time is larger than the first job under the critical instant, that is:

∃k > 1, RFPP
i,k > RFPP

i,1 . (12)

Notice that RFPP
i,k denotes the generic response time of one job while RFPP

i,1 is the
one under critical instance. Now, assume that there exists a self-pushing phenomenon
in task τi and let τi,k , k > 1 be the first job such that RFPP

i,k > RFPP
i,1 . Let si,k and

si,k−1 be the start times of final subjob Fi,k and Fi,k−1, respectively. Such a scenario
is illustrated in Fig. 2, where the final subjobs are depicted in gray. The following
properties can be derived on time interval [si,k−1, si,k].

Property 1 The start time si,k−1 cannot coincide with the arrival time of tasks from
hp(i).

Proof Since Fi,k−1 cannot be preempted during its execution, let us consider the start
time si,k−1 of Fi,k−1. If a higher priority job arrives when the final subjob Fi,k−1 is
about to start, then preemption will take place before the execution of Fi,k−1; that is,
Fi,k−1 will start executing after that higher priority job. Hence, the property holds. �

Property 2 The interval [si,k−1, si,k] is larger than Ti , that is

si,k − si,k−1 > Ti.

Real-Time Syst (2011) 47: 198–223 209

Proof According to the definition of self-pushing, we have

RFPP
i,k = si,k + qlast

i − ri,k > RFPP
i,1 . (13)

Since τi,k is the first job experiencing self-pushing, for τi,k−1 we have

RFPP
i,k−1 = si,k−1 + qlast

i − ri,k−1 ≤ RFPP
i,1 . (14)

Combining (13) and (14), and noticing that ri,k ≥ ri,k−1 + Ti , we have

si,k − si,k−1 > ri,k − ri,k−1 ≥ Ti

which proves the property. �

Property 3 The processor is always executing jobs from hep(i) in [si,k−1, si,k].

Proof This can be proved by contradiction. Let t ′ ∈ [si,k−1, si,k] be the first time
instant in which the processor is not executing tasks from hep(i). Clearly, t ′ cannot
be in [si,k−1, si,k−1 + qlast

i], since Fi,k−1 starts executing non-preemptively at si,k−1.
Also, since in [ri,k, si,k] τi,k has remaining execution to be completed, t ′ cannot be in
[ri,k, si,k]. Hence, t ′ must be within (si,k−1 +qlast

i , ri,k). All tasks from hp(i) arriving
before t ′ must get finished before that time, by definition of t ′. If at or after time
instant t ′, some tasks from hp(i) and lp(i) are activated or the processor becomes
idle, the overall interference (including blocking) will certainly be no greater than
the total delay experienced by the first job (which is activated at the critical instant).
Hence, RFPP

i,k ≤ RFPP
i,1 , which contradicts the self-pushing assumption and proves

the property. �

5.4 Simplified feasibility analysis

The following lemma uses the previous properties to show that no self-pushing can
occur when conditions A1 and A2 are verified.

Lemma 2 If the task set has constrained deadlines (A1) and is preemptively feasi-
ble (A2), then no self-pushing phenomenon can occur under the fixed-priority FPP
model.

Proof By contradiction. Assume τi experiences a self-pushing and let τi,k (k > 1)
be the first job with RFPP

i,k > RFPP
i,1 . We show that this contradicts the preemptive

feasibility or the constrained deadline assumption.
Consider a “synthetic” job τ ∗

i,s , consisting of the final subjob Fi,k−1 and job τi,k

excluding its final subjob Fi,k , i.e., τ ∗
i,s

.= Fi,k−1 ∪ (τi,k − Fi,k). Obviously, τ ∗
i,s has

the same execution time Ci . Job τ ∗
i,s is illustrated in Fig. 3. We assume this job arrives

at time si,k−1. Since at this time all tasks from hp(i) are finished and subjob Fi,k−1
can start, the synthetic job will also start upon arrival.

From Property 2, the occupied time of this job, denoted as OFPP
i (Ci), can be

expressed as

OFPP
i (Ci) = si,k − si,k−1 > Ti. (15)

210 Real-Time Syst (2011) 47: 198–223

Fig. 3 Synthetic task instance τ∗
i,s

Under the FPP model, high-priority tasks arriving during the execution of the final
subjob are deferred to the end of the running task. Since their start times are aligned
with the finish time of the current task, the occupied time under the FPP model
takes such interferences into account. And since, from Property 3, in [si,k−1, si,k]
the processor is executing only tasks from hep(i), job τ ∗

i,s suffers no blocking from
lp(i). Therefore, the occupied time for this job under P and FPP model will be the
same, that is:

OP
i (Ci) = OFPP

i (Ci). (16)

Now, from Property 1, we know that si,k−1 cannot coincide with the arrival of
tasks from hp(i), hence, the worst-case for job τ ∗

i,s is that all tasks from hp(i) arrive

at the same time ε(ε ↓ o) after si,k−1 and function WOP
i (x) is left-continuous at Ci .

Using (6), we have:

WRP
i (Ci) = WOP

i (Ci) ≥ OP
i (Ci). (17)

Now, combining (15), (16) and (17) together:

WRP
i (Ci) > Ti

which means that a job with the same parameters as task τi will have response time
larger than Ti . This contradicts the assumptions and proves the lemma. �

Using Lemma 2, we can prove the following theorem.

Theorem 2 Given a preemptively feasible task set with constrained deadlines, the
task set is feasible under fixed priority scheduling with FPP, if the first job of each
task is feasible under the critical instant.

Proof From Lemma 2, we know that there is no self-pushing phenomenon when
tasks are preemptively feasible and have constrained deadlines. Hence, for each task
τi , the response time of any job τi,k will be no greater than the one of the first job at
the critical instant. That is, RFPP

i,k ≤ RFPP
i,1 . Hence, if the first job of each task under

Real-Time Syst (2011) 47: 198–223 211

the critical instant is feasible, then all the forthcoming jobs will also be feasible. The
theorem follows. �

It is worth pointing out that in the proof of Theorem 2 the value of qlast
i is never

used, meaning that the theorem holds independently of the value qlast
i .

5.5 Sufficient schedulability test for the FPP model

In this section, the result stated in Theorem 2 is used to derive a test for checking the
feasibility of a set of fixed priority tasks under the FPP model.

Since the final subjob of each task cannot be preempted by any other tasks, it
will continue to completion once started. Hence, checking the feasibility of a job is
equivalent to checking whether the final subjob can start at least qlast

i units of time
before the deadline.

Taking into account these two effects, the cumulative execution request under the
FPP model, denoted as WFPP

i (t), can be represented as:

WFPP
i (t) = (Ci − qlast

i) +
∑

τj ∈hp(i)

RBF(τj , t). (18)

Notice that the execution request of τi ’s final subjob (qlast
i) is excluded in WFPP

i (t).
The feasibility condition for the task set using WFPP

i (t) and αi is stated in the next
theorem.

Theorem 3 A preemptively feasible task set with constrained deadlines and given
subjob division is schedulable under fixed priority with FPP, if for each task τi there
exists t ∈ (0,Di − qlast

i] such that

WFPP
i (t) + αi ≤ t (19)

where WFPP
i (t) and αi are defined in (18) and (8), respectively.

Proof We first prove the theorem for tasks with αi = 0. If αi = 0, e.g., for the lowest
priority task τn, the blocking time due to lower priority tasks is zero. Since the non-
preemptive execution of subjobs will only possibly reduce the interference and the
blocking time is always zero, hence the feasibility can be verified as in the fully
preemptive case, which is feasible by assumption, independently of (19).

When αi > 0, let t∗ be the earliest time that satisfies (19). Hence, there ∃t∗ ≤
Di − qlast

i and:

WFPP
i (t∗) + αi = t∗.

Using (1) and (18), this can be written as:

(Ci + αi − qlast
i) +

∑
τj ∈hp(i)

⌈
t∗

Tj

⌉
Cj = t∗

212 Real-Time Syst (2011) 47: 198–223

which is equivalent to:

WRP
i (Ci + αi − qlast

i) = t∗. (20)

Since in this proof all WR and WO functions refer to the preemptive model, we omit
the P superscript to simplify the notation. The start time of the final subjob of τi is
given by WOi(Ci + Bi − qlast

i), where Bi is the actual blocking time given by (9).
Hence, we have:

WOi(Ci + Bi − qlast
i)=lim

ε↓0
WOi(Ci + αi − ε − qlast

i) (21)

According to (6), we have:

lim
ε↓0

WOi(Ci + αi − ε − qlast
i) = WRi(Ci + αi − qlast

i) (22)

Combining (20), (21) and (22) together:

WOi(Ci + Bi − qlast
i) = t∗.

Therefore, the final subjob will start at t∗ and finish at t∗ + qlast
i . Since t∗ ≤ Di −

qlast
i , the first job of τi meets its deadline and, from Theorem 2, we conclude the

entire task is feasible under FPP model. Hence the theorem follows. �

Condition (19) does not need to be evaluated at every t ∈ (0,Di − qlast
i], but only

at those values of t at which RBF has a discontinuity, i.e. {t ∈ (0,Di − qlast
i] | t =

k · Tj , k ∈ N and ∀Tj , τj ∈ hp(i)}. Moreover, as we did for Lemma 1, the number of
points can be further reduced to the following set (Bini and Buttazzo 2004):

T S′(τi)
.= Pi−1(Di − qlast

i). (23)

where Pi (t) is defined in (5).
Theorem 3 allows finding the maximum length that subjobs of tasks in lp(i) can

have without jeopardizing the feasibility of τi . Thus, from (19), the blocking tolerance
βi for each task τi results

βi = max
t∈T S′(τi)

{t − WFPP
i (t)}. (24)

As we will prove in Sect. 7, the value of βi given by (24) is greater than or equal
to the one given by (11). This means that the blocking tolerances in the floating case
cannot be larger than in the FPP case. As expected, the FPP model can take advantage
of the smaller response time allowed by the deterministic location of the last NPR,
reducing the interference from higher priority tasks.

Similarly to the floating case, the computation of βi requires the evaluation of a
pseudo-polynomial number of points in the testing set.

Real-Time Syst (2011) 47: 198–223 213

6 Longest non-preemptive regions

Starting with a fully preemptive task set T , which is schedulable with a fixed priority
algorithm, this section shows how to determine, for each task τi , the largest possible
NPR preserving system schedulability, both for the floating and the FPP model.

Let Qi be the maximum possible length that any NPR belonging to τi can have,
without jeopardizing the system feasibility under limited preemption scheduling with
fixed priority. Note that Qi is derived without considering the limitation of the worst-
case execution time, hence it can be Qi > Ci .

Since τ1 is the highest priority task, its longest NPR can be arbitrarily large without
making the system unschedulable. Therefore,

Q1 = ∞.

The next theorem shows how to derive Qi for the other tasks.

Theorem 4 Given a preemptively feasible task set with constrained deadlines, the
task set is feasible under fixed priority with a limited preemption scheduler if ∀τi,

i > 1

qmax
i ≤ Qi

.= min
τk∈hp(i)

{βk}, (25)

where βk is given by (11) in the floating NPR case, and by (24) in the FPP case.

Proof The blocking time experienced by a task τk is bounded by

Bk = max
τi∈lp(k)

{qmax
i }.

Since βk is the blocking tolerance of τk , the schedulability of the task set can be
expressed as follows:

∀k | 1 ≤ k < n: Bk ≤ βk,

that is

∀k | 1 ≤ k < n: max
τi∈lp(k)

{qmax
i } ≤ βk.

Note that βn is not considered, because the lowest priority task can never be blocked,
so that if it was schedulable with a fully preemptive scheduler, it is still schedulable
with limited preemptions. The schedulability condition for the remaining tasks can
be expressed in the following form

∧
1≤k<n

(
max

τi∈lp(k)
{qmax

i } ≤ βk

)
.

The inner inequality can be written as a system of inequalities, as follows:

∧
1≤k<n

(∧
k<i≤n

(
qmax
i ≤ βk

))

214 Real-Time Syst (2011) 47: 198–223

which can be rewritten as

∧
1<i≤n

(∧
1≤k<i

(
qmax
i ≤ βk

))

which is equivalent to

∀i | 1 < i ≤ n: qmax
i ≤ min

1≤k<i
{βk},

or

∀i > 1: qmax
i ≤ min

τk∈hp(i)
{βk} = Qi,

proving the theorem. �

Another way to derive Qi is given by the following corollary.

Corollary 1 Given a preemptively feasible task set with constrained deadlines, the
maximum NPR length of each task τi,2 ≤ i ≤ n, that guarantees feasibility under
fixed priority with floating or fixed preemption points is given by

Qi = min{βi−1,Qi−1}, (26)

where Q1 = ∞, and βi−1 can be computed by (11) in the floating NPR case, and by
(24) in the FPP case.

Proof From Theorem 4, the upper bound on the maximum NPR length of τi is given
by

Qi = min
τk∈hp(i)

{βk}. (27)

Noting that

min
τk∈hp(i)

{βk} = min

{
βi−1, min

τk∈hp(i−1)
{βk}

}

and that

Qi−1 = min
τk∈hp(i−1)

{βk},

(27) can be rewritten as

Qi = min{βi−1,Qi−1}
which proves the corollary. �

Hence, the maximum NPR length Qi allowed for each task can be easily derived
from the βi values. The pseudo-code of the algorithm that computes Qi for each task
and checks the task set schedulability is presented in Algorithm 1. The procedure
works for both the floating and the FPP model, computing βi using (11) or (24),
respectively. Note that the additional parameter qlast

i (the length of the last NPR)

Real-Time Syst (2011) 47: 198–223 215

must by provided as an input in the FPP case. Lines 2 and 3 set the initial values
for τ1. The f or-loop in Line 4 checks the task feasibility one by one, in decreasing
priority order, using the condition in Corollary 1. If the algorithm reaches Line 9,
then all the tasks are feasible and the algorithm returns true, providing as output the
maximum allowed NPR length Qi for each task τi . Otherwise, if there is a task with
qmax
i exceeding the maximum possible value (Line 6), the procedure returns f alse,

meaning that the task set is not schedulable.

Algorithm 1: Limited_Preemption_Test

Input: {Di,Ci, Ti, q
max
i , qlast

i }, ∀τi ∈ T preemptively feasible and Di ≤ Ti

Output: Qi,∀τi ∈ T and feasibility of the task set under floating or fixed
limited preemption scheduling

begin1

β1 = D1 − C1;2

Q1 = ∞;3

for i ← 2 to n do4

Qi = min{Qi−1, βi−1};5

if qmax
i > Qi then6

return “f alse”7

Calculate βi using (11) or (24);8

return “true”;9

end10

7 Considerations

This section presents some considerations on the different preemption models ana-
lyzed in this paper.

7.1 Maximum allowed NPR lengths

As mentioned in the previous sections, the maximum allowed non-preemptive chunk
length in the FPP case is larger than in the floating NPR case. It is worth pointing out
that the value of Qi for task τi only depends on βj (τj ∈ hp(i)), as expressed in (25).
In the FPP case, according to (18) and (24), the blocking tolerance βi is a function of
qlast
i . However, qlast

i does not directly affect Qi , but only the value of βi , which is
used to compute Qj(τj ∈ lp(i)). Depending on the knowledge we have on the length
of the last subjob, three cases can be distinguished:

1) The value of qlast
i is not available. In this case, the guarantee has to be performed

in the worst-case scenario in which τi can be preempted arbitrarily near the end of
its code. This is equivalent of considering qlast

i = limε↓0 ε, as done in the floating
non-preemptive model. In this case, the upper bound on the subjob length will be
denoted as Q

f loat
i .

216 Real-Time Syst (2011) 47: 198–223

2) The value of qlast
i is given. In this case, the upper bound, denoted as Q

g
i , is com-

puted as described in Sect. 6.
3) The value of qlast

i is the maximum possible one. This is the best case, and the
upper bound, denoted as Q∗

i , results to be the highest.

In practice, qlast
i might be limited to a certain value, because preemption points

cannot be placed at arbitrary positions for a number of reasons, depending on the
task structure, the presence of critical sections, or the presence of non-preemptive
kernel primitives. As a consequence, Q∗

i represents a best-case upper bound for qmax
i ,

computed to have a reference value in the evaluation. In particular, Q∗
i is computed

using Algorithm 2.

Algorithm 2: Q∗
i compute

Input: {Di,Ci, Ti}, ∀τi ∈ T preemptively feasible and Di ≤ Ti

Output: Q∗
i ,∀τi ∈ T

begin1

β1 = D1 − C1;2

Q∗
1 = ∞;3

for i ← 2 to n do4

Q∗
i = min{Q∗

i−1, βi−1};5

qlast
i = min{Q∗

i ,Ci};6

Calculate βi using (24);7

end8

Observation 1 Given a preemptively feasible task set with constrained deadlines, in
the FPP model we have that

Q∗
i ≥ Q

g
i ≥ Q

f loat
i ≥ 0.

Proof This can be proved by considering the length of the final subjob. For the case of
Q∗

i , qlast
i has the largest possible value; for Q

f loat
i , qlast

i is an arbitrary small number;
whereas for Q

g
i , qlast

i has an intermediate value between the two extreme cases. Now,
a larger final subjob reduces the interference from higher priority tasks, allowing a
larger blocking time from lower priority tasks. Since the maximum subjob length is
equal to the minimum blocking tolerance from hp(i), the observation follows. �

7.2 Preemption overhead

Another difference between the floating and the fixed NPR model is in the impact
they have on overall WCET of each task. The FPP model allows better timing pre-
dictability, because the number of points at which a task can be preempted is fixed
and known at compile time. The preemption cost can then be upper bounded using

Real-Time Syst (2011) 47: 198–223 217

suitable timing analysis tools that take into account cache-related preemption delays.
In the floating NPR model, instead, a preemption can take place anywhere in the task
code, so the timing analysis needs to consider the preemption cost at each single in-
struction, similarly to what is done for a fully preemptive scheduler. However, since a
task can only be preempted at a limited subset of points, a complex analysis is needed
to find the worst-case combination of preemption points that leads to the largest pre-
emption overhead. To simplify the analysis, a pessimistic upper bound is typically
computed taking the largest preemption cost ξi among all the instructions, and mul-
tiplying it by the maximum number νi of preemptions a task τi can experience. As
mentioned in Sect. 1, ξi must take into account the cost related to the scheduler (σ),
to the pipeline flushing (π) and to the cache (γi), hence ξi = σ + π + γi .

Without further information, the maximum number of preemptions that τi can
experience under the floating NPR model can be as pessimistic as the one derived in
the fully preemptive case. Remember that for the floating model qmax

i is just an upper
bound on the maximum NPR length, so that a task could even execute in a fully
preemptive way. However, if the scheduler can be modified to disable preemptions at
the occurrence of a preemption request, the following variation of the floating NPR
model can be defined to bound the number of preemptions independently of the other
tasks.

Definition 3 Preemption-triggered NPR model Each task can run in two modes: Nor-
mal and Non-preemptive. When a task τi starts executing, it runs in Normal mode.
As soon as a higher priority job arrives, the running task switches to Non-preemptive
mode for at most Qi time-units from the preemption request. If after this amount
of time τi has not finished its execution, a preemption takes place, and the highest
priority task is scheduled for execution.

When the preemption cost is not considered, it is easy to prove that the num-
ber of preemptions under the preemption-triggered NPR model is upper bounded by
�Ci/Qi� − 1. Note that this estimation is independent of the number of tasks in the
system, which might be rather large in some practical applications. As showed in Yao
et al. (2009), under fixed priority scheduling, the average value of Qi/Ci is usually
greater than 0.5 for a ten-tasks system, even under high system utilizations (90%).2

Thus, the number of preemptions can be significantly decreased with this method.
When considering preemption costs, the number of preemptions νi experienced

by a task τi is more difficult to compute, because the task execution time depends on
νi . If C

np
i denotes the WCET of the task when executed non preemptively, then the

WCET in the presence of preemption is:

Ci = C
np
i + νi × ξi .

2In Yao et al. (2009), all results are derived ignoring preemption cost.

218 Real-Time Syst (2011) 47: 198–223

But, since νi also depends on Ci , there is a circular dependency between both para-
meters. Such a dependency can be treated using the following recurrent relation:

⎧⎪⎪⎨
⎪⎪⎩

ν0
i = ⌈C

np
i

Qi

⌉ − 1

νs
i = ⌈C

np
i +ξiν

s−1
i

Qi

⌉ − 1

where ξi is the maximum preemption overhead related to task τi . When the itera-
tion process converges, νs

i = νs−1
i is the worst-case estimation. Notice the value Qi

is calculated from hp(i), hence, it is available if the computation is performed in
decreasing priority order.

Under the FPP model, the maximum number of preemptions is much easier to
compute and is equal to the number of preemption points (mi −1) in the code. A more
difficult related problem is instead selecting the fixed preemption points when they
are not given a priori. The selection can be made at design time based on the in-
formation on the preemption overhead given by timing analysis tools. Suppose the
preemption cost at each program point is known. The designer would like to select
the preemption points in an optimal way, so that the chances of finding a feasible
solution are maximized. One preliminary result is presented in Bertogna et al. (2010)
to select the least number of preemption points, under the assumption of a fixed pre-
emption cost at each point.

7.3 Increasing schedulability

This paper considered task sets that are preemptively schedulable with fixed prior-
ities, and analyzed the feasibility under limited preemptive scheduling with given
NPRs. An interesting question is whether there is a dominance of the limited pre-
emption model with respect to fully preemptive and fully non-preemptive scheduling,
when NPRs can be freely assigned.

It is easy to see that a preemptively feasible task set is also feasible with a limited
preemption scheduler, using qmax

i = 0,∀i. Similarly, a task set that is feasible under
fully non-preemptive scheduling is also feasible with a limited preemption scheduler,
using qmax

i = Ci,∀i. Moreover, there exist fixed priority task sets that are unfea-
sible under both fully preemptive and fully non-preemptive scheduling, but can be
successfully scheduled under a limited preemption model. For instance, consider the
following example.

Example 1 A task system is composed of two sporadic tasks {τ1 = {2,4}, τ2 =
{3,6}}. It can be easily verified that this task set is unfeasible under fixed priority
fully preemptive and non-preemptive scheduling. However, the task set is feasible
under the preemption-triggered NPR model, with Q2 = 2 − ε, and, it is also feasible
under the FPP model, by setting qlast

2 = qmax
2 = 2.

Hence, the limited preemption scheduling dominates both fully preemptive and
non-preemptive scheduling.

Real-Time Syst (2011) 47: 198–223 219

Fig. 4 Average value of Qi/Ci

for each task and for different
length of the final NPR

8 Simulation results

This section presents some experimental results performed on synthetic task sets to
compare the maximum subjob length and the average number of preemptions under
different situations.

The task set parameters used in the simulations were randomly generated as fol-
lows. The UUniFast algorithm (Bini and Buttazzo 2005) was used to generate a set of
n tasks with total utilization equal to Utot . Each computation time Ci was generated
as a random integer uniformly distributed in a given interval [5,50], and then Ti was
computed as Ti = Ci/Ui . The relative deadline Di was generated as a random integer
in [Ci + 0.5 · (Ti −Ci), Ti] and the unfeasible task sets under fully preemptive mode
were discarded. In all the graphs, each plotted point represents the average value over
1000 randomly generated task sets.

8.1 Experiment 1: maximum NPR length

A first experiment was carried out to evaluate how the length of the final NPR affects
the maximum subjob length for each task. The test was performed on a set of 10 tasks
with total utilization Utot = 0.9. Figure 4 plots the average ratio Qi/Ci achieved for
each task under the three conditions on the last NPR explained at the beginning of
Sect. 7.1.

Simulations were performed under different workloads, however, the values ob-
tained under the three conditions resulted to be very similar for low utilizations. Note
that, since Q1 was set to infinity in all the three cases, the curves start from i = 2. The
value of Q

g
i (intermediate curve) was computed with Algorithm 1, by setting qlast

i

equal to min{Ci/2,minj<i{βj }}.
This result shows that the subjob bound is affected by the length of the final subjob.

As expected, Q∗
i (upper curve) is the maximum of the three values and Q

f loat
i (lower

curve) is the smallest. Note that the difference becomes larger for tasks with lower
priorities (i.e., higher index). This can be explained because the lower priority tasks

220 Real-Time Syst (2011) 47: 198–223

Fig. 5 Ratio of number of
preemptions with respect to the
fully preemptive case

have a higher chance to be preempted by high priority tasks, therefore, the length
of the final subjob becomes more crucial: a higher value of qlast

i leads to a larger
blocking tolerance and consequently a larger Q.

8.2 Experiment 2: average number of preemptions

A second experiment was carried out to monitor the average number of preemptions
produced in a run (lasting 1 million units of time) as a function of Utot , under the
three different scenarios for qlast

i . Here, the test was performed on a set of 15 tasks
whose total utilization Utot was varied from 0.5 to 0.95 with step 0.05.

Under the floating condition, task τi switches to non-preemptive mode for Q
f loat
i

units of time when a higher priority task arrives, as in the preemption-triggered NPR
model. Under the Q∗

i condition, task τi executes non-preemptively if Ci ≤ Q∗
i , oth-

erwise, preemption points are inserted from the end of task code to the beginning,
with intervals long Q∗

i (i.e., all the subjobs, except the first one, have length equal
to Q∗

i). For the sake of comparison, in the case of Q
g
i , preemption points are in-

serted in the same way as in the case of Q∗
i , but with interval length equal to Q

f loat
i

(Qg
i = Q

f loat
i). Figure 5 reports the average number of preemptions with respect to

the fully preemptive case, for the three different scenarios, as a function of the system
utilization Utot .

As clearly showed in the figure, the size of the last subjob is not a crucial parameter
for reducing the number of preemptions when the task set utilization is low, whereas
its influence becomes more relevant for higher workloads. In this condition, setting
qlast
i to the maximum value achieves the least number of preemptions.

It is interesting to point out the subtle differences between Q
g
i and Q

f loat
i . Under

the floating model, each preemption is deferred by Q
f loat
i units of time, unless the

remaining execution time of the running task is less than Q
f loat
i . In the other case,

instead, preemption points are inserted at fixed intervals of Q
g
i , hence, each preemp-

tion is deferred to the next point and the average deferred time is only around Q
g
i /2.

Real-Time Syst (2011) 47: 198–223 221

Since task computation time is fixed and Q
g
i = Q

f loat
i , the Q

g
i case generates more

preemptions than the Q
f loat
i case, which is validated by the simulation results.

9 Conclusions

In this paper, we considered the problem of analyzing the feasibility of a task set
with limited preemptions under fixed priority scheduling. Two different preemption
models have been considered in detail: (i) the floating NPR model, in which no infor-
mation is available on the location of the preemption points, and (ii) the FPP model,
in which the location of each preemption point is specified a priori. The feasibility
analysis under FPP has been simplified with respect to the existing literature, prov-
ing that, under given conditions (i.e, preemptive feasibility and constrained deadlines)
guaranteeing the first job of each task is sufficient for the entire task set. Based on this
result, an efficient feasibility test was presented. Another contribution of this work
was the development of an algorithm for computing the maximum subjob length for
each task, under both the floating and the FPP preemption model. Specific analysis
has been carried out to investigate how such a value changes as a function of the final
subjob length. Experimental simulations on randomly generated task sets validated
the proposed approach and provided more quantitative results.

As a future work, we plan to exploit the exact preemption position to better esti-
mate the cost of each preemption and task worst-case execution time, thus making
the system design more predictable.

References

Altmeyer S, Gebhard G (2008) Wcet analysis for preemptive scheduling. In: 8th int. workshop on worst-
case execution time analysis, Prague, Czech, pp 105–112

Baker TP (1991) Stack-based scheduling of real-time processes. Real-Time Syst 3(1):67–100
Baruah S (2005) The limited-preemption uniprocessor scheduling of sporadic systems. In: ECRTS ’05:

proc. of Euromicro conf. on real-time systems, pp 137–144
Bertogna M, Buttazzo G, Marinoni M, Yao G, Esposito F, Caccamo M (2010) Preemption points place-

ment for sporadic task sets. In: Proceedings of 22nd Euromicro conference on real-time systems
(ECRTS’10), Bruxelles, Belgium

Bini E, Buttazzo GC (2004) Schedulability analysis of periodic fixed priority systems. IEEE Trans Comput
53(11):1462–1473

Bini E, Buttazzo GC (2005) Measuring the performance of schedulability tests. Real-Time Syst 30(1–
2):129–154

Bril R (2004) Specification and compositional verification of real-time systems. PhD thesis, Technische
Universiteit Eindhoven (TU/e)

Bril R, Lukkien J, Verhaegh W (2009) Worst-case response time analysis of real-time tasks under fixed-
priority scheduling with deferred preemption. Real-Time Syst 42(1–3):63–119

Bril RJ, Lukkien JJ, Verhaegh WFJ (2007) Worst-case response time analysis of real-time tasks under
fixed-priority scheduling with deferred revisited. In: ECRTS ’07: proc. of Euromicro conf. on real-
time systems, pp 269–279

Burns A (1994) Preemptive priority based scheduling: an appropriate engineering approach. In: Son S (ed)
Advances in real-time systems, pp 225–248

Burns A, Wellings A (2009) In: Real-time systems and programming languages: ADA, real-time Java and
C/real-time POSIX (44th edn.). Addison-Wesley, Reading

Davis RI, Burns A, Bril RJ, Lukkien JJ (2007) Controller area network (CAN) schedulability analysis:
refuted, revisited and revised. Real-Time Syst 35(3):239–272

222 Real-Time Syst (2011) 47: 198–223

Frederickson G (1983) Scheduling unit-time tasks with integer release times and deadlines. Inf Process
Lett 16(4):171–173

Garey M, Johnson D, Simons B, Tarjan R (1981) Scheduling unit-time tasks with arbitrary release times
and deadlines. SIAM J Comput 10(2):256–269

Gebhard G, Altmeyer S (2007) Optimal task placement to improve cache performance. In: Proc. of the
ACM-IEEE int. conf. on embedded software, Salzburg, Austria, pp 259–268

George L, Rivierre N, Spuri M (1996) Preemptive and non-preemptive real-time uniprocessor scheduling.
Research report RR-2966, INRIA, France

Jeffay K, Stanat D, Martel C (1991) On non-preemptive scheduling of period and sporadic tasks. In: Proc.
of real-time systems symposium, pp 129–139

Lawler E, Martel C (1981) Scheduling periodically occurring tasks on multiple processors. Inf Process
Lett 12(1):9–12

Lee C-G, Hahn J, Seo Y-M, Min SL, Ha R, Hong S, Park CY, Lee M, Kim CS (1998) Analysis of cache-
related preemption delay in fixed-priority preemptive scheduling. IEEE Trans Comput 47(6):700–
713

Lehoczky J, Sha L, Ding Y (1989) The rate monotonic scheduling algorithm: exact characterization and
average case behavior. In: Proc. of the real-time systems symposium, CA, USA, pp 166–171

Leung J, Whitehead J (1982) On the complexity of fixed-priority scheduling of periodic real-time tasks.
Perform Eval 2(4):237–250

Li C, Ding C, Shen K (2007) Quantifying the cost of context switch. In: Proc. of workshop on experimental
computer science, San Diego, California

Liu CL, Layland JW (1973) Scheduling algorithms for multiprogramming in a hard-real-time environment.
J ACM 20(1):46–61

Mok A-L (1983) Fundamental design problems of distributed systems for the hard real-time environment.
PhD thesis, MIT, USA

Ramaprasad H, Mueller F (2006) Tightening the bounds on feasible preemption points. In: RTSS ’06. proc.
of 27th real-time systems symposium, pp 212–222

Regehr J (2002) Scheduling tasks with mixed preemption relations for robustness to timing faults. In: Proc.
of the 23rd IEEE real-time systems symposium, pp 315–326

Sha L, Rajkumar R, Lehoczky JP (1990) Priority inheritance protocols: an approach to real-time synchro-
nization. IEEE Trans Comput 39(9):1175–1185

Stankovic JA, Ramamritham K (1991) The spring kernel: a new paradigm for real-time systems. IEEE
Softw 8(3):62–72

Staschulat J, Ernst R (2004) Multiple process execution in cache related preemption delay analysis. In:
Proc. of ACM int. conf. on embedded software, Pisa, Italy, pp 278–286

Wang Y, Saksena M (1999) Scheduling fixed-priority tasks with preemption threshold. In: Proc. of conf.
on embedded and real-time computing systems and applications, pp 328–335

Yao G, Buttazzo G, Bertogna M (2009) Bounding the maximum length of non-preemptive regions under
fixed priority scheduling. In: Proceedings of the 16th IEEE international conference on embedded
and real-time computing systems and applications (RTCSA 2009), Beijing, China, August 24–26,
2009, pp 351–360

Yao G, Buttazzo G, Bertogna M (2010) Comparative evaluation of limited preemptive methods. In: Pro-
ceedings of the 15th IEEE international conference on emerging technology and factory automation
(ETFA10), Bilbao, Spain, September 13–16, 2010.

Yao G, Buttazzo G, Bertogna M (2010) Feasibility analysis under fixed priority scheduling with fixed
preemption points. In: Proceedings of the 16th IEEE international conference on embedded and real-
time computing systems and applications (RTCSA 2010), Macao, China, August 23–25, 2010, pp 71–
80

Real-Time Syst (2011) 47: 198–223 223

Gang Yao is a Postdoctoral Research Collaborator at the University of
Illinois at Urbana Champagne. He received a Ph.D. in Computer En-
gineering from the Scuola Superiore Sant’Anna of Pisa, Italy, in 2010.
His main interests include limited-preemption scheduling algorithms,
fixed-priority systems and shared resource protocols.

Giorgio Buttazzo is Full Professor of Computer Engineering at the
Scuola Superiore Sant’Anna of Pisa. He graduated in Electronic Engi-
neering at the University of Pisa in 1985, received a Master in Com-
puter Science at the University of Pennsylvania in 1987, and a Ph.D.
in Computer Engineering at the Scuola Superiore Sant’Anna of Pisa in
1991. From 1987 to 1988, he worked on active perception and real-time
control at the G.R.A.S.P. Laboratory of the University of Pennsylvania,
Philadelphia. Prof. Buttazzo has been Program Chair and General Chair
of the major international conferences on real-time systems. He is Chair
of the IEEE Technical Committee on Real-Time Systems and member
of the Euromicro Executive Board on Real-Time Systems. He has au-
thored 6 books on real-time systems and over 200 papers in the field of
real-time systems, robotics, and neural networks. He is Senior Member
of IEEE.

Marko Bertogna is Assistant Professor at the Scuola Superiore
Sant’Anna of Pisa, Italy. He graduated (summa cum laude) in Telecom-
munications Engineering at the University of Bologna in 2002, and
received a Ph.D. in Computer Engineering from Scuola Superiore
Sant’Anna of Pisa in 2008. In 2006 he visited the University of North
Carolina at Chapel Hill, working with prof. Sanjoy Baruah on schedul-
ing algorithms for single and multicore real-time systems. His research
interests include scheduling and schedulability analysis of real-time
multiprocessor systems, protocols for the exclusive access to shared re-
sources, resource reservation algorithms and reconfigurable devices. He
has authored over 30 papers in international conferences and journals
in the field of real-time systems, receiving four Best Paper Awards. He
is Member of IEEE.

