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Abstract—When learning real-time programming, the novice case the re-activation must be triggered by a timer, prgperl
is faced with many technical difficulties due to low-level C programmed to interrupt at the next activation time.
libraries that require considerable programming effort even for
implementing a simple periodic task. For example, the POSIX
Real-Time standard only provides a low level notion of thred,
hence programmers usually build higher level code on top oftte

TASK sanpl e_t ask()

< local variables >

POSIX API, every time re-inventing the wheel. wait_for_activation():
In this paper we present a simple C library that simplifies red- while (condition) {

time programming in Linux by hiding low-level details of task < task body>

creation, allocation and synchronization, and provides Litities wai t_for_period();

for more high-level functionalities, like support for mode-change }
and adaptive systems. The library is released as open-so@and }
it is currently being employed to teach real-time programming

in university courses in embedded systems. Figure 1. Sample structure of a periodic task.

|. INTRODUCTION In more complex real-time systems, many periodic tasks
run concurrently, together with aperiodic tasks that deith w
A huge number of embedded control applications requiregternal or internal events. Tasks may be activated, sdsuen
the execution of periodic activities, which cyclically f@&m or killed dynamically depending on the state of the system;
the same computation on different data at specific ratess-de'mey may need to access shared memory; in some cases, they
mined by the system characteristics. A periodic task tylyicarequire the dynamic adaptation of run-time parameters.
consists of three main phases: input, processing, and butpuLinux is one of the most popular operating systems, and
In the input phase, the data to be processed are accessed {toi® being widely used in embedded systems domain for
a shared memory buffer or acquired from an external devigaplementing real-time applications. The advantages nfiki
(e.g., a camera, a keyboard, or an interconnection netwogg well known: it is widely available as open source; it is
and stored in some local data structure. In the processigoported by a large community of developers; and it imple-
phase, data are elaborated according to a given algorithim (fnents the POSIX interface, including the real-time extensi
example for filtering, classification, or recognition), ¥ehin  Many “real-time improvements” of Linux have been proposed
the output phase data are stored in another shared buffemgracademic open source projects (e.g., RT-Linux [17], RTAI
transferred into an external device (e.g., a motor, a teimeg  [16], XENOMAI [20], Linux Preemption patch [18], and
or a graphic display). SCHED_DEADLI NE [11]). In this paper we concentrate on
To generate a periodic execution at a precise activati@) rgprojects that use standard APIs, like the POSIX real-time
such a sequence of phases is normally inserted in a loagerface [3].
whose last instruction is a synchronization call that sndpe  Unfortunately, programming real-time applications in dn
the task until the arrival of an event generated by a timarsing the POSIX interface is cumbersome. In fact, POSIX
Figure 1 illustrates a typical structure of a periodic atgiv threads represent a general, but also a low-level progragimi
implemented with anhi | e loop terminating when a given paradigm. Higher level abstractions must be implemented by
condition becomes true. Theait _for_activation() the programmer, and even a simple entity, like a periodic
call inserted before entering thehi | e loop is a synchro- thread, requires careful coding. An example of periodiediar
nization primitive that suspends the execution until anliekp implemented with the POSIX RT API is shown in Figure 2.
activation is invoked; hence, it allows activating the taglon The programmer must spend a significant effort to implement
a given instruction that can be executed by the system the periodic activation mechanism, passing parametenrseto t
by another task. Theai t _f or _peri od() call inserted at thread, dealing with time operations (there is no interfiace
the end of the loop is another synchronization primitivet thaummingst r uct ti nespec variables), identifying dead-
suspends the execution until the next activation time. la thine miss situations (not shown in the code), or measurieg th
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voi d +thread_body(void *arg) Finally, it also provides support for higher level programg

{ struct timespec next. period: tech_niques, Iik_e group scheduling and mode-changes.
semt *s_act; Since the library is released as open source code, the
< local variables> interested students and practitioners can improve theale co
jer;eagi tp(asrz?te)t.ers from arg> or take inspiration for their own situations. The library is
B - ' currently used in several courses at the University of Pisa.
The rest of the paper is organized as follows. Section I
provides a brief overview of the Linux schedulers, summa-
rizing the available kernel mechanisms for managing tasks,
handling timers, and accessing shared resources undeityprio
inheritance protocols. Section IV-B presents the adopdeH t
} model and parameters. Section IV describedthask library

cl ock_getti me( CLOCK_MONOTONI C, &next);
while (condition) {

< task body>

< next = next + period>

cl ock_nanosl eep( CLOCK_MONOTONI C,

TI MER_ABSTI ME, &next, 0);

with all the available functions. Section V concludes the

Figure 2. A periodic thread in POSIX RT. chapter and states some perspectives.

Il. BACKGROUND ON THELINUX SCHEDULER

execution time of task instances. The current standard Linux kernel (version 3.8) provides a

Another problem is that typical task models and abstraflodular and flexible scheduling architecture because it can
tions used in the real-time scheduling theory do not fing!PPort many differenscheduling modulesmanaged as a
a corresponding abstraction in the library functions. EhepPrioritized hierarchy. When the ke_rneI needs to select b tgs
is no abstraction for a “periodic” task, nor for the concepP P€ executed on a processor, it looks at each scheduling
of deadline. Also, as we will discuss in Section II-A, thénodule in a priority order, until it finds a task to be executed
mechanisms provided by the kernel are sometimes too gendraf Official kernel provided by Linus Torvalds includes atde
and do not have a corresponding theoretical problem. Sugrcheduling modules: the Completely Fair Scheduler (CFS)
mismatch between theory and practice is, in our opinion, oR8d the real-time scheduler, which has priority over CFS.
of the reasons that has slowed down the introduction of prope 1he CFS is a non real-time, best effort fair scheduler that
real-time techniques in everyday programming. can be selected by specifying the const8@HED_OTHER

To overcome such difficulties, programmers write their owYYhen cregting processes and_threads. It is the standard Linu
libraries for supporting higher level abstractions, evenye {ime-sharing scheduler that is intended for all procedsatsdo
reinventing the wheel. This is particularly annoying wheROt réquire real-time service. It uses a peculiar priorgjng
teaching real-time systems programming to novices. Lisux "€chanism to ensure faimess among tasks. ,
perfect as a platform for educational purposes. Howeveerwh 1he real-time scheduling module provides two scheduling
using the bare POSIX AP, students must necessarily focus RBficies, compliant with the POSIX RT standard:
the low-level details and put extra care on identifying alier = SCHED_FI FO. is a priority-based scheduler where
cases of thread synchronization. As a consequence, ekgain  threads with the same priority are managed by a FIFO
complex programming techniques, likeode changefl5] or policy. Under this scheduler, a thread runs until either it
adaptive task$6], [8], becomes extremely difficult. terminates, it is preempted by a higher priority thread, it

a) Contributions of this paperin this paper, we present
a library for real-time programming in Linux, calldet ask,
to manage a set of periodic and aperiodic soft real-timestask
under the Linux operating system. The main purpose of this
library is to teach real-time programming in university cses
on embedded systems. Therefore, we aimed at simplifying
real-time programming by providing a clean interface, eath
than achieving efficiency and performance optimization. To
achieve these objectives, we designed our library trying to
provide a close mapping between the provided API and the
task models and techniques found in the real-time scheglulin
theory.

is blocked by an 1/O request, or it executes a cancellation
call.

SCHED RR is a priority-based scheduler where threads

with the same priority are managed by a Round-Robin

policy. Under this scheduler, a thread runs until either it

terminates, it is preempted by a higher priority thread, it

is blocked by an I/O request, it executes a cancellation
call, or it consumes the available time quantum. The

Round-Robin time quantum depends on the system and
cannot be defined by the user. However, the length of the
time quantum can be retrieved by calling the function

sched_rr_get __interval ().

Library functions are implemented on top of the POSIX Linux provides 99 priority levels, where level 1 denotes the
thread (Pthread) library [3]. The library exploits the Linu lowest priority and level 99 the highest priority (note, rewmer,
priority scheduler to execute tasks under the Rate Monotorihat the POSIX standard requires to ensure only 32 levels).
or Deadline Monotonic priority assignments. In addition, iEach priority is associated with a queue, in which all theead
provides convenient functions for dealing with time, suppowith the same priority are enqueued. The thread at the head
different types of tasks, allocate tasks on multi-coreamyst, of the queue with the highest priority level is selected as th
checking deadlines, and measuring tasks’ execution tintanning task.



SCHED FI FOandSCHED RR are referred to as real-timedifferent clusters do not share any processor, so their snask
policies and can be used only from the superuser (roodtave no bits in common.
For example, a Rate Monotonic preemptive scheduler [13]Global scheduling has been extensively studied in the
can be easily implemented by assigning each periodic tdgkrature and efficient schedulability tests for fixed pitip
a priority inversely proportional to its period. Similarla scheduling have been proposed [4]. Partitioned scheduling
Deadline Monotonic preemptive scheduler [12] can be edsstead reduces to single processor schedulability fdr &sesk.
ily implemented by assigning each periodic task a priority In Linux, the CPU bit mask can be set in an arbitrary
inversely proportional to its relative deadline. way, but such a generic model has never been studied in the
Recently, a new scheduling module, nameliterature, and we doubt it has ever been used in practical
SCHED DEADLI NE [11], has been proposed as a patchituations, due to the difficulty of analyzing the resulting
to the Linux kernel to provide the Earliest Deadline Firsschedule. Nevertheless, it can be a source of confusion for
(EDF) algorithm [13] along with a Constant Bandwidtmovice programmers that are not aware of the theoretical
Server (CBS) [1], [2] to support resource reservation. THeackground in multi-processor scheduling.
SCHED DEADLI NE module is supposed to run at the highe

priority level in the sequence of scheduling modules. Sé Time management in POSIX

) ) POSIX provides thestruct timespec data type to
A. Multi-processor scheduling store time information.
The POSIX RT interface does not directly address multiy ; yct ti nmespec {
processor scheduling. The reason is probably due to the factime_t tv_sec; // seconds
that, when the interface was standardized, multi-procres?o'Ong tv_nsec; // nanoseconds

RT systems where not widely popular. Recently, multi-coré
platforms are available even in embedded systems. For thiswever, it does not provide any interface for manipulating
reason, Linux provides non-standard extensions to the ROSuch a data structure. The POSIX RT interface provides §mer
API to support multi-core scheduling, through the concdpt and clocks:

affinity. Every thread is associated withGPU bit-maskthat « CLOCK_REALTI ME: it maintains a value that is as close
tells the system the processors on which the thread can be as possible to the absolute time. However, it may be
executed. Each bit of the mask represents a processor ahd a bi discontinuous, because it can be adjusted by the system
setto 1 means that the thread can execute on the corresgondin  and by the user.

processor. _ _ _ _ ~» CLOCK_MONOTONI C: it represents the elapsed time
By default, a thread is associated with a mask having all bits  from an unspecified initial instant. It is not affected by
set to 1. This means that by default Linux implemegitsbal adjustments, hence it is the best solution for measuring

scheduling i.e. a thread can migrate across all processors. the time elapsed between two events. However, it can be
In particular, the RT scheduling module implements global  subject to automatic adjustments by the NTP protocol.
fixed priority scheduling. The user can set a different mask, CLOCK_MONOTONI C RAW it is  similar to

at creation time or during the thread life-time by using the  CLOCK_MONOTONI C, but it gives access to a low-level

following functions: raw hardware timer and it is not subject to adjustments
int pthread_setaffinity_np(pthread_t thread, by the NTP protocol.
size_t cpusetsize, const cpu_set_t xcpuset); It also provides clocks specific to processes and threads.

int pthread_attr_setaffinity_np(pthread_attr_t =*attr,
size_t cpusetsize, const cpu_set_t =*cpuset);

In particular, CLOCK_THREAD CPUTI ME_I D measure the

execution time of a thread. Time can be read by using the

wherecpuset is theaffinity mask following function:
In our opinion, such a generic interface is ill-conceived. _ . .

. . . int clock_gettime(clockid_t clk_id,
In the real-time literature, multi-processor scheduleas be struct timespec *t):

categorized intoglobal, partitioned or clusteredschedulers ) B .
[10]. which stores irt the value of the clock specified lay k_i d.

In global scheduling, a task can execute in any proces?(ﬁriqdic behavior can be implemented by using the following
and all ready tasks are enqueued in one single logical redk{ction:
gueue: this corresponds to the default behavior of Linuxeneh i nt cl ock_nanosl eep(cl ockid_t clock_id, int flags,
all bits in the CPU mask are set to 1. In partitioned schedulin const struct timespec srequest,

. . el struct timespec *renmin);

each task is assigned only one processor: this corresponds t
setting only one bit to 1 in the mask. which suspends the execution of the calling thread untilclo

In clustered scheduling, the set of processors is divided ircl k_i d reaches the time specified by If f | ag is equal to
disjoint clustersof processors, and every task is assigned tozaro, the time is interpreted as relative to the current time; If
single cluster. This corresponds to setting a subsets sfdbit f | ag is equal toTl MER_ABSTI ME, the timet is interpreted
the mask to 1; moreover, two threads belonging to the sam® an absolute value. If the thread is awakened before the set
cluster are assigned the same mask; two threads belongingirree, the remaining time is stored inem An example of



pt hread_nut ex_t mux;
pthread_nutexattr_t nyatt;
pthread_nutexattr_init(&myatt);
pt hread_nut exattr_set protocol (&matt,

PTHREAD_PRI O_PROTECT) ;
pthread_nutexattr_setprioceiling(&mwyatt, ceiling);
pt hread_nut ex_i ni t (&mux, &myatt);

The pthread library permits to model critical secqpthread_nutexattr_destroy(&nyatt);
tions of code to be executed in mutual exclusion through
the mutex mechanism, which uses a semaphore vari-
able of typept hread_nutex_t to protect a shared re-
source from simultaneous accesses.niix is a mutex
semaphorept hr ead_nut ex_i ni t (&ux, NULL) ini- [Il. TASK MODEL
tializes the semaphore with default values. Then, critical A real-time periodic task, denoted by, is a portion of
sections can be accessed according to the following schengede cyclically executed several times on different datchE
execution instance, identified as a job and denotedrby
(j =1,2,...) is triggered at a precise time instant, called the
job activation time Note that the activation of any consecutive
jobs of a periodic task; is exactly separated by the same

implementation of a periodic task using this interface isva
in Figure 2.

C. Resource Access Protocols

Figure 3. Creating and setting the protocol for a mutex.

pt hr ead_nut ex_| ock( &mux) ;
< critical section>
pt hr ead_nut ex_unl ock( &rux) ;

A mutex semaphore can be initialized inipterval, called thetask period In general, the following
three different modes using specific attributearameters are typically defined on a periodic task:
To do so, a \variable, saynyatt, of type

« Worst-case execution tim@VCET) C; of task 7;: it is
the longest possible execution time of any job on the
considered hardware platform.

« Activation timea; ;: it is the absolute time at which job
7;,; becomes active (i.e., ready to execute).

o Period T;: it is the separation interval between any two

consecutive job activation times of task

Relative deadlineD;: it is the maximum time (relative

pt hread_mutexattr_t, must be defined and then
initialized by pthread_nutexattr_init(&nyatt).
Then a protocol can be set using
pt hr ead_mut exattr_set prot ocol (&yatt,
protocol ), where protocol can have one of the
following values:

« PTHREAD_PRI O_NONE .

If using Immediate Priority Ceiling, &eiling value must be

This is the classical mutual exclusion mechanism using
binary semaphores for accessing critical sections. This
method suffers from priority inversion phenomena [7] «
that may introduce unbounded blocking in the execution
of high-priority tasks.

PTHREAD PRI O | NHERI T

This method accesses shared resources using the Priority
Inheritance Protocol [19], which prevents priority inver-
sion by increasing the priority of a task holding a resource
to the maximum priority among those tasks blocked on
the same resource.

PTHREAD_PRI O_PROTECT

This method accesses shared resources using the Immé-
diate Priority Ceiling Protocol (also known as Highest
Locker Priority [7]). According to this method each
resourceRy, is assigned a ceiling@’'(Ry) equal to the

to the activation time) within which any job of task
should complete its execution.
Priority P;: it is a number specifying the relative impor-
tance of taskr; with respect to the others and used by
the scheduler to select the task to execute among the set
of active tasks ready to run.
Phase®;: it is the activation time of the first job of task
7; (®; = a;,1). Note that, all the subsequent jobs of a
periodic task are activated at precise time instants given
by

Q5 = (I)l + (j — 1)Tz

Absolute deadling; ;: it is the maximum absolute time
within which job r; ; should complete its execution. It is
computed as

di,j = Q4,5 + Dl

highest priority among the tasks usift}.. Then, a task A periodic taskr; activated at timed; is said to beschedulable
entering a critical section related t8; executes at a by a given scheduling algorithnil if and only if both the

priority level equal to the ceilin@'(Ry).

following conditions are met:
1) eachjob of 7; is activated at time; ; = ®; + (j —1)T3;

associated with each semaphore and it must be equal to thd) eachob of r; is completed no later that) ; = a; ;+D;.
highest priority among the threads using it. The code fragmeA setI" of n periodic tasks is said to be schedulable by a given
in Figure 3 shows the set pthread calls required to initialize scheduling algorithnd if and only if all tasks are schedulable.

a semaphore using the Immediate Priority Ceiling protocol. Note that meeting the first condition is a responsibility of
As you can see, the code is cumbersome to write and to retiee operating system, which has to manage dedicated timers
Unfortunately, this is true for many other parts of the POSI¥ wake up each job at the given activation time. On the
API, and it one of the reasons that forces many programmetser hand, meeting the second condition is a respongibiiit

to implement their own wrapper interface to POSIX.

the application designer, who has to perform an appropriate



schedulability analysis to guarantee that all the tasks [dngoedef struct EtSt/{ o )

: : tspec_t peri od; * perio *

schedulable by the selected scheduling algorithm. tspect rdline. /+ relative deadline v/

tspec_t phase; /+ initial phase */

IV. THEptaSk LIBRARY !nt priority; /+ fromO to _99 */

In this section we present thgask library along with some| int processor;  /x processor id */

le of The librarv is divided into modules. so o rl nt act_flag; /+ ACT activates the task */

exampe? usa;ge' ! Yl IV.I. ) ! g ules, Ulint measure; [+ if 1, measures exec time  */

presentation will follow the same division. We first state th voi d *arg; /* pointer to a task argunent */

design principles that guided our implementation: rtnode_t «nodes; /+ pointer to the node struct =/

. o . int node_list][ RTMODE_MAX MODES]; /* node list =/

o Simplicity of usage: the library must be easy to use, int nnodes: /< num of nodes for the task =/
so that the students can concentrate on the theoretitadlask_spec_t;

concepts and test their knowledge with simple examples;
o Task model presented in the research literature must Figure 4. Task parameters.

be immediately mapped on simple code structures, so

that there is a direct correspondence between theoretical

model and implementation; to convert to and frompti me_t by using the following
« Advanced techniques must be readily available in tHgnctions:

library, so that students can use them and test thepec t tspec_add delta(const tspec_t =*a,

mechanisms without particular regard to the Iow—Ievc?I . ad( . Fti "E_E delta, i?ttunitsz: b)
PEST spec_t tspec_add(cons spec_t *a, cons spec_t =*b);

SynCh_romzatlon’ . time_t tspec_to(const tspec_t *t, int unit);

« The library must be open-source and accessible to thepec t tspec from(ptime_t t, int unit);

students that can then study the internal mechanisms and S . .
: y . thereunl t is the time granularity and can ISEC (seconds),
a standard and safe implementation.

. . ; M LLI, M CRQO, or NANQ. In this way, time specification is
The ptask library has been written in standard C (ISO/IEqnore natural and readable. For example, a time variable®f 12

9899:2011). The reason for choosing C is that it is by far tk}ﬁilliseconds can be specified simplytaspec_f r on( 125,
dominant language in embedded system development; thq\gﬁ_l_l ). -

fore the students are exposed to a language and a development
environment similar to what they will find in industry. TheB. Task model and structure

ptask library avoids the use of dynamic memory, except for a |n the ptask library, the code of a task is specified using a
few initialization functions that are meant to be calleddsef C function similar to the one shown in Figure 1, where the

the application starts executing. keyword TASK is an alias forvoi d. A task is created by
In order to achieve the second objective, when necessgalling one of the following two functions:
ptask restricts the power of the POSIX library, so that the . .
. . B 'nt task _create(void (*task)(void),
theoretical concepts find a more direct correspondence with jnt period, int drel, int prio, int aflag);
the abstractions provided by the library. For examplkask
forces the programmer to select a scheduler for the ent
application: in fact, the library needs to be initializeddalling
function pt ask_i ni t (schedul er), whereschedul er ~ The first function allows the user to create a task by passing
is the scheduling policy to be used in the program (see Sectieé most important parameters directly as arguments. This
IV-D). Therefore, all tasks will be created using the samfiginction is presented first to the students, so that they can
scheduling policy. immediately implement a simple periodic thread in theirtfirs
This restriction corresponds to what is usually explained fest programs.
the first part of a course in Real-Time Systems, in which there The second function allows a more advanced use by taking
is only one scheduling discipline for the entire system hiis t @s input thet ask_spec_t structure, which contains all task
way, the students are introduced to the concepts in a step-Bgrameters. Both functions return a integer that repregbst
step fashion. Once the students progress in their knowjedtsk id (a number ifi0, MAX_TASKS] ), or a negative value
they can change the scheduling discipline for single tasksthe case of an error.
by using appropriate functions, thus implementing metidl ~ The complete list of parameters in theask_spec_t

rré} task_create_ex(void (*task)(void),
task_spec_t =*tp);

scheduling applications. structure is shown in Figure 4. They will be described as we
] progress in the presentation of the library.
A. Time management When creating a task, the library actually creates a thread

The library provides a set of simple functions to manipby calling thept hr ead_cr eat e() passing the address of
ulate timing data in modul@t i ne. h. The basic time data an internal function callegpt ask_st d_body(), which in
type ist spec_t, which is simply mapped into atruct turns calls the user-specified function. The body of such an
t i mespec. In addition time can be expressed byta me_t, internal function is shown in Figure 5. The library keepssa li
which is mapped into 4 ong and needs an (implicit) unit. of task descriptorst ruct task_par inthe array t p[]

It is possible to sum and subtratspec_t variables, and and the index of the current task in the thread-specific bgia
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static void *ptask_std_body(void *arg)

{

struct task_par *pdes =

ptask_i dx = pdes- >i ndex;

if (_tp[ptask_idx].measure_fl ag)
tstat_init(ptask_idx);

(struct task_par *)arg;

pt hread_cl eanup_push( pt ask_exi t _handl er, 0);

if (_tp[ptask_idx].group !'= NULL)
tgroup_wai t (_tp[ ptask_idx].group,
_tp[ptask_idx].phase);
else if (_tp[ptask_idx].act_flag == 1)
wait_for_activation();
el se
cl ock_getti me(CLOCK_MONOTONI C,
& tp[ptask_idx].at);

(*pdes->body) ();

int main ()
tgroup_t group;

ptask_i ni t (SCHED_FI FO) ;
tgroup_init(&group, 2);

task_spec_t param = TASK_SPEC DFL;

param period = tspec_from( 300, MLLI);
parampriority = 10;

param group = &group;

param phase = tspec_from(0, MLLI);

int TL = task_create_ex(task_body, &param;

param period = tspec_from 600, MLLI);
parampriority = 10;

param group = &group;

param phase = tspec_from(100, MLLI);

int T2 = task_create_ex(task_body, &param;

N
o

pt hr ead_cl eanup_pop(1);
return O;

N
=

i gr oup_acti vat e( &group) ;

N
N

N
w0

—

—

Figure 5. Code of the internal thread function. Figure 6. Task group

C. Measurements and deadline checks
ptask_i dx (line 4 in Figure 5). A thread-specific variable \yorst-case and average case execution times of a task can
optimizes the access to the internal descriptor. be measured by setting tmeasur e flag equal to 1. Then,
Each task is associated with an internal private semaphéié statistical data of task can be obtained by calling:
that is used to control the task activation and suspensi@Bpec_t tstat_getwcet(int i);
Parameteract _f | ag allows to configure the way the tasktspec_t tstat_getavg(int i);

is started. Ifact _flag is set to O, the task is startedyjoasurement is based on the use of the
immediately (as with the pthread API); #ct _flag is set o ook THREAD CPUTIME ID  clock id of the

to 1, the task immediately blocks on its private semaphopghgix~ APl and it s performed  automatically
waiting for an explicit activation. within the wai t_for_period() and the

After checking all relevant flags, the user-specified fuorcti wai t _f or _acti vati on() functions.
is called (line 19). Thept ask_exit_handler() is a These functions also detect and count deadline misses by
function that cleans and releases all resources that hare b&mply measuring the time elapsed from the job activatioreti
allocated in the library for creating this tasks, like imak until the time the job is suspended at the end of its cycle.
descriptors, the task semaphore, etc. It is automaticallg¢ Therefore, when a deadline miss occurs, the task continues
when the task exits, thanks to the cleanup mechanism prbvidixecuting and the event is detected only when one of the two
by the pthread API (line 8 and 21). functions is invoked by the task.

Periodic tasks can be grouped together to implement syn-The current version of the library does not allow detecting
eadline miss at the deadline instant. Also, currentlyg it i

chronous or asynchronous periodic task sets. To implem . _ : .
not possible to constrain the execution time of a task to be

both modelsptask provides thet gr oup_t structure and an within a certain budget. Implementing such features reguir
appropriate synchronization mechanisms is mplementmtj;usthe use of POSIX RT signals along with tiset j urmp()

functiont it line 11 and 12). Th f such X . T
unctiont gr oup_wai t () (line 11 an ). The use of suc andl ongj unp() functions. Work in this direction has been

structure is better explained with a simple example. In fégu”™_ . X -
6 we implemented two periodic tasks belonging to the sa r|eo_l out by Cucmotta_ ano! Fagg'O“ (9], Who proposed the
L library for supportingti ni ng excepti ons in the

r
group. Task T1 has period equal to 300 msec, deadline equa ; . : .
period and phase equal 0; T2 has period equal to 600 m CI’anlguage and provided an implementation over the Linux
ernel.

and phase 100 milliseconds. Initially both tasks block on
special semaphore for the group using thggr oup_wai t ()
function (see Figure 5).

D. Multi-processor scheduling

In the ptask library we decided to restrict to two possible
The group is activated when the wuser -callmodels: global scheduling and fully-partitioned schemtylliTo
tgroup_activate(); from that instant, each taskuse global scheduling tft&CHED GLOBAL_FP constant must
waits for an interval equal to its phase before startinge passed to thpt ask i ni t () initialization function. To
execution. select partitioned scheduling, ti8CHED PART _FP constant



has to be passed fit ask_i ni t () . In this second case, it is modefrom M; to M;, the transition involves the following
possible to specify the processor on which the task is akbaica operations:

by setting thepr ocessor parameter in thé ask_spec_t 1) the tasks ir7; — 7; must be suspended:
) J ’

structure and using theask creat e_ex() function. By 2) the tasks ir7; — 7; must be activated:
default, the created task is allocated on processor O. Thes) the tasks irTTJ-ﬁT-l remain active ’
) J .

number of available processors can be obtained by caIIin% . o
pt ask_get nuntor es() . Later, it is possible to migrate a The exact sequence of suspensions and activations can be

task by using the functiohask _mi grate(int i, int different, depending on the specificode change protocol

p) . Usually, mode changes are difficult to implement, since
they require a careful coordination between the tasks bygusi

E. Mutual exclusion non trivial synchronization protocols. In thetask library we

In Section II-C we discussed the POSIX RT interface fd?rovide an automatic mechanism for supporting mode changes
creating a mutex and setting a protocol for accessing shaksind theidle-protocol The mechanism is implemented by a
resources. However, once again the interface does notigpetdSk managethat runs at the highest priority and upon a mode
the system behavior in a multi-processor systems. Recenﬂpange request performs the following steps:

Brandenburg and Bastoni [5] have shown that using simple1) All tasks in7; — 7; are suspended at the end of their

priority inheritance in a multi-processor environment sloet job cycle;
reduce priority inversion: they illustrated an example inict 2) The task manager waits for the latest end of the period
using priority inheritance in a multi-core Linux based syst of any suspended task;

the blocking time can be as high as in a single processor3) The new tasks iff; — 7; are activated.
environment without priority inheritance. They proposea t The interface for implementing the mode change is very

solutions:migratory priority inheritanceandpriority boosting  _. . . g
The first one consists of migrating the blocking task on ﬂ}s_émple and it is better explained by the example reported in i

processor that hosts the highest priority blocked task. élewy igure 7. In this example the system consists of two modes,

this approach requires support from the kernel, and hence _ON and _FAIL. In mode _ON, two tasks
this app qui upp ' al present; in mod&ODE_FAI L only the first task is present.
is outside the scope of this paper.

L . e . S - The mode structure is initialized in the main, by declaring
Priority boostingconsists in using the priority ceiling pro- S )
o . . nd initializing a data structuret node_t with 2 modes
tocol and assigning each resource a ceiling higher than |

e i

priority of any other task. This increases the blocking tinfie tc;nesaslsz aanc;r;?rzét-er?esq’ruv(\:ltﬁg Cvrvia:rgg ﬁt;: atr?]SIr(r’m\;vees need

higher priority tasks, even if they do not use any resouncd, af. Ig ointspto the rt mode t ’structure (lines 18 and

hence it is not optimal. However, this is a safe method thg]., P — :

can be analyzed using the same methodology as in the M-Pé;’ the par am nnn_des field contams the number of
modes associated with the task (lines 19 and 27) and the

rotocol [14]. . , . . o
P [ ]. . . . ... . param node_list[] field contains the identifiers of the
Theptask library provides two simple functions to initialize - ' .
s . modes associated with the task (lines 20, 21 and 28). Then,
mutex semaphores, one for the priority inheritance prdtoc?1 . . . o
and one for the priority ceiling protocol: the first time we have to set the system in the initial mode
’ by callingrt node_change() (line 31) and specifying the
int prux_creat e_Pi(PtEfeag_”Ut ex_t «m ;. _ initial mode; this activates all tasks in that mode. Then,
Int pnux_create_pc(pthread_mutex_t «m int c); every time we need to change mode (according to some state
The computation of the correct ceiling for a certain reseurénachine), we need to calit rode_change() .
is difficult to automatize using a library. Therefore, chings  Note that the code of the task remains the same: the
simplicity over transparency, we let the user select the besode change protocol is implemented within functions
ceiling depending on the task accessing the resource andwlaét _f or _peri od() andwait_for_activation(),

platform (single or multiprocessor). automatically and transparently.
Functionr t node_change() sends the id of the new
F. Mode change mode over a communication channel, implemented as a

Many control systems can be modelled as a seipafrating circular array. On the other side of the channel, the task
modes[15]. Each mode represents a state of the system, amanager is awaken and performs the mode change protocol.
produces a different behavior. A finite state machine gaverihe communication channel ensures that requests for mode
the transition between different modes. changes are enqueued and served in a FIFO order; no new

Each mode is associated a set of tasks, and each task carefigest of change can be performed before the previous one
associated with different modes. L&t = {M;,..., M, } be has completed.
the set of modes of the system, andTet= {7 1,...,Tin; } Different mode change protocols can be implemented by
be the set of tasks associated with mddg When the system changing the task manager; the possibility of implementing
is in a certain mode\/;, the tasks in7; are active, while some of the more complicated mode change protocols de-
the other tasks are suspended. When the systhamges scribed in [15] is currently under investigation.



1| void taskbody() https://github.com/glipari/ptask.
z wait_for_activation(): As a future work, we plan to extend the library to include
4 while (1) { other mechanisms and abstractions. One one hand, we would
5 printf("Task Tfl’(/u_d Ls runni ng\n”, like to support other schedulers, likBCHED DEADLI NE
’ ai t fo?e:nétr?f)dl(;]- ex()); [11]; on the other hand, we plan to integratiask with the
sl ) - ' OML library [9] for supporting timing exceptions. In addit,
of} we plan to extend the interface to support clustered schegul
10
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