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Abstract—When a common computing platform is shared by
several software activities (tasks), the interference generated by
the concurrent access to computational resources introduces un-
predictable delays on task execution that may jeopardize the
correct behavior of the controlled system. In safety-critical systems,
an effective method for limiting such an interference is resource
partitioning (or resource reservation), according to which each
task is assigned a fraction of the shared resource (bandwidth) and
executes in isolation as it were executing alone on a system with
less resources.

The advantage of this approach is that the response time of
each task does not depend on the execution behavior of the other
activities, but only on its own computational demand and on
the amount of allocated resource. However, the resulting system
performance strongly depends on a correct resource allocation, that
is the size of the partitions.

Given the dynamic behavior of certain applications and the
difficulty of predicting their resource needs, adaptive resource
management is crucial for changing the allocation to the actual
resource requirements when they are not correctly estimated.

This paper presents an adaptive resource reservation algorithm
for partitioning the processor among concurrent real-time tasks and
illustrates the analysis for computing the probability of meeting the
timing constraints specified on the application tasks, and evaluating
the changes on system partitions.

Keywords—Adaptive systems, Component-based systems, Real-time
software, Resource reservation, Resource partitioning, Probabilistic
analysis.

I. INTRODUCTION

Complex embedded software for aerospace applications con-
sists of many concurrent activities (tasks) that execute on a
computing platform and interact through shared resources (e.g.,
processor, memory, and I/O devices). Due to the complex struc-
ture of control applications, the dependency of the source code on
input data and the interaction with the other tasks, the execution
time of each task is subject to high variations, which are very
difficult to predict off line. In addition, other architecture features
of the computing platform (such as cache memory, pipeline and
pre-fetch mechanisms, DMA and interrupts), concur in increasing
such a variability, making the worst-case execution times much
higher than the average-case ones. Also, operating system mech-
anisms such as scheduling, synchronization, and communication,
may introduce additional delays in task executions.

As a consequence, the execution time of a task can be
described by a distribution function, which ranges between a
Best-Case Execution Time (BCET) to a Worst-Case Execution
Time (WCET). Figure 1 shows an example of execution time
distribution. Due to the reasons described above, the WCET of
a task is much higher than its BCET, making the analysis either
very pessimistic or unsafe.
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Fig. 1. Execution time density and normalize frequency, with the best-case and
the worst-case execution times.

An effective method for reducing task interference and make
task execution times more predictable is to partition a resource
into fractions and allocate each fraction to a task. For example,
a simple mechanism for partitioning the processor computation
time among different tasks is to divide the time into slots of fixed
length and allocate each task to a different slot, in such a way that
all the timing constraints specified by the application are satisfied.
According to this method, the schedule is constructed off-line and
cyclically executed by a runtime executive. The major problem
of this approach is a lack of flexibility for online changes. In fact,
once slots are defined and assigned to tasks, even small variations
in the schedule (as the insertion of new tasks, or changes in their
activation rates) may require a complete task reallocation.

A more flexible partitioning of the processor time can be
implemented by a resource reservation mechanism, according to
which each task (or task group) is executed within a periodic
server Si that executes up to Qi units of time (server budget)
every period Pi (server period). If the served task is longer
than Qi units, the remaining part is postponed in the next server
periods. In this way, a reservation server Si guarantees that a
fraction αi = Qi/Pi (server bandwidth) is allocated to a given
task (or task group).

Note that a task receiving a fraction αi of the total processor
bandwidth behaves as it was executing alone on a slower pro-
cessor (virtual processor) with a speed equal to αi times the
full speed. Resource reservation can be used to implement a
hierarchical scheduling scheme, where multiple applications can
be handled within different reservation servers, each using a local
scheduler, while all the servers are handled by a global scheduler
on the physical processor.

A resource reservation technique for fixed priority systems
was first presented by Mercer, Savage and Tokuda [1]. Fixed
priority scheduling, however, has the disadvantage that an ar-
bitrary real-time application cannot exploit the full processing
bandwidth. Liu and Layland [2] have shown that the best fixed-
priority assignment to achieve the feasibility of a set of periodic
tasks with deadlines equal to periods is the Rate Monotonic
(RM) algorithm, which assigns priorities proportionally to task
activation rates. Even using the RM algorithm, a set of arbitrary
real-time periodic tasks can be feasibly scheduled on a processor
only if their total utilization does not exceed 69 percent of the
total processor bandwidth.

Using the Earliest Deadline First (EDF) scheduling algorithm,
which schedule tasks based on their absolute deadlines, Liu and
Layland [2] proved that a set of arbitrary real-time periodic tasks
can exploit the full processor bandwidth. Under EDF scheduling,978-1-4673-7501-6/15/$31.00 c© 2015 IEEE
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resource reservation can be efficiently implemented through the
Constant Bandwidth Server (CBS) [3], [4], which recently has
also introduced in the Linux mainline kernel [5].

The main advantage of resource reservation is that the re-
sponse time of each task does not depend on the execution
behavior of the other activities, but only on its own computational
demand and on the amount of allocated bandwidth. On the
other hand, the resulting system performance strongly depends
on a correct bandwidth allocation, which is very difficult to
achieve, given the dynamic behavior of complex applications
and the difficulty of predicting their resource needs. Therefore,
implementing an adaptive reservation mechanism is crucial for
tuning the allocated bandwidth based on the actual resource
requirements.

When the available computational resources are not sufficient
to guarantee the application in the worst-case scenario, smarter
techniques are needed to sense the current state of the system
and react as a consequence to keep the system performance at
a desired level or, when this is not possible, degrade it in a
controlled fashion. With timing constraints and available resource
trade-offs, the system is able to adapt to changes.

Paper contribution. This paper presents an adaptive resource
reservation algorithm for partitioning the processor among con-
current real-time tasks and illustrates the analysis for comput-
ing the probability of meeting the timing constraints specified
on the application tasks. The paper presents also probabilistic
schedulability analyses to guarantee the adaptive behavior of
the systems. With the adaptive resource reservation algorithm
and the probabilistic schedulability analyses we guarantee timing
properties of adaptive safety-critical systems.

Paper organization. The remainder of this paper is organized
as follows. Section II presents the computational model used to
describe real-time applications and introduces the key definitions
that are used in the paper. Section III summarizes the theoretical
background needed to understand the schedulability analysis pro-
posed in the paper. Section IV presents the adaptive framework
for coping with load variations and wrong resource assignments.
Section V describes the probabilistic analysis for guaranteeing
application deadlines. Finally Section VI states our conclusions
and future work.

II. SYSTEM MODEL

In this paper, we consider a generic application consisting
of n real-time tasks, denoted as τ1, . . . , τn. Each task τi is
characterized by an expected computation time Ci, a relative
deadline Di, and a minimum inter-arrival time Ti. Each task τi
can be activated multiple times on different data, thus generating
a sequence of instances (or jobs) τi,1, τi,2, . . .. Considering that
every job of a task runs on different input data, the computation
time of a task τi can be described by a distribution of execution
times, spanning from a best-case execution time to a worst-case
execution time. Similarly, since task activation is triggered by
events in the environment, the inter-arrival time of consecutive
jobs of a task τi is also described by distribution of separation
intervals, whose minimum value is represented by Ti. The ratio
U i = Ci/Ti is referred to as the task utilization factor, whereas
the sum

U =

n
∑

i=1

U i (1)

is called the processor utilization factor or total task set uti-
lization. Each individual job τi,k is characterized by a release
time ri,k, an actual execution time ei,k, and an absolute deadline
di,k = ri,k + Di, which is the maximum time the job is

allowed to complete in order to guarantee a given performance.
The absolute finishing time at which a job τi,k completes its
execution is denoted as fi,k, whereas the job response time is
defined as Ri,k = fi,k − ri,k. The response time of task τi is
defined as the maximum response time among all its jobs, that
is Ri = max

k
{Ri,k}.

A task is said to be schedulable by a specific scheduling
algorithm if all its jobs are guaranteed to complete by their
deadlines, for any activation sequence respecting the minimum
inter-arrival time. A task is said to experience an execution
overrun if the actual execution time of a job exceeds its expected
computation time Ci.

To avoid that the execution overruns experienced by a task
affect the schedulability of other tasks, each task τi is executed
within a dedicated reservation server Si with budget Qi and
period Pi. The ratio αi = Qi/Pi is referred to as the server
bandwidth. We assume that all the servers are scheduled by the
EDF algorithm.

A. Probabilistic Task Model

The probabilities allows to better characterize system vari-
ability and to better cope with the different safety levels that
today’s safety-critical systems exibits. In a probabilistic real-
time framework, task WCET and task Minimum Inter-arrival
Time (MIT) can be represented as discrete distributions1 with the
multiple values they can assume together with the probability of
happening for those values. For task τi the probabilistic WCET
(pWCET) distribution is Ci, its probability distribution functions
(pdf) fCi

is

fCi
=

(

C0
i = Cmin

i C1
i · · · Cki

i = Cmax
i

fCi
(Cmin

i ) fCi
(C1

i ) · · · fCi
(Cmax

i )

)

; (2)

and τi probabilistic MIT (pMIT) distribution is Ti, which in terms
of pdf fTi

looks like

fTi
=

(

T 0
i = Tmax

i T 1
i · · · T li

i = Tmin
i

fTi
(Tmax

i ) fTi
(T 1

i ) · · · fTi
(Tmin

i )

)

, (3)

where
∑ki

j=0 fCi
(Cj

i ) = 1 and
∑li

j=0 fTi
(T j

i ) = 1. Here, (ki+1)
and (li+1) denote the number of pWCET and pMIT representing
task τi, respectively. The values of pMIT are ordered in an
opposite manner than those of pWCET, for the sake of readability
and the ease representation of next mathematical expressions. In
the following, calligraphic uppercase letters are used to refer to
probabilistic distributions, while non calligraphic letters are used
for single value parameters.

Since distributions Ci and Ti include worst-case values, they
are a safe representation of the task behavior. Furthermore, by
applying worst-case distributions we also guarantee statistical
independence between tasks and task instances. Indeed, any
possible dependency is already included into both Ci and Ti,
hence it cannot affect those distributions anymore2.

All the parameters Ck
i and T l

i are given with the interpretation
that the execution requirement of each job τi,j is described by
Ci (worst-case execution requirement), where for each value Ck

i ,
fCi

(Ck
i ) is its probability of occurrence. Function fTi

(T k
i ) gives

the probability that the arrival time of the next job of task τi is
equal to T k

i .

1Since the execution time or the inter-arrival time of a program can only take
discrete values that are multiples of the processor clock cycle.

2In case of independence the joint probability is P{Ci = xi, Cj = xj} =
P{Ci = xi} · P{Cj = xj}, since for the conditional probability it is P{Ci =
xi|Cj = xj} = P{Ci = xi}.



Alternatively, the worst-case execution time distribution, as
well as the minimum inter-arrival distribution, can be specified
using its Cumulative Distribution Function (CDF), denoted by
FCi

(x) or FTi
(x), where FCi

(x) =
∑x

c=0 fCi
(c) ≡ P{Ci ≤

x}. The inverse of the CDF, that is 1-CDF, is denoted as
F ′
Ci
(x) = 1−

∑x
c=0 fCi

(c) ≡ P{Ci ≥ x}; equivalently F ′
Ti
(x) =

1 −
∑x

c=0 fTi
(c) ≡ P{Ti ≥ x}. Function 1-CDF exploits the

probabilities in terms of exceeding thresholds, that is, F ′(x) is
the probability of exceeding a defined threshold x.

The probabilistic task utilization becomes a distribution

U i =
Ci
Ti
, (4)

whose values are the ratios between Ci and Ti values, and the
probabilities are the product of Ci and Ti probabilities. The
probabilistic application utilization is

U = ⊗τi∈ΓU i (5)

composes all the task utilization with the convolution operator,
due to the independence among tasks.

III. THEORETICAL BACKGROUND

In a system consisting of n reservations, each implemented
by a periodic server with bandwidth Ui, the feasibility of the
schedule can be guaranteed as shown in Section V. In particular,
if reservations are scheduled by RM, the schedulability of the
system can be verified by Equation (9); if they are scheduled by
EDF, schedulability can be verified by Equation (11).

The feasibility analysis of a real-time task within a reservation
is more complex and requires the precise knowledge of how
time is made available by the server. Although a reservation is
typically implemented using a periodic server characterized by a
budget Qs and a period Ps, there are cases in which temporal
isolation can be achieved by executing tasks in a static partition
of disjoint time slots.

To characterize a reservation independently on the specific
implementation, Mok et al. [6] introduced the concept of bounded
delay partition that describes a reservation Rk by two parameters:
a bandwidth αk and a delay ∆k . The bandwidth αk measures the
fraction of resource that is assigned to the served tasks, whereas
the delay ∆k represents the longest interval of time in which
the resource is not available. In general, the minimum service
provided by a resource can be precisely described by its supply
function [7], [8], representing the minimum amount of processing
time the resource can provide in a given time interval.

Definition 1. Given a reservation, the supply function Zk(t) is
the minimum amount of time provided by the reservation in every
time interval of length t ≥ 0.

In the particular case in which a reservation is implemented
by a periodic server with unspecified priority that allocates a
budget Qk every period Pk, then the supply function is the one
illustrated in Figure 2, where

{

αk = Qk/Pk

∆k = 2(Pk −Qk).
(6)

Once the bandwidth and the delay are computed, the supply
function of a resource reservation can be lower bounded by the
following supply bound function:

sbfk(t)
def
= max{0, αk(t−∆k)}. (7)

0

Zk(t)

t∆k

αk

Qk

Qk

2Qk

3Qk

2(Pk − Qk)

Fig. 2. A reservation implemented by a periodic server.

The supply bound function provides a nice abstraction for
modeling a processor reservation Rk, because it is independent
of the specific implementation and it allows characterizing the
resource availability by only two parameters: the bandwidth αk,
which represents the fraction of the allocated resource, and the
delay ∆k, which represents the worst-case delay for using the
resource. Figure 3 presents an alternative view of a processor
consisting of two reservations dedicated to two tasks, τ1 and τ2.
The (αk, ∆k) parameters of each reservation can be computed
off-line to satisfy the computational demand of the served tasks,
as presented by Buttazzo, Bini, and Wu [9].

α1 ∆1

α2 ∆2

τ1

τ2

τ1’s execution

τ2’s execution

Fig. 3. An example of two reservations characterized by given bandwidth and
delay parameters.

It is worth observing that reservations with smaller delays
are able to serve tasks with shorter deadlines, providing better
responsiveness. However, small delays can only be achieved
with servers with a small period, which introduce more runtime
overhead due to preemptions. If σ is the runtime overhead due to
a context switch (subtracted from the budget every period), then
the effective bandwidth of reservation Rk is

αeff

k =
Qk − σ

Pk

= αk

(

1−
σ

Qk

)

.

Expressing Qk and Pk as a function of αk and ∆k we have

Qk =
αk∆k

2(1− αk)

Pk =
∆k

2(1− αk)
.

Hence,

αeff

k = αk +
2σ(1− αk)

∆k

. (8)

Within a reservation, the schedulability analysis of a task set
under fixed priorities can be performed through the following
Theorem [10]:

Theorem 1 (Bini et al., 2009). A set of preemptive periodic
tasks with relative deadlines less than or equal to periods can
be scheduled by a fixed priority algorithm, under a reservation
characterized by a supply function Zk(t), if and only if

∀i = 1, . . . , n ∃t ∈ (0, Di] : Wi(t) ≤ Zk(t), (9)

where Wi(t) represents the Level-i workload, computed as fol-
lows:

Wi(t) = Ci +
∑

h:Ph>Pi

⌈

t

Th

⌉

Ch. (10)



Similarly, the schedulability analysis of a task set under EDF
can be performed using the following theorem [10]:

Theorem 2 (Bini et al., 2009). A set of preemptive periodic
tasks with utilization Up and relative deadlines less than or
equal to periods can be scheduled by EDF, under a reservation
characterized by a supply function Zk(t), if and only if Up < αk

and
∀t > 0 dbf(t) ≤ Zk(t), (11)

where dbf(t) is the Demand Bound Function [11] defined as

dbf(t)
def
=

n
∑

i=1

⌊

t+ Ti −Di

Ti

⌋

Ci. (12)

Note that, if Zk(t) is lower bounded by the supply bound
function, the test becomes only sufficient.

IV. ADAPTING TO DYNAMIC LOADS

Although resource reservation is essential for achieving pre-
dictability and isolation in the presence of tasks with variable
execution times, the overall system performance strongly depends
on a correct bandwidth allocation. In fact, if the processor
bandwidth reserved to a task is much less than its average compu-
tational demand, the task may slow down too much, degrading
the system’s performance. On the other hand, if the allocated
bandwidth is much greater than the actual needs, the system will
run with low efficiency, wasting the available resources.

Unfortunately, a precise off-line evaluation of the reservation
parameters is not always possible for different reasons. From one
hand, the estimation of the computational requirements of a task
is data dependent and is affected by several architecture features,
such as cache, pre-fetch mechanism, and device access policies.
On the other hand, a task may enter different operational modes
at runtime, so the amount of resource reserved for a mode may
not be suitable in another mode.

To cope with such a dynamic behavior, whenever the reserved
bandwidth does not match the actual computational demand, the
system should be able to adapt the reservation parameters to
better satisfy the application needs. The adaptation scheme used
in this paper makes use of a global reservation manager, which
sense the actual resource usage through proper kernel probes and
adapts the reservation parameters to better satisfy the application
demand, while ensuring the schedulability of the overall system.

Reservation parameters can be changed upon specific requests
coming from the served tasks, or directly by the manager itself,
which periodically monitors the performance of the application
and reallocate the resources to better meet the actual computa-
tional demand. Figure 4 shows a typical example of a global
adaptation scheme, where a resource manager receives the actual
resource consumption as a feedback from the kernel and tunes
the reservation parameters to match the actual demand.

Reservation Manager

probe

probeτ1

τ2

α1 ∆1

α2 ∆2

Fig. 4. Adaptive scheme adopted by a global Reservation Manager.

Providing the actual resource consumption of each task τi
requires the operating system to have a specific monitoring

mechanisms (kernel probes) to keep track of the actual job
execution times and response times. Given these measurements,
the actual computational demand Ĉi of a task τi can be esti-
mated by averaging the actual computation times in a moving
window containing the history of the last M measurements
ei,k, ei,k−1, . . . , ei,k−M+1, where k denotes the current job index.
This value can be used to evaluate the bandwidth currently
needed by the task, as Ûi = Ĉi/Ti. Then, Ûi can be used as
a reference value in a feedback loop to adapt the reservation
bandwidth allocated to the task according to the actual needs.
Note that, whenever a reservation is adapted online, the resource
manager must also guarantee the schedulability of each reser-
vation by ensuring that the overall allocated bandwidth does not
exceed the maximum utilization bound of the adopted scheduling
algorithm.

If the sum of all reservation bandwidths exceeds the maxi-
mum utilization bound, then the resource manager must apply a
compression algorithm to bring the overall allocated bandwidth
below such a bound.

1) Bandwidth compression: A simple ad efficient method for
compressing a set of utilizations up to a given desired value has
been proposed by Buttazzo et al. [12], and later extended by
the same authors to deal with shared resources [13]. The idea is
to consider each reservation as flexible as a spring with a given
elasticity Ei ≥ 0, whose bandwidth must be within a given range
[αmin

i , αmax
i ]. The elastic coefficient specifies the flexibility of

the reservation to vary its bandwidth for adapting the system to a
new feasible configuration. The greater Ei, the more elastic the
reservation.

Under the elastic model, a set of n reservations with total
utilization U > 1, can be compressed to reach a new desired
utilization Ud ≤ 1 such that all the bandwidths are within

their ranges. Let us define Umin
def
=

∑n
i=1 α

min
i and Umax

def
=

∑n

i=1 α
max
i . Then, if Umin ≤ Ud, a feasible solution can always

be found; hence, this condition has to be verified a priori.

In the special case in which αmin
i = 0 for all the reservations,

the compressed bandwidths can be derived by solving a set of n
spring linear equations, under the constraint that

∑n

i=1 αi = Ud.
The resulting compressed values are:

∀i αi = αmax
i − (Umax − Ud)

Ei

Es

, (13)

where Es =
∑n

i=1 Ei.

If αmin
i > 0, the solution requires an iterative process.

In fact, if during compression one or more bandwidths reach
their minimum value, the additional compression can only vary
the remaining reservations. Thus, at each instant, the set Γ of
reservations can be divided into two subsets: a set Γf of fixed
ones having minimum bandwidth, and a set Γv of variable ones
that can still be compressed. If Umax

v is the sum of the maximum
bandwidths in Γv, and Uf is the total utilization in Γf , then, to
achieve a desired utilization Ud ≤ 1, each reservation has to be
compressed according to the following equation:

∀τi ∈ Γv αi = αmax
i − (Umax

v − Ud + Uf)
Ei

Ev

, (14)

where Ev =
∑

τi∈Γv
Ei.

If there are reservations for which αi < αmin
i , then αi has

to be fixed at αmin
i , sets Γf and Γv must be updated (hence,

Uf and Ev recomputed), and Equation (14) applied again to
the reservations in Γv . If there is a feasible solution, that is,
if Umin ≤ Ud, the iterative process ends when each value



αi computed by Equation (14) is greater than or equal to its
corresponding minimum αmin

i .

V. SCHEDULABILITY ANALYSIS

This section defines different probabilistic tests for analyzing
the schedulability of a real-time system with adaptive reserva-
tions. By making use of probabilistic models, with their flexible
system behavior representation, we aim at less pessimistic results
to system schedulability. Furthermore, with probabilities we
are able to provide a more fine grained evaluation of system
timing performance i.e., respecting execution deadlines, in case
of system changes, with soft and hard real-time constraints, as
well as mixed-criticalities. All of that is achievable with different
confidence/probabilities.

At the global level, the schedulability test has to verify that
the sum of the bandwidths allocated to each application do not
exceed the total bandwidth provided by the resource, that is
∑

i sbfi ≤ t. This is equivalent to verify that max{0, α1(t −
∆1)}+max{0, α2(t−∆2)}+ . . .+max{0, αn(t−∆n)} ≤ t.
In terms of reservation bandwidths, it must be that

∑

j Uj ≤ 1,
where Uj is the utilization bandwidth allocated to the j-th
partition3.

At the local level, the schedulability test has to verify that,
in any interval of time, the resource requested by the application
does not exceed the available resource. This work considers EDF
as a local scheduler, although similar reasoning applies for fixed
priority (FP) scheduling.

We consider the probabilistic case with input pWCET and
pMIT for tasks, as in Equation (2) and Equation (3). The
probabilities are worst-case distributions and they are assumed
to be given. Previous works have showed how to derive worst-
case distributions from measurement-based probabilistic timing
analyses, [14], [15]. The same approach with measurements and
statistical analyses can be applied to derive pMITs.

In this paper, adaptivity is considered only at the level of
reservations, which can be varied according to different system
conditions. The analysis of the systems including adaptive appli-
cations will be addressed in a future work.

The probabilistic schedulability analysis has been addressed
by Abeni, Manica, and Palopoli [16], who proposed the use
of robust probabilistic guarantees, or by Maxim and Cucu-
Grosjean [17], who derived a probabilistic response time anal-
ysis of real-time tasks under FP scheduling. Both approaches,
however, are difficult to apply and are characterized by high
complexity. The method proposed in this paper provides an
efficient probabilistic analysis valid for adaptive conditions, while
evaluating the effects of reservations changes on the application
schedulability.

Example 1. Let Γ = {τ1, τ2} be the task set of an ap-
plication running under a resource partition, where τ1 =
(C1, T1, D1) is a probabilistic periodic task with D1 = 8,

C1 =

(

2 3 4
0.5 0.4 0.1

)

and T1 =

(

12 10 8
0.1 0.2 0.7

)

, and

τ2 = (C2, T2, D2) is another probabilistic periodic task with

T2 = 10, D2 = 10 and C2 =

(

2 3 5 6
0.1 0.4 0.5 0.1

)

. The

set Γ is used in the rest of this section for explaining the
schedulability effects resulting from adaptive reservations. From
now on, time is considered to be discrete and will be expressed

3The available resource is fixed at sbf = t or bandwidth U = 1 in case of
single processor. In case of multiple processors the available resource is larger,
then the schedulability conditions change.

in ticks, although conclusions can be made with respect to any
time unit.

A. Probabilistic Behavior Bounding

The first analysis we propose focuses on supply bound
functions sbf and demand bound functions dbf for representing
the reservations and the applications, respectively.

Probabilistic demand bound functions can be defines using
pWCETs and pMITs as sets of probabilistic bounds of the
task execution behavior. Since each combination of worst-case
execution time and minimum inter-arrival time (Ck, T l) defines
a specific periodic task behavior, there exists a probability as-
sociated with the couple (Ck, T l), representing the probability
for that combination to happen. Hence, from (Ck, T l) it is
possible to derive the demand bound function (dbf, p) with an
associated probability p, representing the probability that the
resource demand of τi is upper bounded by dbf. The whole
set of demand bound functions and probabilities (one (dbf, p)
per (Ck, T l) combination) forms a distribution of demand bound
functions 〈dbf(t, x), Fdbf(x)〉, called probabilistic demand bound
function. This function can also be represented as follows, by
making use of a parameter x:

• dbf(t, x) is the demand bound function corresponding to
a value of x;

• Fdbf(x) is the probability that the resource demand of
the task set is upper bounded by dbf(t, x). Such a
probability results from the CDF of the input C and/or
T distributions.

The probabilistic demand bound function 〈dbf(t, x), Fdbf (x)〉 is
inspired by [18], [19], and it comes with the rationale that we
randomly pick values from C and T once, at the beginning
of the task execution. From each of those picks we build
(dbf(t, x), Fdbf(x)). Figure 5 depicts the demand bound curves
for different values of x: the accuracy of the bound dbf(x)
increases with x, as the probability that dbf(x) upper bounds
task resource demand increases. (dbf(t, x), Fdbf(x) = 1) is
the deterministic case, where dbf upper bounds task resource
demand 100% of the times. the probabilistic demand bound

t

d
b
f
(t
)

x

(dbf(t, xmax), 1)

Fig. 5. Probabilistic demand bound function from ordered bounds.

function for τi, The probabilistic demand bound function of
the application 〈dbf(t, x), Fdbf (x)〉 is defined by composing the
probabilistic demand bound functions 〈dbfi(t, x), Fdbfi

(x)〉 of
each task τi. The composition, as convolution of the distributions
〈dbfi(t, x), Fdbfi

(x)〉, is guaranteed by the assumed indepen-
dence of tasks.

1) dbf Probabilistic Schedulability: For the local schedula-
bility analysis with probabilistic demand bound functions we
extend Theorem 2 to the probabilistic case by making use of
〈dbf(t, x), Fdbf(x)〉 and the reservation sbf.

EDF
∑

sbf〈dbf1, Fdbf1
〉

〈dbf2, Fdbf2
〉

· · ·
〈dbfn, Fdbfn

〉

〈dbf, Fdbf〉

Fig. 6. An example of EDF scheduling with probabilistic demand bound
functions and supply bound function.



Although p = Fdbf(x) describes the probability that dbf(t, x)
upper bounds the application execution behavior (e.g. dbf(t, x)
being an upper bound), that probability can be translated into
schedulability probability by comparing dbf and sbf. From
Equation (11), if dbf > sbf there will be a deadline miss, thus the
system is not schedulable. With (dbf(t, x), p = Fdbf(x)), 1 − p
is the probability of exceeding dbf, thus the probability that the
condition dbf ≤ sbf is not respected.

Theorem 3 (1-EDF Schedulability). Any probabilistic task set
Γ = {τ1, τ2, . . . , τn} with 〈dbf, Fdbf〉 is EDF schedulable with a
probability level 1 upon a resource provisioning curve sbf if

∀ t > 0, dbf(t) ≤ sbf(t). (15)

Here, dbf represents the upper bounding of 〈dbf, Fdbf〉 and sbf

the resource provisioning curve.

Proof: The proof of this theorem follows directly from the
fact that both dbf and sbf are bounding curves with a probability
1 each. The theorem follows.

Theorem 15 states the deterministic schedulability with reser-
vation sbf.

Theorem 4 (p-EDF Schedulability). Any probabilistic task set
Γ = {τ1, τ2, . . . , τn} resulting in a probabilistic resource demand
〈dbf, Fdbf〉 is schedulable under EDF with a probability level
p ∈ [0, 1[ and upon a resource curve sbf if ∀t > 0,

∃ x1 ≥ 0 such that dbf(t, x1) ≤ sbf(t) and Fdbf(x1) ≥ p. (16)

Proof: The schedulability is guaranteed when the request is
less than the provisioning. Accordingly, to ensure a schedulability
with a certain probability level, it is sufficient to find a request
curve dbf(∆, x1) upper bounded by sbf. Since dbf(t, x) and
sbf are independent random variables4 and Fdbf(x1) is the
probability that dbf(t, x1) upper bounds the request function,
then Fdbf(x1) is the probability that dbf(t, x1) upper bounds
the request function on one hand, and sbf(t) lower bounds the
resource provisioning on the other hand. As such, 1 − Fdbf(x1)
is the probability that the events are not bounded by the two
functions, i.e., the probability that the events are not schedulable
by the resource provisioning sbf. Consequently, a schedulability
condition with a probability level p-EDF schedulability is guar-
anteed whenever dbf(t, x1) ≤ sbf(t) and Fdbf(x1) ≥ p. The
theorem follows.

Theorem 4 states the probabilistic schedulability with reser-
vation sbf.

Example 2. Considering Γ from Example 1. For τ1, the prob-
abilistic demand bound function is represented in Figure 7.
In particular, the first part shows all the possible curves
(dbf(t, x), Fdbf(x)), while the second one shows a subset of those
curves reduced to just the meaningful ones. Partial ordering and
equivalence between curves is stated in [18] and similar to the
partial ordering between distributions in [20]. In [18] it is also
described the strategy to reduce the number of curves (thus the
complexity) to the non overlapping ones by dominating curves.
Figure 8 describes the pdf fdbf1(x) and CDF Fdbf1

(x) of the
reduced set of curves, each with an index associated.

The probabilistic approach provides more flexibility than
deterministic models/analyses (probabilistic schedulability with
p = 1 all the time) by adding more intermediate possible
schedulability conditions with p ≤ 1.

4The supply bound function could be seen as a random variable with just one
value.

t

resource

t

resource

Fig. 7. Probabilistic curve: complete set of ordered curves dbf1(t, x) and the
reduced set of probabilistic bounds.
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Fig. 8. Probabilistic curve: distribution function fdbf1(x) and cumulative
distribution function Fdbf1

(x) indexed by x.

2) Adaptation Effects: Reservation changes could affect com-
ponents/partitions schedulability. In the case of probabilistic
schedulability, the effect is quantified by the schedulability prob-
ability.

By applying sbf1 the schedulability probability could result
into p1, from Theorem 4. Then, changing the reservation to sbf2,
the schedulability probability could become p2, depending on the
largest (dbf(t, xi), pi = Fdbf(xi)) such that dbf(t, xi) ≤ sbf2(t).
Thus, for any given t, p2 = maxi{pi | dbf(t, xi) ≤ sbf2(t)}.

The effect of changes reflects on the probabilities, with p2−p1
being the probability variation for the application. Such effects
can be visually depicted in an (α,∆)-space, having reservation
bandwidth and service delay on the axes. A point (αi,∆i) in such
a plain represents a supply bound function sbf. In a deterministic
framework, the schedulability region in the (α,∆)-space has been
described by Lipari and Bini [7]. In this work, this region is
extended to incorporate probabilities.

A probabilistic schedulability region of a (dbf(t, x), p =
Fdbf(x)) in the probabilistic (α,∆)-space is the set of tuples
(αi,∆i) that makes the dbf probabilistically schedulable with a
probability larger than or equal to p. A change in the supply
bound function corresponds to a change in the schedulability
region and in the related probabilities, and affects system schedu-
lability performance.

Example 3. Let us consider Γ from Example 1 and three reser-
vations sbf1 = (0.98, 0.4), sbf2 = (0.86, 3), and sbf3 = (0.8, 3).
Figure 9 describes three different EDF schedulability regions
obtained from 3 curves shown in Example 2. In particular,

• dbfa = dbf1(t, x1) + dbf2(t, x2,a) with x2,a such that
dbf2(t, x2,b) = dbf2,C2=2 and p2,a = 0.1;

• dbfb = dbf1(t, x1) + dbf2(t, x2,b) with x2,b such that
dbf2(t, x2,b) = dbf2,C2=3 and p2,b = 0.4;

• dbfc = dbf1(t, x1) + dbf2(t, x2,c) with x2,c such that
dbf2(t, x2,c) = dbf2,C2=4 and p2,c = 0.9.

x1 is such that dbf1(t, x1 =
max{dbf1,(C1=2,T1=8), dbf1,(C1=3,T1=8), dbf1,(C1=3,T1=10),
dbf1,(C1=4,T1=12), dbf1,(C1=4,T1=12)}. p1 = 0.93 as from
Figure 8 curves 3. Each region has a probability associated,
pa = 0.93 ∗ 0.1 = 0.093, pb = 0.93 ∗ 0.4 = 0.372,
pc = 0.93 ∗ 0.9 = 0.837. From the probabilistic (α,∆)-space,
we conclude what follows.

• sbf1 makes feasible all the dbf, then the max-
imum schedulability probability that guarantees is
max{pa, pb, pc}.

• sbf2 makes feasible dbfa and dbfb, and its maximum
schedulability probability is pb.



• sbf3 makes feasible dbfa only. Since sbf3 is not on the
boundary of the region, we cannot conclude on the exact
schedulability probability. Nonetheless, the schedulabil-
ity probability with reservations sbf3 is larger than 0.093
and smaller than 0.373.
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Fig. 9. The probabilistic (α,∆)-space with feasibility regions, probabilities
associated, and reservations.

The 〈dbf(t, x), Fdbf(x)〉 and the probabilistic (α,∆)-space
could be also applied for reservation design depending on the
deadline miss constraints of each system component.

B. Cumulative Probabilistic Processes Bounding

Using probabilistic models, the resource demand of a task
τi in an specific time interval can be seen as a cumulative
probabilistic process where, at each task instance, all the possible
combinations for pWCET and pMIT are considered. DBF i(t)
is the cumulative probabilistic demand bound function that τi
could demand in [0, t]; DBF i(t) = ⊗ηCi, where η is the number
of Ci instances to be considered in [0, t]. DBF i is obtained by
randomly picking a task worst-case execution time from Ci and
a minimum inter-arrival time from Ti at each task instance in
the time interval [0, t]. With both pWCET and pMIT, the τi
cumulative probabilistic demand bound function is

DBF i(t) = ⊗
⌈
t+Ti−di

Ti
⌉
Ci, (17)

where ⌈ t+Ti−di

Ti

⌉ defines the number of convolutions of Ci.

⌈ t+Ti−di

Ti

⌉ is a distribution where the values are the number of
Ci instances to account for, and the probabilities are the chances
that that number of instances happens within [0, t]. For the
whole application task set the cumulative probabilistic demand
bound function is DBF(t) = ⊗iDBF i(t). The composition by
convolution (summing up random variables C) is allowed by the
hypothesis of independence between tasks and task instances we
have made.

1) DBF Probabilistic Schedulability: For an interval [0, t], a
task application, with probabilistic resource demand as DBF(t)
and served by a reservation sbf(t), is schedulable with probability
p if P{DBF(t) ≤ sbf(t)} ≥ p. The probability of deadline miss
at time t (probability of not schedulability in [0, t]) is then 1−p.

In this case, we cannot compose EDF schedulability condi-
tions as done in Theorem 2 and Theorem 4. This is due to the
dependence existing between two intervals [0, t1] and [0, t2] for
the conditions DBF(t1) ≥ sbf(t1) and DBF(t2) ≥ sbf(t2):
the two intervals overlap (being t1 < t2) making the two
conditions statistically dependent. In order to compute the joint
probability P{DBF(t1) ≤ sbf(t1),DBF(t2) ≤ sbf(t2)} =
P{

∧

ti∈{t1,t2}
DBF(t) ≤ sbf(t)}, such a dependence needs to

be characterized. Since in this paper such a dependence is not
fully modeled, the EDF probabilistic schedulability analysis with
DBF is left to future work. However, the partial schedulabil-
ity conditions (single intervals) derived above can be used to
characterize the effects of a reservation change for each interval
[0, t]. It is worth noting that in case of Theorem 16 the statistical
independence between two conditions dbf(t1, x) ≤ sbf(t1) and
dbf(t2, x) ≤ sbf(t2) is guaranteed because we have randomly
extracted values only once and at the beginning of task execu-
tions.

With a reservation sbf1 it is p1 = P{DBF(t) ≤ sbf1(t)}, and
due to the change to sbf2, that probability changes to p2 where
p2 = P{DBF(t) ≤ sbf2(t)}. The schedulability changes within
[0, t] is quantified by p2 − p1.

Example 4. Given Γ from Example 1, and the reservations
sbf1(t) and sbf3(t) from Example 3, the effects of a change
from sbf1(t) to sbf3(t) are depicted in Figure 10. Figure 10(a)
describes the different cumulative probabilistic demand bound
functions for t = 20, t = 24, t = 30 and t = 32. From
the figure it is possible to outline the difference between the
demands due to task behaviors and the length of the analysis
intervals. Noticeable is the dominance of DBF(32) over all the
others: DBF(32) is larger than the other cumulative demand
distributions5. Figure 10(b), with the CDF representation of
DBF(24), shows the difference in terms of probability due to the
changes from sbf1(24) to sbf3(24). The difference is such that
the schedulability probability changes from p1 = P{DBF(t) ≤
sbf1(t)} = 0.999993 to p3 = P{DBF(t) ≤ sbf3(t)} =
0.661624. Hence, the reservation change affects Γ schedulability,
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and sbf3(24) = 23.128

Fig. 10. CDF representation and single interval schedulability condition
DBF(t) ≤ sbf(t) for t = 24.

reducing the probability by |p2 − p1| = 0.3383753. In order to
achieve schedulability probability p = 1 in [0, 24] it is necessary
a reservation with sbf(24) ≥ 24, thus sbf = (1, 0).

The schedulability analysis with DBF provides a more
accurate representation of the schedulability conditions than with
dbfs, and a better characterization of the effects of changing
reservations than with dbfs. This is due to the larger amount
of system behaviors accounted for by the DBF .

C. Probabilistic Utilization

From the utilization perspective, in order to guarantee proba-
bilistic schedulability of the reservation it is sufficient to compare
the application utilization discrete distribution U with the reser-
vation bandwidth threshold U .

For an application characterized by U , the resource reserva-
tion bandwidth U fixes the limit for the application utilization in
order to be schedulable. Hence, the schedulability probability p
is such that

p = P{U ≤ U}. (18)

Analyzing the reservation bandwidth change from U1 to U2,
schedulability effects are quantified by the difference between
p1 = P{U ≤ U1} and p2 = P{U ≤ U2}.

Example 5. Considering Γ from Example 1, the application
utilization U is depicted as the CDF in Figure 11(a). In there,
also p3 and p1 are represented when the reservation changes
from U3 = 0.8 to U1 = 0.98. U3 and U1 from Example 3. The
change from U3 to U1 increases Γ schedulability probability by
|0.725− 0.956| = 0.231.

Figure 11 shows the possibility of evaluating the impact of an
assumed schedulability probability of 0.9 per task. Concerning

5The partial ordering between distributions is defined according to [20], where,
given two distributions X and Y , X is greater than or equal to Y (X � Y) if
and only if ∀x P{X ≤ x} ≤ P{Y ≤ x}.



τ1, all the combinations of C1 and T1 are limited to those for
which FU1

(x) ≤ 0.9 (τ1 utilization limited to 0.333). τ2 is limited
to worst-case execution time C2 ≤ 5 which give an upper bound
to τ2 utilization of 0.5.
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Fig. 11. Task utilization bounding at probability p = 0.9.

As shown in Example 5, with the utilization approach it is
possible to relate schedulability probabilities to task parameters,
setting them to achieve a defined schedulability goal. In a future
work we plan to exploit the utilization probabilistic schedulability
to design the task set parameters in order to maximize a given
probabilistic performance index.

VI. CONCLUSIONS

The current trend in embedded systems shows that hardware
is evolving more rapidly than software, causing a strong need for
methodologies able to achieve portability, modularity, and scal-
ability of performance. Surprisingly, such a growth in hardware
complexity was not balanced by a corresponding evolution of
the control software for a predictable an efficient management of
the computational resources. As a consequence, most of today’s
embedded systems are still implemented on top of fixed priority
kernels or by adopting ad hoc techniques to exploit new hardware
features.

This chapter presented some new software methodologies
proposed within the real-time research community to simul-
taneously address multiple objectives, such as predictability,
efficiency, modularity, portability, and adaptability.

Predictability and efficiency is achieved through the use of
proper real-time scheduling algorithms (like Rate Monotonic and
Earliest Deadline First), which optimally utilize the processor and
can be efficiently analyzed to estimate the worst-case response
time of each task. Modularity and portability is obtained through
the use of resource reservation mechanisms, which allow imple-
menting a temporal protection environment. In this way, a task
can be analyzed independently of the behavior of the other tasks,
but only as a function of its computational requirements and the
allocated bandwidth. Finally, adaptability is achieved through the
use of proper feedback schemes that can be implemented both
at the application level (local adaptation) or at the system level
(global adaptation).

The probabilistic analyses are for the first time applied to the
adaptivity problem, and have proved flexibility and accuracy to
proficiently validate safety of real-time systems.

However, the real challenge for the future is to transfer such
techniques to the industry to make next generation embedded
systems more predictable and efficient, as well as portable to
different computing platforms, and adaptable to dynamic load
conditions.

Future work will address mainly the probabilistic analysis and
its coupling with the adaptive resource reservation mechanisms.
Predictability and adaptivity promptness trade-offs will be inves-
tigated for developing optimal and sub-optimal adaptive systems.
Furthermore, accuracy and complexity trade-offs of probabilistic
schedulability analysis will be approached with the help of re-
sampling techniques, [21]. Finally, the mixed-criticality approach

will be combined with adaptive systems to provide a complete
perspective to aerospace embedded systems.
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