
Adaptive Embedded Control for a Ball and Plate System

Jun Xiao

Informatics Institute
University of Amsterdam

The Netherlands
Email: J.Xiao@uva.nl

Giorgio Buttazzo

Real-Time Systems Laboratory
Scuola Superiore Sant’Anna

Pisa, Italy
Email: giorgio@sssup.it

Abstract—In the application of embedded control systems, timing
is an important factor for ensuring a desired system performance.
However, the time properties are difficult to manage under the
constraints of a given hardware platform and the application
tasks have large computation time variations. These require the
usage of adaptive mechanisms on several aspects of the control
system, from sensory inputs to actuation outputs. Taking a control
system consisting of ball and plate device as an example, this
paper shows how to manage time and achieve performance
improvements by using adaptive strategies in sensing and control.
Sensory acquisition, control, and actuation are performed on a
STM32F4 microcontroller. A camera mounted on the embedded
board is used to detect the ball position. To cope with the
limitations of computational speed of the embedded board, an
adaptive approach that changes the capture area of the image
acquisition process at every execution is proposed for improving
the detection accuracy. A system simulator using a TrueTime ker-
nel that provides multitasking environment has been developed as
a support tool for designing the controller. Jitter compensation
techniques, which adaptively update the control parameters at
each sampling instant, are adopted to deal with the performance
degradation due to the sampling jitter. Conditions for finding the
set of proper control parameters, a practical issue of applying
jitter compensation techniques, are also presented. Finally, the
system has been implemented and tested on top of the Erika
Enterprise real-time kernel.

Keywords–Adaptive Embedded Control Systems; Camera Detec-
tion; Jitter Compensation; PID Control.

I. INTRODUCTION

Balancing is one of most challenging issues in the control
field. There are lots of platforms for studying control algo-
rithms for system balancing such as the ball-beam system and
the inverted pendulum. Among those, the ball-and-plate system
consists in controlling the angular position of a plate with two
degrees of freedom (pitch/roll) in order to keep a ball always
in the center of the plate in the presence of disturbances. When
the ball starts moving, it will roll off the end of the plate if no
control action is taken.

The first major challenge is to sense the ball position
accurately and in a non-cumbersome, yet inexpensive way.
In some implementations, a touch screen is used as the ball
position sensor [1], whereas in most cases a Charge-coupled
Device (CCD) camera is quite popular for ball detection.
Christoph H. Lampert, et al. [2] proposed to overcome the
computational bottleneck by making use of the massively
parallel architecture of a Graphics Processing Unit (GPU) in a
modern computer graphic card. This solution, however, is quite

expensive. The second consideration is about the effectiveness
of different control algorithms. Nonlinear control methods like
Back-stepping control were successfully applied by Lin, et al,
in [3] and Ker, et al, in [4]. In recent works [5] [6], intelligent
control skills, such as fuzzy logic control, are also studied.
However, most of these control methods work only if the
sampling period of the control system is small, which strongly
requires high speed processing hardware including sensor and
microcontroller.

In this paper, sensory acquisition and control of the ball-
and-plate system are performed by the STM32F4 microcon-
troller. A camera mounted on the embedded board behaves
as sensor to detect the ball position. Under such hardware
constraints, we propose an adaptive detection procedure to
cope with the limited capacity of Random-Access Memory
(RAM) storage and limited computational speed of the given
embedded board. The proposed control strategy includes a
jitter compensation technique and is adopted to deal with the
performance degradation due to the sampling jitter introduced
by the multitasking environment in the embedded board.

The rest of the paper is organised as follows. Section
II presents an overview of the system architecture. Section
III describes the decision of the sampling period and the
adaptive camera detection procedure. Section IV analyzes
the Proportional-Integral-Derivative (PID) control algorithm,
the effect of the sampling jitter and the jitter compensation
techniques. Simulation results and system testing are shown
in Section V. Section VI draws the conclusions.

II. SYSTEM DESCRIPTION

The ball-and-plate control system considered in this work
consists of two embedded boards: one board (referred to
as board A hereafter), equipped with a camera, detects the
ball, computes its position, and sends this information to the
other board (board B) through a wireless network. Board B
receives the data, applies the control algorithm and supplies a
proper voltage to the servo motor for actuating the plate. The
illustrative overview of the system is shown in Figure 1.

In addition, a system monitor has been developed under
the Linux operation system to provide a graphic user interface
for displaying the system state. The monitor records the last
ten ball positions and plots dynamically the control error with
respect to the reference. The monitor also allows users to
modify and to update the controller parameters of the system
at run time. The monitor communicates with board B through

40Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-463-3

ADAPTIVE 2016 : The Eighth International Conference on Adaptive and Self-Adaptive Systems and Applications



a serial port. The design and implementation of the Computer-
Monitor are out of the scope of this paper.

Figure 1. Overview of the ball-and-plate system.

The hardware boards used to control the ball-and-plate
system are based on the STM32F4 platform and its expansion
boards, CC2420 radio transceivers.They are briefly described
in the following paragraph.

STM32F4 discovery board is a microcontroller featuring
32-bit ARM Cortex-M4F core, 1 MB Flash, 192KB RAM.
The STM32F4 discovery board has up to 14 timers that can
generate the Pulse Width Modulation (PWM) signals to control
the servo motors [7].

Three boards extend the Discovery capabilities. The first
board is a base board. It provides connectors with General
Purpose Input Outputs (GPIOs), connector for camera board
and connector for Liquid Crystal Display (LCD) board. The
second board is a LCD board. It has a 3”5 display to visualize
information such as the ball position and the controller param-
eters. The last board is a camera board. The resolution of the
camera is set to be QQVGA (160× 120). It is not possible to
obtain an image with a higher resolution otherwise the image
to be stored would exceed the RAM size (192KB).

Communication between board A and board B is realized
by the CC2420, a true single-chip 2.4 GHz IEEE 802.15.4
compliant transceiver designed for low-power and low-voltage
wireless applications. The CC2420 is connected with the
base board. The wireless protocol adopts the IEEE 802.15.4
standard. The wireless personal area networks (LR-WPANs)
is implemented by using the µ Wireless stack.

III. DETECTION PROCEDURE

Ball detection is done based on the frame taken by the
camera at the beginning of each sampling period. Accurate
detection results can be obtained by processing all image
pixels, but this comes at a cost of a high computational
effort, especially when using a microcontroller with a lim-
ited computational speed. The execution time due to image
processing determines the minimum sampling period of the
control system, hence a compromise has to be found between
the limit imposed by the computational speed of the STM32F4
board and the controller requirement of running at a faster
sampling rate.

A. Image color data
The frame taken by the camera is expressed internally by a

matrix Mm×n containing pixels. The size of the matrix m×n
is determined by the image resolution. The pixels are encoded
using a Red-Green-Blue (RGB) 16-bit model. For each element
mij in the M , 5, 6 and 5 bits are used to represent the

intensities of red, green and blue component, respectively.
Thus, the values mred and mblue representing red and blue
intensities are integer numbers ranging from 0 to 25, while for
green mgreen, the range is 0-26.

B. Computation of threshold
To facilitate the detection procedure, we used a dark ball

on a white plate. Hence, the ball is detected by considering the
pixels whose color levels are below certain thresholds. Each
color component, namely red, green, blue, has one threshold,
donated as THSred, THSgreen and THSblue respectively. If
the values of red, green and blue extracted from one pixel
are all smaller than their corresponding thresholds, that pixel
is considered to belong to the ball.

Although image thresholding greatly simplifies the de-
tection procedure, the result heavily depends on the light
condition of the environment. The darker the environment,
the lower the thresholds, and vice versa. In order to make
the detection procedure more adaptive, the threshold is auto-
matically computed by the system during an initial calibration
procedure. In more details, board A takes a frame of the whole
plate with the ball before the start of the system. Then the red
intensity mred is extracted from every pixel. For each possible
value v (v=0,1,2,...,31), it counts the total number of pixels
Nred

v whose mred equals v. Finally, the threshold THSred is
determined by the following formula:

THSred = 0.9× Indexred0−14 + 0.1× Indexred14−31, (1)

where:
Indexred0−14 = k such that Nred

k = maxNred
i , i = 0, 1, ..., 14,

Indexred15−31 = k such that Nred
k = maxNred

i , i =
15, 16, ..., 31.
The same steps is applied for the calculation of green and blue
thresholds THSgreen, THSblue.

C. Sampling period
By comparing each element in the frame matrix M with the

thresholds, we can transfer M to a matrix L containing logical
values lij , where a value of 1 means the pixel corresponds to
the ball.

Once the pixels belonging to the ball are identified, a
center of mass [14] algorithm is used to estimate the
ball position. Based on the resulting matrix L, it records
the coordinates of each black pixel (i, j) and computes the
total number of dark pixels N . Then, the ball position is
determined by computing the average coordinate of all black
pixels. Specifically, a region to be scanned is delimited by the
upper left pixel coordinating (xmin, ymin) and the lower right
pixel coordinating (xmax, ymax). The ball position (X,Y ) is
computed by the following formulas:

N =

xmax∑
i=xmin

ymax∑
j=ymin

lij , (2)

X =

∑xmax

i=xmin

∑ymax

j=ymin
i× lij

N
, (3)

Y =

∑xmax

i=xmin

∑ymax

j=ymin
j × lij

N
. (4)

41Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-463-3

ADAPTIVE 2016 : The Eighth International Conference on Adaptive and Self-Adaptive Systems and Applications



A test program was written to estimate the execution time
of finding the ball position by scanning every pixel. It takes
around 2.4 seconds to finish the computation on the STM32F4
microcontroller. As a sampling period, 2.4 seconds is too long
for controlling the ball-and-plate system.

One way to reduce the sampling period is to scan less
pixels. Considering the fact that the ball is in a square covered
by several pixels, (in general p × q pixels and 4 × 4 in our
case), one can scan only one pixel among every nx and ny
(nx ≤ p, ny ≤ q) consecutive pixels along the two directions.
Thus the total number of points Nscan to be scanned is reduced
to m×n

nx×ny
.

If only one pixel among four consecutive pixels is selected
to be scanned, the execution time of detection decreases to
around 0.15 seconds. Considering also the time needed for the
execution of other tasks in board A, the sampling period of
the control system was set at 0.2 seconds to avoid overload
during the execution.

D. Adaptive scan
As mentioned above, to reduce the computation time of

the scan, the basic detection procedure reads one pixel every
four consecutive pixels. This is called constant capture area
procedure because the capture area keeps always the whole
plate, in other words, xmin, ymin, xmax, ymax are constant at
each sampling period.

This procedure, however, fails to detect the ball if the
scanning points are exactly the vertexes of the square covering
the ball, as shown in Figure 2(a), where the full dots stand for
the pixels scanned. Therefore, it is risky to adopt this method
as it may lose detection in some occasions.

(a) (b)

Figure 2. Ball coverage and scanning points.

To improve the detection rate, pixels need to be scanned
more intensely without increasing Nscan. Noticing that most of
computation is wasted for scanning the pixels unrelated to the
ball, the idea of region of interest [14] is used to reduce the
computational cost by searching for the ball only in a smaller
region of interest, moving with the ball.

Thus, we shrink the capture area for catching the ball at
each sampling period. The values representing the upper left
(xmin, ymin) and lower right (xmax, ymax) corner are updated
at each sampling period due to ball movement. Specifically, the
next focusing area is a square centered by the last ball position
and composed of m×n

sx×sy pixels, where sx and sy (2× 2 in our
case) are the reduction factors. The matrix size of the focusing
area is 1

sx×sy of matrix M . Therefore, one pixel among every
nx×ny

sx×sy pixels can be scanned without increasing the time for
the frame processing, as shown in Figure 2(b).

However, the second solution is based on the assumption
that the ball moves slowly such that at the next sampling
time, it is always inside the scope of the region of interest.
Otherwise, the ball will not be detected.

Figure 3. Block diagram for the adaptive detection procedure.

To improve detection, the two solutions are combined to
overcome their drawbacks. The adaptive detection procedure
is called by adaptive capture window, as shown in Figure 3.
The detection starts from executing the procedure in a constant
capture area. Once the ball is detected, the detection switches
to scan the adaptive window, which is the square centered by
the last detected ball position. If the ball moves out of the
region of interest, the detection goes back to the procedure of
constant capture area.

IV. CONTROL DESIGN

This section describes how the controller has been designed
to meet the performance specifications and how the jitter
compensation techniques can be applied for improving the
control performance to deal with the performance degrada-
tion due to the sampling jitter. Considering that the mutual
interference between the two actuation axes, it is possible to
design two independent controllers for the two (x and y) axes.
The following analysis focuses on one direction, but can be
applied to both axes.

A. Control performance metrics
The primary criterion for evaluating the performance of

control systems is to meet stability requirements and response
time specifications. But these criterions do not provide a
universal value to judge the control performance. We use the
notion of Quality of Control (QoC), called performance rate
function, to evaluate the control performance of closed-loop
systems. The QoC in [11] is defined as:

QoC(T0, t) =
1

IAE(T0, t)
, (5)

where:
• IAE is the integral of the absolute system error, which

is the difference between the desired response of the
system yref (t) and its actual response yact(t).

IAE =

∫ ∞
0

|yact(t)− yref (t)|dt. (6)

• IAE(T0, t) denotes the IAE value obtained by a
controller designed with a nominal period T0, but
running with a period t.

42Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-463-3

ADAPTIVE 2016 : The Eighth International Conference on Adaptive and Self-Adaptive Systems and Applications



B. System model
The full derivation of the system state model is out of scope

of this paper; hence, this part only shows the resulting system
model.

The linearized relationship between the rotation angle of
the motor α and the rotation angle of the plate θ is:

θ =
−68.28(α− 0.49)

194.28(α− 0, 49)− 141.52
. (7)

The transfer function of the servo motor having the desired
rotation angle αd as input and the actual rotation angle αact

as output is:

G(s) =
αact(s)

αd(s)
=

1

0.002s+ 1
. (8)

The state space form of dynamic model of the ball move-
ment is:

ẋ1 = x2, (9)

ẋ2 =
3

5
g sin θ, (10)

where x1 represents the ball position of x-axis, x2 denotes the
speed of the ball.

C. Control design
1) PID control law: The PID control [12] algorithm using

the closed-loop feedback mechanism is commonly applied in
the industrial control systems.

Since the sampling period T is fixed to be 0.2s, we directly
design the PID controller in the discrete time domain. The
input to the controller is the ball position error with respect to
the reference e(k) at time kT , the output of the controller is
the rotation angle of motor α(k) at time kT .

Thus, the discretized form of the PID controller is:

α(k) = Kpe(k) +KiT

k∑
i=0

e(i) +Kd
e(k)− e(k − 1)

T
. (11)

A system simulator is developed to help in controller
design. By tuning the three control parameters in the simulator,
when Kp = 10, Ki = 0.5, Kd = 15, the system is stable,
meeting the control performance.

2) Multitasking and jitter compensation: Nowadays, mul-
titasking is common in real applications. More specifically, in
embedded control applications, usually there are multiple tasks
executed concurrently in one processor. In particular, in the
ball-and-plate implementation, besides the control task, there
are other periodic tasks to toggle LEDs to indicate system
running state, to print data such as PID parameters on the
LCD screen.

At each execution of the discretized PID control task, the
output is computed based on the value of three parameters
(Kp, Ki, Kd). The three parameters are constant during the
execution of each job in a traditional PID control task, as-
suming that the sampling is performed at equidistant sampling
time instants.

However, the assumption is not realistic due to the exis-
tence of sampling jitter. In fact, we suppose that there are

two additional tasks τ1 and τ2 with execution times 5ms and
15ms and periods 100ms and 150ms running concurrently
with the control task τ3 including both the work of sensory
detection and control algorithm execution in the microcon-
troller. If the task set composed of τ1, τ2, τ3 is scheduled
by Rate Monotonic, the task scheduling of one hyperperiod is
illustrated in Figure 4. From Figure 4, it is easy to see that

Figure 4. Task scheduling of one hyperperiod by rate monotonic.

the start times si,k of the kth job in the control task i are not
always nT (n = 0, 1, 2...). The difference between the start
times (relative to the request times) of two or more instances
of a periodic task introduces sampling jitter. The set of all
possible sampling jitters, SJ(τi), for task τi is defined as [13]:

SJ(τi) = {hi,k|hi,k = si,k+1 − si,k, k = 0, 1, 2, ...}. (12)

Sampling jitters that will appear at the run time of control
task τ3 can be analyzed offline. The jitters of the first three jobs
repeat since the schedule repeats every hyperperiod. Therefore,
SJ(τ3) = 0.185, 0.2, 0.215.

As integral (Ki) and the derivative (Kd) actions depend on
the time interval between the last and current sampling time,
the actual control performance of the controller running within
the multitasking environment is jeopardized by the sampling
jitter. The jitter compensation technique updating the PID
controller parameters based on the sampling jitter, proposed
in [15], can be applied to improve the control performance.

3) Setting the control parameters: To apply jitter com-
pensation, the PID parameters for all possible jitters have
to be chosen at the design phase. However, as a practical
issue, finding a proper set of parameters is not easy since a
bad composition of PID parameters would make the system
response even worse.

Two conditions to judge whether the set of PID parameters
is proper is based on the performance-rate functions. Specifi-
cally, for a control task τ , ∀T0 ∈ SJ(τ), ∀T ′0 ∈ SJ(τ), and
T0 6= T ′0, if the QoC obtained by running the PID controllers
prepared for the compensation satisfies the following two
conditions:

• if T0 < T ′0, QoC(T0, T0) > QoC(T ′0, T
′
0),

• QoC(T0, T
′
0) < QoC(T0, T0) and

QoC(T ′0, T0) < QoC(T0, T0),

then the PID parameters set is proper.
The first condition derives from the fact that smaller

sampling periods lead to better QoC. The second item requires
the optimal selection of the PID control parameters such that
for a specific sampling period, the best QoC is produced only
when the actual execution period of the control task equals the
designed sampling period.

43Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-463-3

ADAPTIVE 2016 : The Eighth International Conference on Adaptive and Self-Adaptive Systems and Applications



V. EXPERIMENTAL RESULTS

In this section, we illustrate both simulation results and
system testing.

A. Simulation results

1) Simulation model: To carry out the simulation experi-
ments, a system model has been developed in Simulink [10].
Figure 5 is a general view of the whole model. In this model,
the block motor functioning is defined by (8), which describes
the transfer function of a servo motor. The plate block
represents the plate rotation performed by (7) .The dynamic
model (9) and (10) is simulated by the rolling ball block.The
tasks execution (three periodic tasks including control task
τ3, together with τ1 and τ2, discussed in Section IV-C2.) is
simulated using the TureT ime Kernel block, provided by
TrueTime [8], which facilitates co-simulation of controller task
execution in real-time kernels. The two detection procedures
discussed in Section III-D are also implemented.

2) Camera detection: Camera detection results and cor-
responding system responses results by using the adaptive
capture window and the constant capture area are compared in
Figure 6 and Figure 7, respectively. In Figure 6, 1 stands for
the successful detection, while 0 represents missing detection
at the current execution.

Figure 6. Comparison of the camera detection results using two different
detection procedures.

Figure 7. Comparison of system responses using two different detection
procedures.

Experiments showed that the system was unstable using the
constant sampling area, since the ball was no more detected
after few seconds and stayed near the beam. On the other hand,
the experiments showed that the system became stable using
the adaptive capture window, due to the higher achievable
detection rate.

3) Jitter compensation: Following the conditions in IV-C3,
the three controllers used for the compensation with sampling
periods T0 equal to 0.185s, 0.2s and 0.215s were designed.
The values of the compensated PID controller parameters
dealing with each possible jitters are reported in Table I. The

TABLE I. COMPENSATED PID CONTROL PARAMETERS.

T0 0.185 0.2 0.215
Kp 10.8 9.8 10.5
Ki 0.15 0.12 0.1
Kd 23.85 22 23.5

QoC of the three controllers running at different sampling
periods are represented in Figure 8.

0.95	
  

1	
  

1.05	
  

1.1	
  

1.15	
  

0.14	
   0.16	
   0.18	
   0.2	
   0.22	
   0.24	
   0.26	
  

Q
oC

 

Periods	
  (s) 

0.185s	
  

0.2s	
  

0.215s	
  

Figure 8. QoC of the three controllers running at different sampling periods.

We compared the system response of PID controllers
with and without jitter compensation. Figure 9 shows the
jitter degrading effect and the improvement achieved by the
compensation. The ideal system response was obtained by
running the controller designed with sampling period T = 0.2s
without the interference of multitasking. When the PID control
task executes at the background of multitasking, the system
response of the compensated controller catches more quickly
and stays closer to the ideal response with respect to the con-
troller without compensation. Moreover, the system response
of the controller without compensation suffers from a larger
overshoot and a lower rising speed.

Figure 9. System responses with and without jitter compensation.

B. System testing
Finally, the ball-and-plate system was implemented and

tested. The software developed on the two boards runs on

44Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-463-3

ADAPTIVE 2016 : The Eighth International Conference on Adaptive and Self-Adaptive Systems and Applications



theta_x

theta_y

x

y

rollingball y _theta

x_theta

y

x

cam_x

cam_y

scale

rendering

x_alpha

y _alpha

theta_x

theta_y

plate

alph_x

alph_y

x_alph

y _alph

motor

XY_real

XY detecA/D

D/A

Schedule

TrueTime Kernel
Schedule

0

Reference_y

0

Reference_x

Demux

 Cont

 Cont

 Cont

 Cont

 Cont

 FiM

 FiM

 FiM

 FiM FiM

 FiM

 Cont

 Cont

 FiM

 FiM

 FiM

 FiM

 FiM

Figure 5. Simulation model.

top of the Erika Enterpise real-time kernel [9]. The desired
control performance was obtained by adopting the adaptive
mechanisms. Figure 10 illustrates the physical connections and
running state of the system.

Board A
Board B

Figure 10. Board A detects the ball position, while Board B controls the
motors and communicates with the laptop for monitoring.

VI. CONCLUSIONS

This paper illustrated how the usage of adaptive mecha-
nisms in sensing and control activities can improve the system
performance in the presence of stringent hardware constraints.
To cope with the limitations of computational speed of the
embedded board, we presented an adaptive approach that
adapts the capture window of the image acquisition process
at every execution to improve the detection accuracy. To cope
with the performance degradation due to the sampling jitter,
jitter compensation techniques adaptively updating the control
parameters at each sampling instant proved to be effective in
improving control performance. Conditions for finding the set
of proper control parameters, a practical issue of applying jitter
compensation techniques, are also presented.

As a future work, we plan to investigate the possibility
of applying similar adaptive mechanisms to other embed-
ded control applications, especially for those whose system

performance is heavily affected by the hardware constraints.
Another interesting research direction is to formally prove the
correctness of the condition to choose the control parameters
for jitter compensation.

REFERENCES
[1] S. Awtar, et al., “Mechatronic Design of a Ball on Plate Balancing

System“, Mechatronics, 12(2), 2002, pp. 217–228.
[2] C. H. Lampert and J. Peters, “Real- time detection of colored objects

in multiple camera streams with off-the-shelf hardware components“,
Journal of Real-Time Image Processing, 7(1), March 2012, pp. 31–41.

[3] C. E. Lin and C. C. Ker, “Control Implementation of a Magnetic
Actuating Ball and Plate System“, International Journal of Applied
Electromagnetics and Mechanics, Vol. 27, No. 1-2, 2008, pp. 133-151.

[4] C. C. Ker, C. E. Lin, R. T. Wang, “Tracking and Balance Control of
Ball and Plate System“, Journal of the Chinese Institute of Engineering,
30(3), 2007, pp.459-470.

[5] C. H. Lampert and J. Peters, “Image Fuzzy Control on Magnetic
Suspension Ball and Plate System“, International Journal of Automation
and Control Engineering, 3(2), May 2012, pp. 35-47.

[6] M. A. Moreno-Armendariz, C. A. Perez-Olvera, F. O. Rodriguez, E.
Rubio, “Indirect Hierarchical FCMAC Control for the Ball and Plate
System“, Neurocomputing, Vol. 73, No. 13-15, 2010, pp. 2454-2463

[7] STMicroelectronics, “http://www.st.com“.
[8] A. Cervin, D. Henriksson, B. Lincoln, J. Eker, K. E. Arzen, “How Does

Control Timing Affect Performance? Analysis and Simulation of Timing
Using Jitterbug and TrueTime“, IEEE Control Systems Magazine, 23(3):
June 2003 pp. 16–30.

[9] Evidence srl Pisa, “http://evidence.eu.co“.
[10] The mathworks,“Simulink User’s Guide“ Nattick, MA USA, 2000.
[11] G. Buttazzo, P. Marti, M. Velasco, “Quality-of-Control Management

in Overloaded Real-Time Systems“, IEEE Transactions on Computers,
vol. 56, no. 2, February 2007, pp. 253–266.

[12] K.J. Astrom and B. Wittenmark, “Computer-controlled systems“ Third
Edition. Prentice-Hall, 1997.

[13] G. Buttazzo, “Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications“ Third Edition, Springer,
2011.

[14] T. Bradski and A. Kaehler “Learning OpenCV“ First Edition O’Reilly
2008.

[15] P. Marti, G. Fohler, K. Ramamritham, J. M. Fuertes, “Jitter Compen-
sation for Real-Time Control Systems“, Proc. 22nd IEEE Real-Time
System Symp., Dec. 2001, pp. 39-48.

45Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-463-3

ADAPTIVE 2016 : The Eighth International Conference on Adaptive and Self-Adaptive Systems and Applications


