
J Intell Robot Syst (2016) 83:445–462
DOI 10.1007/s10846-016-0348-x

Coverage Path Planning for UAVs Photogrammetry
with Energy and Resolution Constraints

Carmelo Di Franco ·Giorgio Buttazzo

Received: 8 July 2015 / Accepted: 27 January 2016 / Published online: 5 February 2016
© Springer Science+Business Media Dordrecht 2016

Abstract Unmanned Aerial Vehicles (UAVs) are
starting to be used for photogrammetric sensing of
large areas in several application domains, such as
agriculture, rescuing, and surveillance. In this context,
the problem of finding a path that covers the entire
area of interest is known as Coverage Path Planning
(CPP). Although this problem has been addressed by
several authors from a geometrical point of view, other
issues such as energy, speed, acceleration, and image
resolution are not often taken into account. To fill this
gap, this paper first proposes an energy model derived
from real measurements, and then uses this model
to implement a coverage path planning algorithm for
reducing energy consumption, as well as guarantee-
ing a desired image resolution. In addition, two safety
mechanisms are presented: the first, executed off-line,
checks whether the energy stored in the battery is
sufficient to perform the planned path; the second, per-
formed online, triggers a safe return-to-launch (RTL)
operation when the actual available energy is equal
to the energy required by the UAV to go back to the
starting point.

Keywords Energy-aware trajectories · Coverage
path planning · Unmanned aerial vehicles

C. Di Franco (�) · G. Buttazzo
Scuola Superiore Sant’Anna, Pisa, Italy
e-mail: c.difranco@sssup.it

G. Buttazzo
e-mail: g.buttazzo@sssup.it

1 Introduction

Unmanned Aerial Vehicles (UAVs), also referred to as
drones, are used in several application domains that
require the inspection of large areas for the reconstruc-
tion of territorial maps or the identification of specific
details. Device miniaturization reduces dimensions
and costs and thus enables the use of UAVs in new
application fields. Agriculture is one of the emerging
sectors in which UAVs are currently being adopted
for detecting the state of vegetation and the growth of
weeds, in order to plan for a timely and proper inter-
vention [1–3]. In other applications, UAVs are used
to inspect industrial plants [4], survey wooded area
for fire prevention [5], or quickly reach and moni-
tor hazardous environments to better support disasters
interventions and people rescuing.

The sensors needed onboard to carry out a mission
depend on the specific application. Typical examples
include temperature and humidity sensors, barometric
pressure sensors for altitude detection, video cameras,
infrared or multispectral cameras, ultrasound sensors
for precise distance measurements during landing, and
so on. From the actuation perspective, UAVs can be
distinguished in two main categories: fixed-wing and
multi-rotor. Fixed-wing UAVs are more appropriate
for covering large distances and have the advantage of
carrying higher payloads. However, they cannot focus
on the same scene for long period of time, and thus
cannot be used as a remote flying camera controller.
Multi-rotor UAVs are more suitable whenever there is

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s10846-016-0348-x-x&domain=pdf
mailto:c.difranco@sssup.it
mailto:g.buttazzo@sssup.it

446 J Intell Robot Syst (2016) 83:445–462

a need of controlling the position and orientation of a
camera on a desired detail of the scene, although they
have the disadvantage of a lower payload and a lower
battery lifetime.

The problem of monitoring geographical zones by
UAVs has been mainly addressed with the objective
of finding the optimal path able to fully cover a given
area of interest. This problem is referred to as cov-
erage path planning (CPP) and most of the work
done on CPP only considers geometrical constraints,
without taking into account other peculiar features of
the drone, such as the available energy, the weight,
the maximum speed, and other mission requirements,
(e.g., the spatial resolution of the acquired images).
This paper aims to bridge this gap by proposing
an energy-aware path planning algorithm that mini-
mizes energy consumption while satisfying a set of
other requirements, such as area coverage and image
resolution.

Contributions The main contributions of the paper
can be summarized as follows:

1. An energy model is derived from real measure-
ments to estimate the power consumption of the
drone as a function of its speed in different oper-
ating conditions.

2. An energy-aware algorithm is proposed to deter-
mine a path that reduces energy consumption
while satisfying coverage and resolution con-
straints. The optimal number of stripes in a back-
and-forth path is determined for convex areas.

3. An online energy checking mechanism is pre-
sented to guarantee a safe return-to-launch in case
the residual battery charge is not sufficient to
complete the planned path.

Paper organization The remainder of this paper is
organized as follows: Section 2 illustrates the related
work; Section 3 presents the system model and derives
the relation among the states variables used to formal-
ize the problem; Section 4 explains the method used to
identify the speed that minimizes the energy of a given
straight trajectory; Section 5 describes the energy-
aware path planning algorithm; Section 6 presents two
different mechanisms for providing additional safety
guarantees during the UAV mission; Section 7 reports
a set of experiments performed on a real system to
validate the proposed approach; and finally, Section 8

concludes the paper and presents some future research
directions.

2 Related Work

Coverage path planning is a problem that has been
addressed extensively in literature. Galceran and Car-
reras [6] reviewed and evaluated several (CPP) algo-
rithms based on different methods, such as cellular
networks, grids, graphs, neural networks, with online
and off-line computation, and for known or unknown
areas. Maza et al. [7] presented a CPP algorithm for
multiple UAVs that partitions the area of interest based
on the number of drones, their capabilities and their
initial locations. In particular, the capability of a drone
is measured by the maximum distance it can cover
with a given energy. After decomposing the area, each
UAV computes the sweep direction that minimizes the
number of turns required in a trajectory following a
back-and-forth pattern. Barrientos et al. [8] presented
a task manager that automatically partitions a search
area for a team of UAVs based on negotiation among
the vehicles, considering their state and capabilities.
Öst [9] analyzed two different types of trajectories
for covering convex and concave areas, the back-and-
forth and the spiral patterns, combining them with
some area decomposition algorithms. Santamaria et
al. [10] presented a path planning algorithm for multi-
ple heterogeneous UAVs that also considers different
sensor footprints.

Bast and Hert [11] investigated the problem of
partitioning an arbitrary polygon into the minimum
number of convex areas, considering that the resulting
subspaces must be suited to the robotic applications.
They proved that partitioning an area with minimal
cut length is NP-hard and proposed a polynomial-time
algorithm capable of producing a non-optimal but rea-
sonable partitioning. Huang [12] presented an optimal
line-sweep-based decomposition algorithm that min-
imizes the amount of time needed to cover an area
including obstacles. Dynamic programming is used
to find the optimal decomposition by assuming the
knowledge of the area boundaries and the position of
the obstacles present inside it.

A different approach was proposed by Lawrance
and Sukkarieh [13], who formulated the path planning

J Intell Robot Syst (2016) 83:445–462 447

problem by taking into account the energy gain pro-
duced by the wind. The proposed algorithm is capable
of generating energy-gain trajectories using both static
and dynamic soaring. Al-Sabban et al. [14] proposed
a method for exploiting the wind energy to extend
the flight duration of a UAV during the route from a
starting point to another.

Roberts et al. [15] derived an energy model of a
hover-capable flying robot and proposed an algorithm
that mitigates the energy consumption in an indoor
aerial exploration by using ceiling attachment as a
means for preserving energy while maintaining the
camera contact with the target.

Mei et al. [16] investigated the problem of deploy-
ing mobile wheel robots with energy and timing con-
straints. A speed management policy is used to reduce
energy consumption and area constraints, maximum
mission time, and obstacles are taken into account
for computing the minimum number of robots to be
deployed.

One of the main limitations of the energy-aware
approaches mentioned above is that energy consump-
tion is modeled and accounted for trajectories exe-
cuted at a constant speed, neglecting more complex
maneuvers performed under acceleration. Also, no
algorithms considered image resolution as an addi-
tional constraint for the solution.

A preliminary study of a CPP algorithm including
energy consumption and image resolution constraints
has been presented by Di Franco and Buttazzo [17].
This paper extends such a study reducing the path
length and by adding an online energy failsafe mech-
anism that allows a safe (RTL) in case the residual
battery charge is not sufficient to complete the planned
path. Also, additional experiments are presented for
validating the energy model and setting the fail-safe
threshold on the battery discharge.

3 System model

3.1 Camera Model

The UAV considered in this paper is an IRIS quadrotor
with a GoPro camera mounted on a Gimbal stabilizer
for compensating small rotation errors experienced
during flight (Fig. 1). The goal of the mission is to

Fig. 1 The IRIS quadcopter with a GoPro camera mounted on
a Gimbal stabilizer

scan a given area and reconstruct its map with a spatial
resolution R greater than or equal to Rd , expressed in
pixels/cm.

The video camera used to take pictures has the
following parameters:

– Angle of view (AOV), α, expressed in radians,
represents the angular extent of a scene captured
by the camera;

– Image Resolution (Ix, Iy), expressed in pixels for
both sides of the image;

– Aspect ratio ρ = Ix/Iy between the width and
height of the image;

– Minimum sampling period T min
s between two

consecutive shots.
– Exposure time Te (or shutter speed) represents the

time interval in which the shutter is open and the
camera sensor is exposed to light.

When a drone flying at height h acquires a pic-
ture with the camera pointing down, the corresponding
portion of the area is called projected area. The size
of the projected area depends on the height h and the
angle of view α, as illustrated in Fig. 2.

y

x

height

Fig. 2 Projected area of a camera with AOV α placed at
height h

448 J Intell Robot Syst (2016) 83:445–462

If the camera is parallel to the ground (this assump-
tion is realistic considering that the camera is mounted
on a stabilizer), the size (Lx, Ly) of the projected area
can be computed as
{

Lx = 2h · tan (
α
2

)
Ly = Lx/ρ

(1)

Hence, the spatial resolution R obtained by taking
a picture at height h is

R = Ix

Lx

= Ix

2h · tan (
α
2

) . (2)

By substituting Eq. (2) in the inequality imposed by
the mission requirement (R ≥ Rd) we have that

h ≤ Ix

2Rd · tan (
α
2

) . (3)

Hence, the mission requirement imposes a constraint
on the maximum height the UAV can fly, which is

hmax = Ix

2Rd · tan (
α
2

) . (4)

To reconstruct the map using photogrammetry, the
area of interests needs to be decomposed into a
sequence of rectangles of size (Lx, Ly) and the drone
trajectory must be programmed to pass through their
centers. The complete path is then stored as a list of
coordinates, called waypoints, and the drone moves
from one waypoint to the next until it reaches the last
element in the list. Other parameters are included in
the path, such as the GPS coordinates, the height, the
delays between waypoints, the speed, etc.

Note that, to correctly integrate the acquired
images, projected areas must overlap as illustrated in
Fig. 3. The amount of overlap can be chosen by the
user and can vary on each side. The horizontal and ver-
tical overlaps are denoted as ovx and ovy , respectively.
The distance between the centers of two adjacent areas
along the wider direction (also equal to the distance
between two adjacent stripes) is then ds = Lx − ovx ,
whereas the distance between adjacent areas along
the path direction (also equal to the distance between
consecutive waypoints) is dw = Ly − ovy .

Note that the sampling period Ts of the camera (i.e.,
the interval between two consecutive shots) imposes
another constraint on the maximum speed of the UAV.
In particular, the space covered by the UAV between
two consecutive image acquisitions must satisfy the

Fig. 3 Projected areas with overlaps. Centers of rectangles are
the path waypoints

minimum specified overlap, that is v · Ts ≤ Ly − ovy .
Therefore,

v ≤ Ly − ovy

Ts

. (5)

Similarly, the exposure time Te imposes a con-
straint on the speed. This parameter varies from
1/16000 s to 30 s depending on light conditions. Pho-
tos taken during the day usually have a really short
exposure time (e.g., 1/580 s) while night photos have
values between 1/10 s to 30 s depending on howmuch
light is present in the scene. If the camera moves while
the shutter is open it will capture light emitted from
a wider area producing a blurred image. This leads
to another constraint on the speed, that is v · Te ≤
δ/R, where δ is the allowed amount of blur in pixels.
Therefore,

v ≤ δ

R · Te

= δ · 2h · tan (
α
2

)
Ix · Te

. (6)

For applications that make use of specific sen-
sors with long exposure time this constraint becomes
relevant.

Considering the constraints imposed by Eq. (5) and
(6), the maximum speed of the UAV can be expressed
as:

vmax = min

(
Ly − ovy

Ts

,
δ

R · Te

)
. (7)

For the sake of clarity, Table 1 summarizes the main
parameters used in this section.

J Intell Robot Syst (2016) 83:445–462 449

Table 1 List of the main system parameters

Variable Name

α angle of view (rad)

f focal length (mm)

Ix image width (pixels)

Iy image height (pixels)

ρ aspect ratio

Ts camera sampling period (s)

Te camera exposure time (s)

R spatial resolution (pixels/cm)

δ maximum allowed amount of blur (pixels)

h height (m)

Lx horizontal length of the projected area (m)

Ly vertical length of the projected area (m)

ovx horizontal overlap (m)

ovy vertical overlap (m)

ds distance between parallel paths (m)

dw distance between waypoints (m)

3.2 LiPo Battery characteristics

LiPo batteries are gaining favor in the world of
radio-controlled aircraft thanks to the lower weight,
increased capacity, and power delivery. The specific
characteristics of a LiPo battery may affect the perfor-
mances and lifetime of an UAV. A LiPo battery may
have in its pack one or more cells connected in series
or parallel. The voltage of a LiPo cell varies from
about 2.7 − 3.0 V (discharged) to about 4.20 − 4.35
V (fully charged) depending on its chemistry. Each
battery pack must specify the nominal voltage, the
number of cells (in series or in parallel), the maximum
capacity, and the discharge rate. The number before
the S is the number of cells in series to give your pack
voltage. The number before the P is the number of
parallel batteries in your pack. The nominal voltage is
expressed in Volt and can be computed by multiplying
the number of cells in series with their voltage. The
capacity is expressed in mAh and specify the theoret-
ical current IH draw under which the battery would
deliver its nominal rated capacity in one hour. The
C-rate is a measure of the rate at which a battery is
being discharged. It is defined as the discharge cur-
rent divided by IH . The C-rate also indicates that the
maximum current that it is possible to supply can be
computed as C times IH . For example, a LiPo battery
expressed as 11.V 3S1P 5500 mAh 30C means that

the battery has 3 cells in series with a global nominal
voltage of 11.1 V, a capacity of 5500 mAh and a C-rate
of 30.

If there is no load the voltage level is slightly
higher. At the beginning of the discharging process,
the voltage quickly drops to the nominal voltage value
and decreases very slowly during the normal activ-
ity until a final phase, where the voltage falls down
rapidly up to a complete discharge. An example of
discharging voltage curve for a LiPo cell is shown in
Fig. 19. The final phase is the most critical because the
battery voltage rapidly decreases and due to this, bat-
teries must have always a remaining capacity greater
than 30–40 % at the end of the flight. This final phase
needs to be controlled carefully to avoid damage to
the batteries or to the UAVs that may not have enough
energy to finish their goal.

3.3 Energy model

Due to the wide variety of drones available today on
the market, each with peculiar characteristics, i.e. dif-
ferent weights, dimensions, propellers, and types of
motors, deriving a parametric model that can be used
for predicting the energy consumption in different fly-
ing conditions is not a trivial task. Therefore, this
paper presents a method for modelling and analyzing
the energy consumption of a specific drone as a func-
tion of its speed, acceleration, and flying maneuvers.
Although the derived energy model is specific to the
drone used, the proposed method can be applied to
any UAV by performing the same measurements and
without modifying any equation.

In order to derive a model that can be used effec-
tively in the analysis, a set of experiments has been
carried out to understand how energy consumption is
affected by the different flying conditions, such as
speed, horizontal and vertical accelerations. The drone
considered in this paper and used in the experiments
is an IRIS quadrotor controlled by a PX4 autopilot
board and equipped with a GoPro camera mounted on
a Gimbal stabilizer. It is driven by four 850 KV brush-
less motors and powered with a 3S LiPo battery (11.1
V 5.5 Ah), and weighs approxximately 1.3 Kg in total.

The Gimbal stabilizer uses two brushless motors
to compensate for rotation errors and keep the cam-
era always aligned toward a specified direction. The
GoPro camera can take pictures at three different res-
olutions (5, 7, and 12 Megapixels) and two different

450 J Intell Robot Syst (2016) 83:445–462

Time (s)
0 5 10 15 20 25 30 35 40

S
pe

ee
d

(m
/s

)

0

5

10

15

20

Measured speed at max acceleration
Interpolated curve

Time (s)
0 5 10 15 20 25 30 35 40

P
ow

er
 (

W
)

200

250

300

350

Measured power during the acceleration
Interpolated curve

Fig. 4 Speed and power consumption acquired during maxi-
mum acceleration

AOV (94.4 and 122.6 deg). The PX4 board runs the
open-source APM Ardupilot.

The first experiment was carried out to monitor
the power consumption of the drone as a function
of the flying speed, reached with maximum accelera-
tion. The speed was monitored from the onboard GPS
and the absorbed current was acquired from the con-
trol board. The consumed power was then derived,
for each speed, by multiplying the absorbed current
by the supply voltage. Figure 4 shows the speed and
the absorbed power as a function of time, acquired
under the maximum acceleration, along with the cor-
responding fitted curves. Similarly, Fig. 5 reports the

0 5 10 15
150

200

250

300

350

Time (s)

P
ow

er
 (

W
)

Measured power during deceleration
Interpolated curve

0 2 4 6 8 10 12 14 16
0

5

10

15

20

Time (s)

S
pe

ed
 (

m
/s

)

Measured speed during deceleration
Interpolated curve

Fig. 5 Speed and power consumption acquired during maxi-
mum deceleration

Speed (m/s)
0 2 4 6 8 10 12 14 16

P
ow

er
 (

W
)

200

220

240

260

280

300

320

340

Measured power during the acceleration
Interpolated curve

Fig. 6 Power consumption during maximum acceleration as a
function of the speed

same variables acquired under the maximum deceler-
ation. Figures 6 and 7 also show the power absorbed
during the maximum acceleration/deceleration but as
a function of the speed.

Given the power curve Pa(t), the energy consumed
to vary the speed from v1 to v2 with a given accelera-
tion a can be computed as

Ea(v1, v2) =
∫ t2:v=v2

t1:v=v1

Pa(t) dt. (8)

A second experiment was performed to derive the
power consumption as a function of the speed in
different flight conditions, such as horizontal flight,
climbing, descending, and hovering. The results of

Speed (m/s)
050151

P
ow

er
 (

W
)

180

200

220

240

260

280

300

320

340

360

Measured power during the deceleration
Interpolated curve

Fig. 7 Power consumption during maximum deceleration as a
function of the speed

J Intell Robot Syst (2016) 83:445–462 451

this experiment, along with the fitted curve, are
reported in Fig. 8. Each point in the figure corre-
sponds to the average power consumption in a spe-
cific flight condition (e.g., constant speed), which
has been recorded for at least 10 seconds. Observe
that, since climbing and descending operations are
always performed at a constant speed (vclimb and
vdesc, respectively), the corresponding power con-
sumptions, Pclimb and Pdesc, are plotted in the graph
as two points (denoted by ‘+’ and ‘*’, respectively).
Also observe that the power Phover consumed during
hovering corresponds to the the point in the graph for
v = 0.

Once the function P(v) is derived, the energy con-
sumed by the drone to cover a distance d in a straight
flight at a constant speed v can be computed as

E0(v, d) =
∫ d/v

0
P(v) dt = P(v)

d

v
. (9)

The energy consumed during climbing and descend-
ing to cover a height displacement �h can be com-
puted as

Eclimb(�h)=
∫ h2/v̂climb

h1/v̂climb

Pclimb dt =Pclimb

�h

vclimb

(10)

Edesc(�h) =
∫ h1/v̂desc

h2/v̂desc

Pdesc dt = Pdesc

�h

vdesc

(11)

(12)

Speed (m/s)
0 2 4 6 8 10 12 14 16

P
ow

er
 (

W
)

200

220

240

260

280

300

320

340

Measured power at different constant speed
Interpolated curve
Measured power while climbing
Measured power while descending

Fig. 8 Fitted curve of the consumed power as a function of
the speed. Each point corresponds to the average power con-
sumption when flying at a constant speed, which has been
recorded for at least 10 s. Power consumption during climbing,
descending, and hovering are also reported as single points

Finally, the energy consumed during hovering in an
interval [t1, t2] can be computed as

Ehover =
∫ t2

t1

Phover dt = Phover (t2 − t1). (13)

A third experiment was carried out to measure the
time and the power needed during rotations. Assum-
ing that both the angular speed ωturn(2.1 rad/s) and
the corresponding power Pturn(225 W/s) can be con-
sidered to be constant during rotations, the energy
required to cover an angle �θ can be computed as

Eturn = Pturn

�θ

ωturn

. (14)

4 Finding the optimal speed

The goal of this section is to compute the speed that
minimizes the energy needed to cover a given distance
d in a straight flight. The solution is first derived in
the simple case of constant speed, and then extended
to the more general case of variable speed, taking into
account the acceleration profile recorded during the
experiments.

4.1 Constant speed

The energy E0 consumed by the drone for covering a
distance d at a constant speed v during a straight flight
can be computed by Eq. 9. The optimal speed can then
be found by minimizing the energy per unit distance,
Eu
0 (v), defined as

Eu
0 (v) = E0(v, d)

d
= P(v)

v
. (15)

The function Eu
0 (v) is illustrated in Fig. 9, which

clearly shows a minimum for speed v∗ � 12 m/s.

4.2 Variable speed

In the presence of accelerations, the energy minimiza-
tion problem is solved for trajectories of length d

consisting of three distinct phases: an initial phase
executed at maximum acceleration, an intermediate
phase at constant speed v, and a final phase at maxi-

452 J Intell Robot Syst (2016) 83:445–462

Speed (m/s)
2 4 6 8 10 12 14 16

E
ne

rg
y

/ D
is

ta
nc

e
(J

/m
)

20

30

40

50

60

70

80

90

100

110

Energy consumed flying straight at constant speed
Optimal speed

Fig. 9 Energy per unit distance as a function of the (constant)
speed

mum deceleration. Then, the optimal speed v∗ can be
derived by minimizing the following function:

Ea(v, d) =
∫ v

0
Pacc(v) dv +

∫ t (v)

0
P(v) dt

+
∫ v

0
Pdec(v) dv (16)

where Pacc(v), P(v) and Pdec(v) denote the functions
derived in the experiments reported in Section 3.3 by
interpolating data with fifth order polynomials, and

t (v)= d−∫ t :vacc(t)=v

0 vacc(t) dt−∫ t :vdec(t)=v

0 vdec(t) dt

v
(17)

where vacc(t) and vdec(t) are the polynomial fitted
functions of the speed during the acceleration and
deceleration phase illustrated in Figs. 4 and 5. Using
Eq. (17), Eq. (16) can be expressed as:

Ea(v, d)=
∫ v

0
Pacc(v) dv+P(v)·t (v)+

∫ v

0
Pdec(v) dv.

(18)

Note that Fig. 10 shows the energy Ea(v, d) con-
sumed during flight as a function of the speed for
different given distances d. For each curve, the figure
also indicates the optimal speed v∗(d). Note that for
increasing distances, the contribution of the interme-
diate phase becomes dominant with respect to the
other two phases, thus for long distances (d > 300
m) the values of v∗(d) tend to the optimal value

Speed (m/s)
0 2 4 6 8 10 12 14

E
ne

rg
y

(W

 s
)

104

0.5

1

1.5

2

2.5

3

3.5

D = 50 m

D = 100 m

D = 150 m

D = 300 m

D = 600 m

D = 1200 m

Minimization function at given covered distances
Minimum of the function

Fig. 10 Energy consumed as a function of the speed for
different given distances d

(v∗ � 12 m/s) computed in the case of constant
speed. Function v∗(d), which indicates how the opti-
mal speed varies as a function of the covered distance,
is illustrated in Fig. 11. This result is used in this paper
to set the optimal speed for each straight line of length
d in the back-and-forth path of the scanned area.

5 Path planning

The scanned area is modeled as a polygon described
by an ordered set of p vertices {v1, . . . , vp}. Each
vertex vi is characterized by a pair of coordinates

Distance (m)
0 200 400 600 800 1000 1200

O
pt

im
al

 s
pe

ed
(m

/s
)

0

2

4

6

8

10

12

14

Optimal speed as a function of the distance

Fig. 11 Optimal speed as a function of the covered distance d

J Intell Robot Syst (2016) 83:445–462 453

Fig. 12 Example of an area with its vertices and edges

(vx(i), vy(i)) and its inner angle, denoted by γi . For
each vertex vi , the next vertex of the polygon in
the considered order is denoted by vnext (i), where
next (i) = i (mod p) + 1. The edge between a pair
of consecutive vertices vi , vnext (i) is denoted by ei ,
and its length by li = ||vi − vnext (i)||, as illustrated
in Fig. 12. We assume that the area of interest is con-
vex (that is, ∀i, γi < π), and bounding lines do not
intersect to each other.

To minimize the number of back and forth paths
while guaranteeing a desired image resolution Rd , the
drone is programmed to fly at the maximum admissi-
ble height hmax computed by Eq. 4. The rest of this
section describes an algorithm for scanning the area
with a back-and-forth path taking energy consumption
into account.

5.1 Back-and-forth path

The area of interest is scanned using a back-and-forth
trajectory specified by a set of waypoints. For a given
maximum speed, the overall scanning time is highly
dependent on the number of turns, since on each turn
the drone has to decelerate, rotate, and accelerate
again. Figure 13 illustrates two examples of scanning
paths, for a given area, characterized by a different
number of turns.

A lot of work has been done in the literature to
determine the scan direction that minimizes the num-
ber of turns [6, 12]. The major problem of these
algorithms is that, in same cases, the resulting trajec-
tories may contain crossing lines necessary to make

A B

Fig. 13 The number of turns in path A is higher than in path B

a close path. In the proposed solution this problem
is avoided by considering an initial phase and a final
phase that reduce the travel distance from and to
the starting point, also avoiding crossing paths. If
the area has a high number of concavities, finding
the optimal direction can be quite difficult. However,
in UAV applications the shape of the area is not a
real concern because in most situations: a) the sur-
vey area is typically described by a small number
vertices, and b) above a certain height there are no
obstacles. Under these two assumptions, this section
presents a simple but effective algorithm that contains
the number of turns by setting the scanning direc-
tion parallel to the longest bounding line. The algo-
rithm computes the number of stripes to reduce the
overall path length and improve the overlap between
images.

Given a polygonal area A = {v1, . . . , vp}, the fol-
lowing special vertices are defined to generate the
path:

vstart is the vertex closest to the starting point of
the scanning path;

vscan is the vertex corresponding to the longest
edge (escan);

vf ar is the vertex with the largest distance from
escan.

Without loss of generality, we set v1 = vstart

and chose the ordering that makes the index scan

smaller. For instance, considering the area illustrated
in Fig. 12, we have vstart = v1, vscan = v2, and
vf ar = v5. The scanning path consists of three parts:

1. An initial path going from vstart to vscan along the
borders;

2. A back-and-forth path starting from vscan scan-
ning the area along the scan direction until reach-
ing the vertex vf ar ;

3. A final return path going from vf ar to vstart .

454 J Intell Robot Syst (2016) 83:445–462

Fig. 14 Case in which the projected area on the border contains
a region out of interest

To reduce the total energy consumption, for every
straight path of length d the speed is set to the optimal
value computed in Section 4.

The distance dw between consecutive waypoints in
a straight path is set as dw = Ly − ovy . The number
nw of waypoints along a straight path of length d is
computed as

nw =
⌈

d − ovy

dw

⌉
. (19)

Note that, since nw is rounded up, the projected area
of the last waypoint may include a region that is out
of interest, as illustrated in Fig. 14. This problem can
be mitigated by increasing the overlap at the value ôvy

such that nw(Ly − ôvy) + ôvy becomes exactly equal
to d, as shown in Fig. 15. That is,

ôvy = nwLy − d

nw − 1
. (20)

Fig. 15 Projected areas when the overlap is increased to reduce
the region out of interest

In this way, the distance between two waypoints
becomes

d̂w = d − Ly

nw − 1
. (21)

Similarly, the distance ds between stripes is com-
puted as ds = Lx − ovx and the number ns of stripes
is computed as

ns =
⌈

df s − ovx

Lx − ovx

⌉
, (22)

where df s is the distance of the vertex vf ar from the
longest edge escan. To prevent projected areas of the
last strip from including regions out of interest, ovx

and ds are recomputed as follows:

ôvx = nsLx − df s

ns − 1
, (23)

d̂s = df s − Lx

ns − 1
. (24)

At each step of the back-and-forth path, the num-
ber of waypoints is computed by Eq. (19), where d is
computed by intersecting a line parallel to escan with
the left and right border of the area, respectively. If the
angle between the right(left) border with the respect
to the sweep direction is lower(greater) than π/2, an
additional part must be included, similarly to Fig. 14.
The distance d can be computed as follows:

d = ||vlef t − vright || + max

(
0, − Lx

tan(γlef t)

)

+ max

(
0, − Lx

tan(γright)

)
.

(25)

where vlef t and vright are the two points on the borders
and γlef t and γright are the angles of the borders with
respect to the sweep direction.

The path generation procedure is summarized in
the following algorithm:

Algorithm A:
Input: A set of vertices {v1, . . . , vp}.
Output: A set of waypoints {w1, . . . , wn}.

Phase 1:

1. Find the first vertex vscan of the longest edge;

J Intell Robot Syst (2016) 83:445–462 455

Fig. 16 A path with an odd
number of strips (a) and a
path with an even number
of strips, where the return
trajectory is exploited for
scanning (b)

2. Compute the scan direction αscan parallel to the
longest edge;

3. for (i = 1; i < scan; i++)

(a) Compute the distance d from vertex vi to
vnext (i);

(b) Compute nw by Eq. (19);
(c) Compute ôvy and d̂w by Eqs. (20) and (21),

respectively;
(d) Place the first waypoint at a distance

(Ly/2, Lx/2) from the border and all the
other nw − 1 waypoints at a distance d̂w

from each other, and at a distance Lx/2 from
edge ei .

Phase 2:

1. Compute the distance df s of vf ar from escan;
2. Compute ns by Eq. (22);
3. Compute ˆovx and d̂s by Eqs. (23) and (24),

respectively;
4. for (i = 1; i < ns ; i++)

(a) find vlef t and vright by intersecting the left
and right borders with a line of inclination
αscan and distant (i − 1) · d̂s from escan;

(b) Compute the distance d by Eq. (25);
(c) Compute nw and d̂w;
(d) Place the first waypoint at a distance

(Ly/2, Lx/2) from vlef t (vright) and then all
the nw − 1 waypoints at a distance Lx/2 +
(i − 1) · d̂s from escan and a distance d̂w from
each other.

Phase 3:

1. Go from vf ar to vstart through a straight line.

5.2 Improving the path

This section presents an improvements of the path
generation algorithm based on the following observa-
tion: when the number of stripes is odd, the return
path has to pass over a region that has already been
scanned, thus it is wasted; whereas when the number
of stripes is even, the overall trajectory can be planned
so that the return path is also a scanning path. This idea
is better illustrated in Fig. 16, which shows a path with
an odd number of strips generated by the algorithm
presented above (a) and an alternative path contain-
ing an even number of strips, where the return path is
exploited for scanning (b).

To generate a path like the one shown in Fig. 16b,
Algorithm A is modified into Algorithm B as follows:

1. Phase 1 remains unchanged.

Fig. 17 Example showing that the segment between points A
and B can be subtracted from the strip length since covered by
the return path

456 J Intell Robot Syst (2016) 83:445–462

2. In phase 2, a portion of the area is preserved in
advance for a return path that goes from vf ar to
vstart along the borders. Each strip of the back-
and-forth pattern is then reduced by a proper
quantity dr computed as

dr = Lx

sinβ
(26)

where β is the inclination of the boundary side
with respect to the sweep direction. This is clari-
fied in Fig. 17 which includes an example of this
quantity.

3. In phase 3, instead of going back to vstart through
a straight line, a set of waypoints is computed
along the border from vf ar to vstart .

Algorithm B is is summarized as follows:
Algorithm B:
Input: A set of vertices {v1, . . . , vp}.
Output: A set of waypoints {w1, . . . , wn}.

Phase 1: Same as Phase 1 of Algorithm A.
Phase 2:

1. Compute the distance df s of vf ar from escan;
2. Compute ns by Eq. 22;
3. if ns is odd, then increment it by one;
4. Compute ˆovx and d̂s by Eqs. (23) and (24),

respectively;
5. for (i = 1; i < ns ; i++)

(a) find vlef t and vright ;
(b) Compute the distance d and dr by Eqs. (25)

and (26), respectively;
(c) Compute nw and d̂w as a function of d̂ = d −

dr ;
(d) Place the first waypoint at a distance

(Ly/2, Lx/2) from vlef t (vright) and the other
nw − 1 waypoints at a distance Lx/2 + (i −
1) · d̂s from escan and a distance d̂w from each
other.

Phase 3:

1. For (i = f ar; i < start ; i++)

(a) Compute the distance d from vi to vnext (i);
(b) Compute nw and d̂w;
(c) Place the first waypoint at a distance

(Ly/2, Lx/2) from vi and the other m − 1
waypoints at a distance Lx/2 from ei and d̂w

from each other.

The following lemma analytically proves that, for
certain trapezoidal areas, a path with an even number
of stripes is always shorter than a path with an odd
number of stripes, in spite of the increased overlap
between stripes.

Lemma 1 Let {v1, v2, v3, v4} be a trapezoidal area
where v1 is start vertex and e2 is the longest base.
If γ1 ≤ γ2, then the path length generated by Algo-
rithm B is always less than or equal to the path length
generated by Algorithm A.

Proof For the sake of simplicity, the proof is provided
assuming ovx = ovy = 0. If v1 is the start vertex and
e2 is the longest edge, then we have vstart = vscan =
v1. The two paths generated by algorithms A and B
are illustrated in Fig. 18.

Let λA and λB be the two path lengths, respec-
tively, and let n = �l2/Lx�, computed by Eq. 22, be
an odd number. The two path lengths can be expressed
as follows:{

λA = λs
A + λ

lef t
A + λ

right
A + λret

A

λB = λs
B + λ

lef t
B + λ

right
B + λret

B

where λs
X denotes the total length of the parallel

stripes of the back-and-forth paths generated by Algo-
rithm X, λlef t

X is the length of the left part, λright
X is the

length of the right part, and λret
X is the length of the

return path.

Fig. 18 Paths generated by
algorithms A and B for a
trapezoidal area

J Intell Robot Syst (2016) 83:445–462 457

From Fig. 18 it is easy to see that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λs
A = (l1 + l3)

n
2

λ
lef t
A = l4

2
λ

right
A = l2

2
λret

A = √
(l1 − l2 cos γ2)2 + (l2 sin γ2)2 l31⎧⎪⎪⎪⎨

⎪⎪⎪⎩

λs
B = (l1 + l3)

n+1
2 − (n − 1) Lx

sin γ1

λ
lef t
B = n−1

2n l4

λ
right
B = n+1

2n l2
λret

B = l4

The lemma holds if λB ≤ λA. Subtracting λA from
λB we get

λB −λA = l1 + l3

2
−(n−1)

Lx

sin γ1
+ l2

2n
− l4

2n
+l4−l31.

If a = l2 sin γ2 = l4 sin γ1 is the altitude of the trape-
zoid, we can observe that (n−1)Lx ≥ a, because after
the correction done by Eq. (24), a is divided into n−1
pieces smaller that Lx . Hence we have that

(n − 1)
Lx

sin γ1
≥ a

sin γ1
= l4.

Hence, we can write

λB − λA ≤ l1 + l3

2
+ l2 − l4

2n
− l31.

Being γ1 ≤ γ2, we have that l2 ≤ l4, thus
l2−l4
2n ≤ 0,

hence we can write

λB − λA ≤ l1 + l3

2
− l31.

And since

l3 = l1 − l2 cos γ2 − l4 cos γ1 ≤ l1 − 2l2 cos γ2

we can write

λB − λA ≤ l1 + l3

2
− l31 ≤ l1 − l2 cos γ2 − l31,

that is,

λB − λA ≤ (l1 − l2 cos γ2)

−
√

(l1 − l2 cos γ2)2 + (l2 sin γ2)2 ≤ 0.

Hence the lemma follows.

Note that, provided that γ1 ≤ γ2, Lemma 1 is also
valid for γ2 > π/2, since the quantity l31 increases
for γ2 > π/2. The following lemma shows that, when
γ2 < γ1, there is a critical angle γ ∗

2 which determines
whether path B is shorter than path A, or viceversa.

6 Providing safety guarantees

This section presents two different mechanisms that
are helpful for providing safety guarantees during the
UAV flight. First, an off-line feasibility test is pro-
posed to check that the energy stored in the battery
is sufficient to perform the planned path. Second,
an online fail-safe mechanism is implemented on the
ground station to continuously check that the actual
available energy is always greater than the energy
required to bring the drone back to the starting point.
This mechanism prevents the drone to go to waypoints
that are too far away from the starting point, always
ensuring a safe return path.

6.1 Offline feasibility test

The total energy needed to cover the entire path can be
computed as follows:

Epath = Eclimb(0, hmax) + Edesc(hmax, 0) (27)

+ntEturn +
∑

i

(Eacc(0, v
∗
i) + Ev(di, v

∗
i)

+Edec(0, v
∗
i))

where di is the distance between the extreme way-
points of segment i, v∗

i is the optimal speed computed
for segment i, and nt is the total number of turns in the
path. Given the characteristics of a LiPo battery, the
total available energy can be computed as:

Etot = Vn · IH · 3600 · P% (28)

where P% is the maximum percentage of energy that
can be used (typically 70%) to avoid damaging the
UAV or the battery.

Then, the feasibility test can be simply done by
checking if Epath < Etot . If the feasibility test is
passed, the remaining energy (Etot − Epath) can be
used to increase the spatial resolution of the acquired
images. This can be done by iteratively reducing the
flight altitude, recomputing the path, and re-running
the feasibility test, until an altitude h is found such
that Epath = Etot − ε, where ε is a given toler-
ance. If the feasibility test is not passed, the path has
to be redesigned considering multiple flights or mul-
tiple UAVs. Note that energy can be traded with the
spatial resolution, and the same iterative procedure
can be applied to reduce the total required energy by
increasing the altitude. However, finding the optimal
altitude that minimizesEpath is highly complex due to

458 J Intell Robot Syst (2016) 83:445–462

the non linearity of the problem: increasing/decreasing
the height will change the energy consumption not
monotonically.

6.2 Online battery failsafe mechanism

There are several cases in which a UAV is not able
to complete the entire scheduled path, even when the
off-line feasibility test is passed. This is due to the fact
that the battery could drains more than expected, or
that it was not completely charged. A set of failsafe
operations exists to handle such exceptions, not only
for issues related to the battery, but also for the radio,
GPS, and Ground Station. The current existing battery
failsafe mechanism is triggered when the battery volt-
age crosses a particular threshold. When the failsafe
is triggered is it possible to execute specific recov-
ery actions, such as a (RTL) or LAND. In the current
mechanism, however, the position of the UAV in prox-
imity of the failsafe is not taken into account, hence
it may be too far from the starting point to come back
safely. Figure 19 shows a typical discharging voltage
curve of a 3S battery, highlighting two standard volt-
age failsafe thresholds. The first failsafe triggers an
(RTL) operation when the voltage battery goes below
a threshold Vrtl = 10.4 V for more than 10 seconds.
A second failsafe may force the drone to land after
a second threshold Vland = 9V is crossed, even if
it is still far from the starting point. A more efficient
failsafe could estimate the energy required to come
back to the starting point at every instant and trigger a
safe return-to-launch action, thus preventing the drone
to land in areas difficult to reach. It is worth noting
that, an accurate failsafe is needed to prevent acciden-
tal fall that may cause damage to the UAV and the

t

Fig. 19 Example of discharging voltage curve of a 3S liPo
battery during a flight

0 100 200 300 400 500 600
0

20

40

60

80

100

120

140

160

Time (s)

D
is

ta
nc

e
(m

)

Distance function for a back−and−forth path

Fig. 20 Distance function for the path shown in Fig. 21

objects underneath. Moreover, even if the UAV lands
safely (in a wrong location) an exhausting overuse of
the battery may damage it completely.

In this section, we introduce two functions, called
Distance and Energy function (D-Function and E-
Function) that are needed to implement the behavior
of the online-failsafe mechanism. The D-function rep-
resents the distance of the UAV from the starting point
at every time instant. This function can be computed
off-line by knowing the UAV dynamics, or online as

D(t) = ||x(t) − x(0)|| (29)

where x(t) is the current drone position and x(0)
the starting location. Figure 20 shows the D-Function
corresponding to the path showed in Fig. 21.

0 20 40 60 80 100 120 140

0

20

40

60

80

100

meters (m)

m
et

er
s

(m
)

Fig. 21 Sample path used for computing the D-function
reported in Fig. 20

J Intell Robot Syst (2016) 83:445–462 459

50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

x 10
4

time (s)

E
ne

rg
y

(J
)

Total available energy vith a 5500 mAh 3S LiPo
Total available energy vith a 4400 mAh 3S LiPo
Energy−Distance function when performing the path

Fig. 22 E-function (solid line) of the D-function showed in
Fig. 20. The two descending curves represent the estimated
consumed energy during the path with two different batteries

The E-fucntion represents the energy required by
the UAV to come back from its actual position to the
starting point at every instant. The E-function is com-
puted by substituting the D-Function D(t) in Eq. 16
and summing the energy required to descend to the
ground:

ED(v∗(D(t)), D(t))=Ea(v
∗(D(t)), D(t))+Edesc(h)

(30)

where v∗(D(t)) is the optimal speed to travelD(t) and
h is the actual height at which the drone is flying. The
actual energy Ecurr (t) stored in the battery during a
flight can be expressed as a descending curve where

Ecurr (0) = Etot . Ecurr (t) can be estimated at every
instant t by using the energy model and the planned
path. Then, it is possible to compare the E-function
(along the entire path) with Ecurr (t). If Ecurr (t) is
greater than the ED at every instant, then the entire
path can be traveled safely. Figure 22 shows the E-
function for the path represented in Fig. 21 and the
estimated available energyEcurr (t) at every instant for
two batteries with different maximum capacity. It is
worth noting that this is a graphical representation of
the off-line feasibility test.

As stated above the feasibility test is not enough
to provide safe guarantees. If, at a particular instant,
Ecurr (t) intersects ED the UAV has to return imme-
diately at the starting point with a return-to-launch
operation. We implemented this energy failsafe mech-
anism on the ground station: the UAV sends every
second status messages about its current state, includ-
ing GPS data and a measure of the voltage and the
current. Ecurr (t) is estimated by integrating these two
measurements. The distance is computed with the
GPS information andED by a look-up table that stores
the required energy and the optimal speed for every
distance d. At every second, condition Ecurr (t) ≤ ED

is checked to trigger a return-to-launch action.

7 Experimental Validation

The proposed algorithm has been used to reconstruct
a geographical area of agricultural interest to study
the growth of vegetation over time. The survey area
with the planned path is showed in Fig. 23, while the

Fig. 23 The picture shows
a set of waypoints that
cover an area of interest

460 J Intell Robot Syst (2016) 83:445–462

Fig. 24 The picture shows the resulting ortho-mosaic of the
area covered with the waypoints of Fig. 23

corresponding ortho-mosaic generated image is shown
in Fig. 24. This section presents two specific exper-
iments aimed at validating the proposed approach.
The first experiment was performed to compare Algo-
rithm A and B, whereas the second one was carried
out to test the proposed online failsafe mechanism.
Both experiments were performed using an IRIS quad-
copter equipped with a 5500 mAh 3S LiPo battery and
all the measurements were logged in an SD card.

7.1 Comparing Algorithm A and B

In the first experiment, two flights were performed
to compare the two algorithms. The area of interest
is a rectangular area of dimension 150 m x 100 m.,
the camera has an AOV α = 94.4 deg, Ts = 1 s,
Te = 1/580 s, and the required resolution is Rd =
1.6 pixel/cm. The maximum altitude computed by
Eq. 4 results to be hmax = 11.6 m, hence we set the
h = 11 m, and the overlap is ovy = ovy = 0 m. The
fastest speed of the quadcopter is v = 15.5 m/s, how-
ever Eq. (7) impose a bound on the maximum speed,
that is vmax = min(38.1, 14.73) = 14.37 m/s. In
this experiment vmax resulted greater than the optimal
speed v∗, hence the constraint expressed by Eq. (7) is
not effective.

A first flight was done by creating the set of way-
points using Algorithm A, choosing an area resulting
in a odd number of stripes (ns = 5), while a second
flight was done on the path produced by Algorithm B
on an even number of stripes (ns = 6). Table 2 shows
the total traveled distance, the total amount of con-
sumed energy, the amount of time taken to complete
the paths, and the number of turns for the two flights.

Table 2 Parameters related to the first experiment

Variable ns odd ns even

Total distance 926.25 m 896.1 m

Horizontal Overlap 11.3% 29.1%

Total energy 7.83 · 104 J 8.81 · 104 J
Total time 284 s 316 s

Number of stripes 5 6

Number of turns 9 11

As predicted by Lemma 1, the path generated by
Algorithm B resulted in a shorter traveled distance,
increasing the image overlap by 30%. However, since
Algorithm B always produces two more turns than
Algorithm A, the total time and energy required by
Algorithm B resulted to be higher than the correspond-
ing time and energy required by Algorithm A. Note
that the energy increase is more significant when the
flight has a short duration and the number of stripes is
low, because the energy needed to perform two more
turns is comparable or even greater than the energy
saved on the total distance. Also note that such an
energy increase is a phenomenon that is specifically
related to quadcopters, where the energy consumed
during turns and decelerations is quite high. In other
vehicles characterised by a different energy models,
such as wheeled robots, the observed phenomenon
does not appear, since the energy consumed to perform
a turn is much lower than the energy used to travel a
distance.

In general, since none of the two algorithms are
able to minimize the energy consumption in all pos-
sible situations, the user could run both of them and
select the one that leads to the least energy consump-
tion.

7.2 Experiment on the Energy failsafe

A second experiment was performed on the path
showed in Fig. 21 to test the online failsafe mecha-
nism described in Section 6.2. First, a feasibility test
was successfully performed on a 3S 5500 mAh LiPo
battery. However, in order to test the energy-failsafe
mechanism, a battery with less capacity (4400 mAh)
was used in the experiment. A previous estimation of
Ecurr (t) (Fig. 22) showed that with this battery the
energy expired before concluding the path. Figure 25

J Intell Robot Syst (2016) 83:445–462 461

Time (s)
100 150 200 250 300 350

E
ne

rg
y

(J
)

104

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Measured E-Function
Measured remaining Energy
Voltage fail-safe trigger instant

Fig. 25 The E-function (solid line) measured during the flight
of the second experiment. The remaining Energy (dashed line)
intersects the E-Function triggering a Return-to-Launch. The
vertical dashed and dotted line represents the instant in which
the voltage fail-safe triggers an RTL

shows the E-function and the remaining energy mea-
sured by the ground station. During the actual flight,
Ecurr (t) (dashed line) intersects the E-function (solid
line) when the UAVwas finishing the 7th strip (as esti-
mated by the model) and a return-to-launch operation
was triggered.

We observed that the classical voltage fail-safe
threshold (vertical dashed-and-dotted line in Fig. 25)
was passed when the UAV was already in the descend-
ing phase, confirming the timely activation of the
proposed energy failsafe online mechanism.

In summary, this experiment showed two impor-
tant results: first, it further validated the energy model,
since the intersection between the E-function and the
remaining energy was correctly estimated; second, the
energy failsafe mechanism was triggered at the correct
time instant, permitting a safe return to home without
landing in unreachable areas and also preventing the
battery to over discharge.

8 Conclusions

This paper presented a coverage path planning algo-
rithm able to account for energy and resolution con-
straints specified on the mission. The paper described
a method for deriving an energy model of a specific
UAV starting from real measurements and using it to

compute the speed that minimizes energy consump-
tion along straight paths of a given length. Once the
full path is generated, the proposed algorithm was
used to derive the speed that minimizes the energy
consumption for each segment of the path. Then, a
feasibility test has been proposed to verify whether
the energy available on the UAV is sufficient to scan
the entire area. Finally, the proposed energy model
has been also used to introduce an additional fail-
safe mechanism triggered when the residual energy
is just sufficient to bring the UAV back to the initial
point.

As a future work we plan to derive the results
proved for a trapezoidal area to generic convex areas
and extend the proposed approach to multiple drones
that have to be coordinated to fulfill the mission on
larger areas or in shorter times.

References

1. Grenzdörffer, G., Engel, A., Teichert, B.: The photogram-
metric potential of low-cost UAVs in forestry and agricul-
ture. Int. Arch. Photogram. Rem. Sens. Spatial Inform. Sci.
31(B3), 1207–1214 (2008)

2. Zarco-Tejada, P.J., Berni, J.A., Suárez, L., Fereres, E.: A
new era in remote sensing of crops with unmanned robots.
SPIE Newsroom, pp. 2–4 (2008)

3. Kazmi, W., Bisgaard, M., Garcia-Ruiz, F., Hansen, K.D.,
la Cour-Harbo, A.: Adaptive surveying and early treatment
of crops with a team of autonomous vehicles. In: European
Conference on Mobile Robots, pp. 253–258 (2011)

4. Nikolic, J., Burri, M., Rehder, J., Leutenegger, S.,
Huerzeler, C., Siegwart, R.: A UAV system for inspec-
tion of industrial facilities. In: Aerospace Conference 2013
IEEE, pp. 1–8. IEEE (2013)

5. Casbeer, D.W., Kingston, D.B., Beard, R.W., McLain,
T.W.: Cooperative forest fire surveillance using a team
of small unmanned air vehicles. Int. J. Syst. Sci. 37(6),
351–360 (2006)

6. Galceran, E., Carreras, M.: A survey on coverage path plan-
ning for robotics. Robot. Auton. Syst. 61(12), 1258–1276
(2013)

7. Maza, I., Ollero, A.: Multiple UAV cooperative searching
operation using polygon area decomposition and efficient
coverage algorithms. In: Distributed Autonomous Robotic
Systems 6, pp. 221–230. Springer (2007)

8. Barrientos, A., Colorado, J., Cerro, J.d., Martinez, A.,
Rossi, C., Sanz, D., Valente, J.: Aerial remote sensing in
agriculture: a practical approach to area coverage and path
planning for fleets of mini aerial robots. J. Field Robot.
28(5), 667–689 (2011)

9. Öst, G.: Search Path Generation with UAV Applications
Using Approximate Convex Decomposition, Masters The-
sis. Linköpings universitet, Sweden (2012)

462 J Intell Robot Syst (2016) 83:445–462

10. Santamaria, E., Segor, F., Tchouchenkov, I., Schoenbein,
R.: Rapid aerial mapping with multiple heterogeneous
unmanned vehicles. International Journal On Advances in
Systems and Measurements 6(3 and 4), 384–393 (2013)

11. Bast, H., Hert, S.: The area partitioning problem. In: 12th
Canadian Conference on Computational Geometry (2000)

12. Huang, W.H.: Optimal line-sweep-based decompositions
for coverage algorithms. In: International Conference on
Robotics and Automation (ICRA), vol. 1, pp. 27–32. IEEE
(2001)

13. Lawrance, N., Sukkarieh, S.: Wind Energy Based Path
Planning for a Small Gliding Unmanned Aerial Vehicle.
In: AIAA Guidance Navigation and Controls Conference,
American Institute of Aeronautics and Astronautics (2009)

14. Al-Sabban, H.W., Gonzalez, L.F., Smith, R.N.: Wind-
energy based path planning for unmanned aerial vehicles
using markov decision processes. In: International Confer-
ence on Robotics and Automation (ICRA), pp. 784–789.
IEEE (2013)

15. Roberts, J.F., Zufferey, J.-C., Floreano, D.: Energy manage-
ment for indoor hovering robots. In: International confer-
ence on Intelligent Robots and Systems (IROS), pp. 1242–
1247. IEEE (2008)

16. Mei, Y., Lu, Y.-H., Hu, Y.C., Lee, C.G.: Deployment of
mobile robots with energy and timing constraints. IEEE
Trans. Robot. 22(3), 507–522 (2006)

17. Di Franco, C., Buttazzo, G.: Energy-aware coverage path
planning of UAVs. In: Proceedings of the IEEE Inter-
national Conference on Autonomous Robot Systems and
Competitions (ICARSC 2015), (Vila Real, Portugal). IEEE,
April 8–10 (2015)

Carmelo Di Franco is currently a Ph.D. student in embedded
computing systems at the ReTiS Lab of the Scuola Superiore
Sant’Anna, Pisa. He graduated cum Laude in 2013 in computer
engineering at the University of Pisa. His research focuses on
localization and navigation algorithms for mobile robots. In par-
ticular, he works on multi-sensor data fusion, distance-based
relative localization, and energy-efficient coverage path plan-
ning of UAVs. He is involved in a project in which fleets of
drones are used to monitor the growth of plants in farms to find
plant infections and prevent bad crops.

Giorgio Buttazzo is full professor of computer engineering at
the Scuola Superiore Sant’Anna of Pisa. He graduated in elec-
tronic engineering at the University of Pisa in 1985, received
a M.S. degree in computer science at the University of Penn-
sylvania in 1987, and a Ph.D. in computer engineering at the
Scuola Superiore Sant’Anna of Pisa in 1991. From 1987 to
1988, he worked on active perception and real-time control at
the G.R.A.S.P. Laboratory of the University of Pennsylvania,
Philadelphia. He has been Program Chair and General Chair of
the major international conferences on real-time systems and
Chair of the IEEE Technical Committee on Real-Time Systems.
He is Editor-in-Chief of Real-Time Systems, Associate Editor
of the IEEE Transactions on Industrial Informatics, and IEEE
Fellow since 2012. He has authored 7 books on real-time sys-
tems and over 200 papers in the field of real-time systems,
robotics, and neural networks.

	Coverage Path Planning for UAVs Photogrammetry with Energy and Resolution Constraints
	Abstract
	Introduction
	Related Work
	System model
	Camera Model
	LiPo Battery characteristics
	Energy model

	Finding the optimal speed
	Constant speed
	Variable speed

	Path planning
	Back-and-forth path
	Improving the path

	Providing safety guarantees
	Offline feasibility test
	Online battery failsafe mechanism

	Experimental Validation
	Comparing Algorithm A and B
	Experiment on the Energy failsafe

	Conclusions
	References

