
OSEK-Like Kernel Support for Engine Control

Applications Under EDF Scheduling

Vincenzo Apuzzo, Alessandro Biondi, Giorgio Buttazzo

Scuola Superiore Sant’Anna, Pisa, Italy

Email: v.apuzzo@hotmail.com, alessandro.biondi@sssup.it, giorgio.buttazzo@sssup.it

Abstract—Engine control applications typically include com-
putational activities consisting of periodic tasks, activated by
timers, and engine-triggered tasks, activated at specific angular
positions of the crankshaft. Such tasks are typically managed
by a OSEK-compliant real-time kernel using a fixed-priority
scheduler, as specified in the AUTOSAR standard adopted by most
automotive industries. Recent theoretical results, however, have
highlighted significant limitations of fixed-priority scheduling in
managing engine-triggered tasks that could be solved by a dynamic
scheduling policy.

To address this issue, this paper proposes a new kernel
implementation within the ERIKA Enterprise operating system,
providing EDF scheduling for both periodic and engine-triggered
tasks. The proposed kernel has been conceived to have an API
similar to the AUTOSAR/OSEK standard one, limiting the effort
needed to use the new kernel with an existing legacy application.
The proposed kernel implementation is discussed and evaluated
in terms of run-time overhead and footprint. In addition, a sim-
ulation framework is presented, showing a powerful environment
for studying the execution of tasks under the proposed kernel.

I. INTRODUCTION

Engine control applications are typically characterized by

two types of computational activities: those regularly activated

by a timer at constant time intervals (periodic tasks) and those

activated at specific angular values of the crankshaft (angular

tasks) [1]. Note that the activation rate of angular tasks is

proportional to the engine rotation speed, meaning that the

overall processor load (or utilization) also varies with the speed.

In these systems, periodic tasks have periods ranging from

a few milliseconds up to 100 ms (see [1], page 152), whereas

angular tasks (assuming that engine speed can vary from 500

to 6500 revolutions per minute (RPM) and assuming a single

activation per cycle) have interarrival times ranging from about

10 to 120 ms.

To prevent overload conditions at high engine speeds, angular

tasks are often implemented to reduce their computational

demand as the rotation speed increases [2], exploiting the fact

that simpler control algorithms are required at higher speed,

where the system is more stable. In particular, angular tasks

are implemented as a set of execution modes, each executed

within a predefined speed range. For this reason, they are also

referred to as adaptive variable-rate (AVR) tasks.

Today, within the European automotive industry, engine

control applications are developed on top of fixed priority

real-time kernels, under the OSEK [3] standard, within the

AUTOSAR [4] standard framework. However, as already ob-

served in [5], a pure fixed-priority scheduler is not the best

choice in this type of applications, since there are several

engine speeds at which any fixed priority assignment is far

from being optimal, thus significantly penalizing the system

schedulability. In this context, a dynamic priority scheduler,

such as Earliest Deadline First (EDF) [6] would allow achieving

a much higher schedulability, independently on the period

values. Such a claim is also confirmed by extensive simulation

experiments reported in [5], which showed that, while EDF

is able to guarantee the schedulability of the system up to

high utilization values close to 95%, a fixed priority scheduler

exhibits a significant degradation for utilization values much

lower than those observed in classical periodic scheduling.

Guo and Baruah [7] also confirmed the effectiveness of EDF

scheduling for AVR tasks through a speed-up analysis.

This fact was the main motivation that convinced us to

develop an efficient support for AVR tasks in a real-time kernel

with an EDF scheduler. Today, EDF is available in a few

operating systems, as example ERIKA Enterprise [8], Linux,

using the SCHED DEADLINE scheduling class [9], or through

the EDF plugin for OSEK/VDX proposed in [10].

The kernel selected for our implementation is ERIKA En-

terprise [8] (ERIKA for short). Besides providing an OSEK-

certified kernel (today used by automotive industries), ERIKA

is (to the best of our knowledge) the only RTOS offering

EDF scheduling with an OSEK-like API [11] and a static

configuration of the kernel, as mandated by OSEK. However,

the native EDF support in ERIKA does not include some

features needed to manage engine-triggered tasks. Therefore, in

this work we developed an EDF support for engine-triggered

tasks that has minimal differences in terms of API and RTOS

configuration with respect to standard OSEK specifications,

thus minimizing the effort for integrating the proposed kernel

with existing engine-control applications.

Although the presented issues have been discussed for the

ERIKA RTOS, the proposed implementation can also be ex-

tended to other RTOSes that will provide EDF scheduling with

an OSEK-like API.

Contributions. This paper presents the following contributions:

• A new kernel implementation within the ERIKA En-

terprise operating system is proposed, providing EDF

scheduling for both periodic and engine-triggered tasks.

Different approaches have been considered, discussed and

evaluated for the implementation.

• Experimental results are presented to evaluate the imple-

mentation in terms of footprint and run-time overhead.

• A simulation framework based on the Lauterbach Trace32

giorgio
Text Box
Proceedings of the 22nd IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS 2016), Vienna, Austria, April 11-14, 2016.



tool is presented, providing a powerful environment for

studying the execution of tasks under the proposed kernel.

Paper structure. The rest of the paper is organized as follows.

Section II presents the system model and an overview on the

ERIKA RTOS. Section III discusses the scheduling of AVR

tasks under both fixed-priority and EDF scheduling. Section IV

presents the implementation of the kernel support for schedul-

ing AVR tasks under EDF scheduling. Section V presents the

proposed simulation framework. Section VI reports a set of

experimental results for evaluating the kernel implementation.

Finally, Section VII summarizes the results and states our

conclusions.

II. MODEL AND BACKGROUND

This section introduces the model typically adopted for the

engine and the related computational activities.

A. Rotation Source Model

In this paper, the engine is considered as a rotation source

that triggers the execution of the AVR tasks at predefined

angles. It is characterized by the following state variables:

θ the current rotation angle of the crankshaft;

ω the current angular speed of the crankshaft;

α the current angular acceleration of the crankshaft.

The rotation speed ω is assumed to be limited within a range

[ωmin, ωmax] and the acceleration α is assumed to be limited

within a range [α−, α+]. Typical realistic values of such

parameters are reported in Table I.

Parameter min max

ω (RPM) 500 6500

α (RPM/s) -97.2 ·102 97.2 ·102

Table I: Typical ranges for the engine speed and acceleration.

B. Task Model

The software composing an engine control application

is modeled as a set n real-time preemptive tasks Γ =
{τ1, τ2, . . . , τn}. Each task can be a regular periodic task, or

an AVR task, activated at specific crankshaft rotation angles.

For the sake of clarity, an AVR task is denoted as τ∗
i

.

Both periodic and AVR tasks are characterized by a worst-

case execution time (WCET) Ci, an interarrival time (or period)

Ti, and a relative deadline Di. However, while for regular

periodic tasks such parameters are fixed, for angular tasks they

depend on the engine rotation speed ω. An AVR task τ∗
i

is

characterized by an angular period Θi and an angular phase

Φi, so that it is activated at the following angles:

θi = Φi + kΘi, for k = 0, 1, 2, . . .

This means that the inter-arrival time of an AVR task (in steady-

state conditions) is inversely proportional to the engine speed

ω and can be expressed as

Ti(ω) =
Θi

ω
. (1)

An angular task τ∗
i

is also characterized by a relative angular

deadline ∆i expressed as a fraction δi of the angular period

(δi ∈ [0, 1]). In the following, ∆i = δiΘi represents the relative

angular deadline.

All angular phases Φi are relative to a reference position

called Top Dead Center (TDC) corresponding to the crankshaft

angle for which at least one piston is at the highest position

in its cylinder. Without loss of generality, the TDC position is

assumed to be at θ = 0.

When considering dynamic conditions (i.e., with accelera-

tion) the inter-arrival time of an AVR task cannot be expressed

by Equation (1). Following the approach proposed by Buttazzo

et al. [12], if ω is the instantaneous engine speed at the release

of a job for AVR task τ∗
i

, the inter-arrival time to the next job

can be computed (assuming a constant acceleration α) as:

Ti(ω, α) =

√
ω2 + 2Θiα− ω

α
. (2)

As explained in the introduction, an AVR task τ∗
i

is typically

implemented as a set Mi of Mi execution modes. Each mode

m has a different WCET Cm

i
and operates in a predetermined

range of engine speeds (ωm+1
i

, ωm
i

], where ωMi+1
i

= ωmin

and ω1
i
= ωmax. Hence, the set of modes of task τ∗

i
can be

expressed as

Mi = {(Cm

i , ωm

i ),m = 1, 2, . . . ,Mi}.

We assume that the computation time of a generic AVR task

can be expressed as a non-increasing step function Ci of the

instantaneous speed ω at its release, that is,

Ci(ω) ∈ {C1
i , . . . , C

Mi

i
}. (3)

An example of C(ω) function is illustrated in Figure 1.

30002000 4000 60001000 5000 7000

Ci(ω)

C1
i

C2
i

C3
i

C4
i

ω(RPM)
ωmin ω1

i
= ωmaxω2

i
ω3
iω4

i

Figure 1: Worst-case execution time of an AVR task as a

function of the speed at its activation.

A possible implementation for such tasks can be the one

reported in Figure 2 that implements the modes reported in

Figure 1. In this example a sequence of if statements is used

for enabling the execution of a set of functions [2], [12].

The function read_rotation_speed() returns the

speed estimate of the rotation source available at the time at

which the task is activated (not at the time at which the function

is executed).

In the following, when a single AVR task is addressed, the



#define omega1 7000
#define omega2 4000
#define omega3 3000
#define omega4 2000

TASK (sample_task) {

omega = read_rotation_speed();

f0();
if (omega ≤ omega4) f1();
if (omega ≤ omega3) f2();
if (omega ≤ omega2) f3();
if (omega ≤ omega1) f4();

}

Figure 2: Example of implementation of an AVR task.

task index is removed by the AVR task parameters for the sake

of readability.

C. ERIKA Enterprise

ERIKA Enterprise [8] (ERIKA for short) is an OSEK/VDX

certified RTOS that uses innovative programming features to

support time sensitive applications on a wide range of micro-

controllers and multi-core platforms. It is provided as an open-

source kernel that allows achieving high predictable timing

behavior with a very small run-time overhead and memory

footprint (in the order of a few kilobytes). ERIKA comes

in two kernel versions: (i) the OSEK standard, with its four

conformance classes BCC1,BCC2,ECC1 and ECC2, that is

also certified as OSEK-compliant, and (ii) other custom (non-

standard) conformance classes that are:

• FP, offering a minimal implementation of fixed-priority

scheduling with preemption thresholds [13];

• EDF, providing dynamic priority scheduling through the

Earliest Deadline First (EDF) algorithm [6] and the Stack

Resource Policy (SRP) [14];

• FRSH, implementing the IRIS [15] scheduling algorithm

for resource reservation;

• HR, offering a two-level hierarchical scheduling frame-

work through the M-BROE [16] algorithm.

In general, ERIKA supports both periodic and aperiodic tasks

under fixed and dynamic priorities and includes mutex primi-

tives for guaranteeing bounded blocking on critical sections.

Two types of interrupt handling mechanisms are provided:

a fast one (also referred to as Type 1) for short and urgent

I/O operations, returning to the application without calling the

scheduler, and a safe one (also referred to as Type 2) that calls

the scheduler at the end of the service routine, meant to be

used for the interaction with kernel objects (e.g., for activating

a task).

In ERIKA, all the RTOS objects like tasks, alarms and

semaphores are static, as specified by the OSEK/VDX standard.

This means that all the RTOS configurations are predefined at

compile time and cannot be changed at run-time. The choice of

using a static approach is crucial for containing both footprint

and run-time overhead, obtaining a tailored RTOS image that is

optimized for a specific application-dependent kernel configura-

tion. In ERIKA, the objects composing a particular application

are specified in the OSEK Implementation Language (OIL) and

stored in proper configuration files. The ERIKA development

environment also includes RT-Druid, which is a tool in charge

of processing the OIL configuration to generate the specific

ERIKA code for the requested kernel configuration.

The EDF conformance class. In this paper we focus on the

EDF conformance class of ERIKA, which has been used a

baseline for the development of the support for engine-triggered

tasks. A key feature of this implementation is that it has

the standard OSEK API, offering the possibility of making a

transparent integration with existing OSEK applications. The

only difference consists in an additional OIL parameter (with

respect to the standard OSEK ones) for configuring the relative

deadlines of tasks. The implementation relies on a circular

timer for managing the internal time representation. This ap-

proach allows treating the absolute time representation (and

hence absolute deadlines) with 32-bit variables, containing the

runtime overhead and footprint. The access to mutual exclusive

resources is regulated through the SRPT algorithm [17], which

combines the SRP protocol with preemption thresholds [13] to

reduce the number of preemptions and save stack space. Please

refer to [11] for additional details, where the implementation

of the ERIKA EDF conformance class is discussed in depth.

III. SCHEDULING OF AVR TASKS

When scheduling classical periodic tasks (with implicit dead-

lines), the Rate-Monotonic priority assignment, which assigns

higher priority to tasks having higher rate, is known to be

optimal, thus maximizing the task set schedulability with re-

spect to any other fixed-priority assignment. In engine control

applications, however, the Rate-Monotonic criterium makes

little sense, because engine-triggered tasks are, by definition,

variable-rate tasks. For instance, consider a task set composed

of two periodic tasks, having respectively periods T1 = 20 ms

and T2 = 50 ms, and an AVR task having angular period Θ =
2π. A production car engine typically ranges from ωmin = 500
RPM to ωmin = 6500 RPM, leading to an interarrival time of

the AVR task ranging from Tmin ≈ 10ms to Tmax = 120ms.

Hence, for every fixed priority assignment, there are a set of

engine speeds for which the priority assignment is different

from the optimal one determined by Rate-Monotonic. As an

example, consider the case in which the AVR task has the

highest priority, followed by the two periodic tasks in Rate-

Monotonic order. In this case, when the engine speed is high

(specifically, greater than 3000 RPM), the AVR task has an

interarrival time lower than T1 = 20 ms and the priority

order follows the Rate-Monotonic criterium. Conversely, at low

speeds, the AVR task has an interarrival time greater than

T1, and possibly also greater than T2, making the priority

assignment far from the one established by Rate-Monotonic.

The situation can be worse when considering more than one

AVR task and other periodic tasks.

For this reason, it is interesting to consider alternative priority

assignment rules as a function of the engine speed to support

engine control tasks. EDF is a dynamic priority scheduling

algorithm, known to be optimal on uniprocessor systems [18].

Under EDF scheduling, an absolute deadline d must be assigned

to each job at its activation time t in order to be scheduled.



For classical periodic tasks, the absolute deadline can easily be

computed by using their relative deadline D as d = t + D;

however, this is not the case for the jobs belonging to an

AVR task. As explained in Section II, an AVR task has

fixed angular parameters, which becomes variable temporal

parameters depending on the rotation source. Hence, the relative

deadline of an AVR task is a variable parameter, which is a

function of engine state at the release of a job and the future

evolution of the rotation source in terms of acceleration.

. . .. . .

0

0

τ∗

α+ α−

α = 0θ(t)

Θ

t

tT (ω, α+) T (ω, α−)

Figure 3: Possible deadlines of an AVR job activated at speed

ω.

To better clarify this point, consider an AVR task τ∗ having

implicit angular deadline (Θ = ∆) released at time t when

the rotation source has instantaneous speed ω(t) = ω0 and

angular position θ(t) = 0, as reported in Figure 3. The relative

deadline of τ∗ is therefore equal to the upcoming interarrival

time of the task, that is the time t′ at which the rotation source

reaches the position θ(t′) = Θ. However, the upcoming arrival-

time is not known a priori, since it depends on the evolution

that the rotation source will have in the angular interval [0,Θ].
In particular, all possible values T (ω) ∈ [T (ω, α+), T (ω, α−)]
can be interarrival times to the next job, that are the ones

in the range determined by the maximum acceleration α+

and deceleration α− allowed for the rotation source. This

reasoning brings to the conclusion that computing the exact

relative deadline of an upcoming job of an AVR task requires

clairvoyance, thus preventing the achievement of an optimal

schedule with EDF.

Besides the identified issue, it is anyhow possible to achieve

a safe schedule assigning each job the earliest possible deadline

among those compatible with the speed at its activation, that is,

the one derived assuming the maximum acceleration α+ from

the task release on. Using such a rule, the relative deadline of

an AVR task τ∗
i

released at the instantaneous engine speed ω

results

Di(ω) =

√
ω2 + 2∆iα+ − ω

α+
. (4)

The above equation is obtained as a special case of Equa-

tion (2). Please note that since EDF is a job-level fixed-priority

scheduling policy, such a deadline will be fixed for the whole

execution of the upcoming job. Experimental results presented

in [5] showed that scheduling engine control applications by

EDF can guarantee task sets having utilization up to almost

100% of the processor utilization, while fixed-priority schedul-

ing exhibits a significant degradation for processor utilization

values that are much lower than those observed in classical

periodic scheduling. The same trend has been observed in

the average case by means of a scheduling simulator. As an

example, Figure 4 (Figure 10 in [5]) reports the result of an

experiment carried out to compare the schedulability perfor-

mance of EDF and fixed-priority scheduling on a synthetic

workload consisting of 5 periodic tasks and a single AVR task.

Task priorities were assigned according to Rate-Monotonic,

considering the shortest interarrival time of the AVR task. As

it can be observed from the graph, the fixed-priority test starts

rejecting task sets at very low utilization values (U = 0.3),

while EDF is able to guarantee schedulability for utilizations

very close to 1.0. Please refer to [5] for additional details on

such experiments.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

U

S
ch

ed
u

la
b

il
it

y
ra

ti
o

EDF

FP

Figure 4: Schedulability performance of EDF and fixed priority

scheduling for different task set utilization U . Results were

obtained for task sets including 5 periodic tasks and a single

AVR task.

These results convinced us to develop a kernel support for

AVR tasks under EDF scheduling.

IV. EDF KERNEL SUPPORT FOR AVR TASKS

This section describes the EDF kernel support developed for

scheduling AVR tasks. Section IV-A first discusses the schedul-

ing flow for managing AVR tasks. Then Section IV-B describes

the API extension needed for supporting the activation of AVR

tasks and Section IV-C discusses two approaches for handling

the deadline computation of AVR tasks. Finally, Section IV-D

presents the extension of the OIL specification language needed

to configure AVR tasks.

A. Scheduling flow

In this section we address the relationship between the

engine physical parameters (namely the engine speed and the

crankshaft position) and the scheduling parameters managed by

the RTOS.

Engine control applications typically maintain the notion of

current engine speed (generally through an estimation tech-

nique [19], [20]), which is also used by the code of the AVR

tasks to self-adapt their behavior (i.e., performing a mode

change) as illustrated in Figure 2.



In this work, two measurement units are considered for the

engine speed:

• RPM, expressed by an integer value;

• revolutions/ticks, expressed by a floating point value.

The first case covers the situation in which the engine speed

is provided by an external device, named Time Processing

Unit (TPU), commonly present in microcontrollers designed

for automotive applications. An example is described in [21],

where the microcontroller manufacturer provides a firmware

library for the TPU returning the engine speed in RPM as a 32-

bit integer value. At the same time, this case can be considered

as a representative scenario in which the speed is represented as

an integer value. On the other hand, the second case considers

a representative scenario in which the engine speed is measured

by using a temporal reference of the microcontroller (e.g., an

internal timer) producing a floating point number.

In both the cases we assume that the engine speed is available

at any time in a memory location.

AVR tasks are triggered by an event which is dependent

on the engine rotation. Once the crankshaft reaches some

particular angular positions θ a set of AVR tasks have to be

activated. To this purpose, an interrupt signal is provided to the

microcontroller notifying that the crankshaft has reached the

position θ. This interrupt is typically originated by an external

device connected to a crankshaft position sensor [21]. The

firmware running on the microcontroller can then react to this

interrupt with an interrupt service routine (ISR) invoking and

RTOS call to actually activate the task.

As discussed in Section III, a speed-dependent relative

deadline has to be computed at the release-time of each job to

support EDF scheduling of AVR tasks. This is not required for

scheduling classical periodic/sporadic tasks where the relative

deadline is constant. This fact affects the mechanism of the

kernel that activates a new job in the system because (i) the

activation of an AVR task must take into account the engine

speed for computing the absolute deadlines of its jobs and (ii)

the RTOS API must offer a system call for activating AVR

tasks.

In the following sections we propose an API extension for

AUTOSAR/OSEK RTOS to overcome this limitation and we

present a study on how to efficiently compute job relative

deadlines for AVR tasks.

It is worth observing that, although AVR tasks make use

of the engine speed to adapt their behavior, no specific RTOS

support is required for their mode change. In fact, since an

EDF scheduler is agnostic of the WCETs, AVR tasks can self-

adapt their functional behavior without any intervention of the

scheduler.

B. Handling activations of AVR tasks

In the standard AUTOSAR/OSEK API the task activation is

performed with the following system call

ActivateTask (TaskType TaskID),

where TaskID represents the identifier of the task for which

a job has to be activated. In the former ERIKA EDF support,

the same system call has been held to keep the API OSEK-

compliant. Such a call computes the absolute deadline for each

upcoming job by using the implicit (constant) relative deadline.

As reported in Equation (4), however, the relative deadline

of an AVR task depends on the current engine speed ω, hence

determining the need for extending the standard OSEK API

with a new ActivateTask system call, as follows:

ActivateTask (TaskType TaskID, SpeedType w),

where w represents the current engine speed at the time at which

the task is activated.

An example of usage of the new ActivateTask system

call is reported in Figure 5. In this example we suppose to

have an interrupt signal that is generated every half rotation of

the crankshaft which is handled by a type 2 interrupt service

routine (please refer to Section II-C). The code in the body

of the ISR simply retrieves the current engine speed and then

makes use of the new system call for activating an AVR task

having task identifier AVRTask_180_degrees.

ISR2 (crankAngle_0_180) {

SpeedType w = getCurrentSpeed();

ActivateTask (AVRTask_180_degrees, w);

}

Figure 5: Example of usage of the new ActivateTask

system call.

Please note that Equation (4) holds when ω represents the

actual instantaneous speed at a task activation. However, in

practice, it is not possible to have an exact characterization

of the instantaneous engine speed which has to be estimated

in some way (e.g., as an average speed in some intervals

as reported in [20]): this error can be anyway accounted by

overestimating the maximum acceleration α+.

The new ActivateTask system call is in charge of

computing the current relative deadline Di(ω) expressed in

Equation (4), so obtaining the absolute deadline di = t+Di(ω),
where t is the current time at which ActivateTask is

invoked. Once the absolute deadline is computed, all the

existing code in ERIKA for managing task activations under

the EDF conformance class can be reused. At this point, it

results clear that the key challenge for supporting AVR tasks

is to provide an efficient implementation of Equation (4) and

manage the additional data structures needed to store the AVR

task parameters.

C. Deadline computation for AVR tasks

Equation (4) can be computed by means of the native square

root function available in the standard C mathematical library,

however this approach results in an inefficient implementation,

leading to unnecessary runtime overhead at each task activation.

For this reason, two alternative approaches are investigated

and compared in this paper for implementing the deadline

computation:

1) The first approach uses an iterative computation method to

approximate the value of the square root function. It has



a negligible impact in terms of footprint, but increases the

run-time overhead of the ActivateTask system call.

2) The second approach uses a lookup table to store a

set of deadline values with a given speed granularity. It

introduces a small run-time overhead, but it significantly

increases the footprint, which becomes dependent on the

required resolution and the number of AVR tasks (as

explained below).

Both approaches have been implemented in the kernel to

precisely evaluate them. The user can select the preferred

method in the RTOS configuration, as it will be described

in Section IV-D. In the following, the two approaches are

discussed and evaluated in terms of numerical error, footprint,

and run-time overhead.

Please note that the main purpose of the following sections

is not to describe how to efficiently implement specific nu-

merical approximation methods, but to show how such details

may significantly affect the performance of a specific RTOS

implementation.

1) Fast Square Root Approach: Considering that OSEK

RTOSes are static (i.e., no tasks can be created at run-time),

a part of Equation (4) can be pre-computed at compile time,

thus reducing the amount of computation needed at run-time.

To this purpose, for each AVR task τ∗
i

we define the parameters

K
(a)
i

= 1
α+ and K

(b)
i

= 2∆iα
+.

Using such parameters, Equation (4) can be rewritten as

Di(ω) = K
(a)
i

(
√

ω2 +K
(b)
i

− ω

)

, (5)

thus avoiding one division and one multiplication at run-time.

Hence, the additional data structures needed to support the

scheduling of AVR tasks are:

TypeAVRParams K_A[MAX_AVR_TASKS];

TypeAVRParams K_B[MAX_AVR_TASKS];

where MAX_AVR_TASKS represents the number of AVR tasks

in the task set and TypeAVRParams is a floating point data

type.

Observing Equation (5), it is easy to note that the bottle-

neck for having an efficient implementation for the deadline

computation is the square root function.

After comparing different methods for implementing the

square root function, we identified an algorithm, denoted as

FastSQRT [22], providing a fast computation of an approx-

imation of the square root. Such an algorithm relies on the

Newton’s method for iteratively computing the square root of

a number, but improves on its original formulation by selecting

an initial value for the iteration that is able to considerably

reduce the error with only two iterations. The initial value for

the iteration is computed by means of a particular constant

which has been formally studied in [22], [23].

As reported in Appendix A, we identified that the FastSQRT

algorithm presents an error always lower than 0.04% for this

specific application domain. This algorithm has also been

evaluated in terms of run-time overhead: the results are reported

in Section IV-C3.

∆ω (RPM) AVG err (%) MAX err (%) Footprint (bytes)

32 0.002 0.013 750

64 0.009 0.05 376

128 0.036 0.2 188

256 0.145 0.79 96

512 0.58 2.99 48

1024 2.36 10.493 24

Table II: Percentage of error and footprint for the lookup table

approach under different values of ∆ω.

2) Lookup Table Approach: The second approach consid-

ered in this work for computing the deadline of AVR tasks

relies on an off-line pre-computation of Equation (4) for the

whole range of engine speeds. The values of Equation (4) are

computed off-line by using a quantization step ∆ω and stored

as constants in an array. Details on the construction of the

lookup table are reported in Appendix B.

Please note that, the value of ∆ω results now crucial for

determining the precision and the additional footprint imposed

by this approach. Table II reports a numerical evaluation of both

error and footprint for different values of ∆ω. Since deadlines

in ERIKA are represented in ticks, each element of the lookup

table can be represented as a 32-bit integer value leading to a

cost of 4 bytes each.

Overall, although a considerably small footprint is required

for achieving a good precision (e.g., with ∆ω = 256 RPM),

the main drawback of this approach is that (in the general case

of AVR tasks having all different angular deadlines) a lookup

table has to be generated for each task, so limiting the scaling

for high number of tasks on memory-constrained platforms.

3) Run-Time Overhead Comparison: Table III reports the

run-time overhead for both the FastSQRT algorithm and the

lookup table approach, together with the one of using the

SQRT function of the standard C library. The results have

been obtained on the STM32F4 platform running at 168Mhz

with FPU enabled and using the GNU ARM compiler. As it

can be noted from the table the FastSQRT algorithm shows

a significant improvement on the standard SQRT function,

halving the run-time in case of representation in RPM and

being one-third in case of using revolutions/ticks. The lookup

table approach resulted very efficient for the RPM case, where

no floating point operations are involved, while resulted com-

parable to the FastSQRT in case of speed representation in

revolutions/ticks, due to the floating point operations involved

in Equation (6). Finally, note also that the application of the

FastSQRT algorithm in the RPM case resulted more costly

with the respect to the revolution/ticks case: this is because

of the final conversion of the deadline from minutes (as the

temporal unit on RPM) to ticks. Overall, this study highlights

how a proper implementation for the deadline computation can

significantly reduce the overhead containing both footprint and

precision errors.

D. Extended OIL Specification

As stated in Section II-C, AUTOSAR/OSEK RTOSes are

configured at compile time through a specific standard language



RPM

FastSQRT Lookup Table SQRT

MAX
2.23 µs

188 cycles

0.3 µs

26 cycles

5.42 µs

456 cycles

AVG
2.08 µs

176 cycles

0.25 µs

22 cycles

5.09 µs

428 cycles

revolutions/ticks

FastSQRT Lookup Table SQRT

MAX
1.69 µs

143 cycles

1.9 µs

164 cycles

5.21 µs

438 cycles

AVG
1.51 µs

127 cycles

1.55 µs

131 cycles

4.89 µs

411 cycles

Table III: Run-time comparison of the considered approaches

for computing the deadline of AVR tasks. The results were

obtained on a STM32F4 microcontroller running at 168Mhz

with FPU enabled.

named OIL.

Standards play a crucial role in industrial design flows,

therefore keeping the implementation adherent as much as

possible to a standard increases its practical applicability. For

this reason, in the following we show that the proposed kernel

implementation can be managed by making minimal changes

on the standard AUTOSAR/OSEK RTOS configuration.

In order to support the definition of AVR tasks, the standard

OIL specification used for a task has been extended by adding

the following fields:

• ALPHA_MAX, containing the maximum acceleration for

the rotation source triggering the AVR task;

• ANG_DEADLINE, containing the angular deadline ∆ of

the task.

Both the fields must be inserted inside an AVR_TASK OIL

construct, as illustrated in the example reported in Figure 6.

Different measurements units are available for representing the

values of such fields.

Since our implementation is able to handle the speed rep-

resentation in RPM or revolutions/ticks, an OIL field named

SPEED_TYPE = {RPM, REVS_TICKS} is provided for se-

lecting among these two options. If RPM is selected, the kernel

is configured, as a default option, for using lookup tables to

compute AVR task deadlines; otherwise, if REVS_TICKS is

selected, the FastSQRT algorithm is used as a default option.

Additional OIL fields are also provided to have a custom

configuration in both the cases, forcing the use of the FastSQRT

algorithm or lookup tables with different quantization steps ∆ω.

The RT-DRUID tool, provided together with ERIKA, has

been modified to support the extended specification. Such a

tool is in charge of identifying the AVR tasks and extract

the values specified in the ANG_DEADLINE and ALPHA_MAX

fields. When selecting the FastSQRT algorithm, such values are

used to precompute the parameters K
(a)
i

and K
(b)
i

to fill the

data structures K_A and K_B with their corresponding values.

Otherwise, the values are used by RT-DRUID to automatically

generate the lookup tables.

KERNEL_TYPE = EDF {

TICK_TIME = "11.9ns";
SPEED_TYPE = "RPM";

};

TASK sampleTask {

AVR_TASK = TRUE {

ALPHA_MAX = "0.000162 RPms2";
ANG_DEADLINE = "180 degrees";

};

SCHEDULE = FULL;
STACK = SHARED;

};

Figure 6: Example of OIL configuration for an AVR Task.

V. A SIMULATION FRAMEWORK

In this section we present a simulation framework for study-

ing the execution of tasks under the kernel support proposed

in this paper. The framework is based on the Lauterbach

TRACE32 R© PowerView IDE: an overview on such an en-

vironment is reported in Section V-A. The Lauterbach IDE

has been extended with two custom plugins (presented in Sec-

tion V-B) aiming at supporting the execution of both periodic

and engine-triggered tasks with the proposed kernel for ERIKA

Enterprise.

A. Lauterbach TRACE32

Lauterbach TRACE32 is a set of modular microprocessor

development tools produced by Lauterbach GmbH, the world’s

larger producer of hardware assisted debug tools for micropro-

cessors. The solution consists in both a software system and a

set of hardware instruments where all is managed through the

TRACE32 PowerView Integrated Development Environment

(IDE) which offers a clean and powerful user-interface. The

modular hardware and software solutions supports up to 350

different CPUs.

The TRACE32 PowerView IDE offers intuitive, consistent,

and fast access to debug and trace information. Advanced debug

features, profiling, support of multicore and multiprocessor

systems, and support of almost every RTOS facilitate the

analysis of system performance ensure the quality the quality

of embedded software designs. In fact, without proper tools,

the development and debug process of software for embedded

microcontrollers is generally challenging, especially in case

of time-dependent software where the debug can perturbate

its timings. For this reason, the use of an hardware tracer is

commonly adopted.

Together with all the software infrastructure offered for the

Lauterbach hardware instruments, the TRACE32 suite provides

an instruction set simulator, that supports a large number of

microcontrollers. The TRACE32 suite based on the instruction

set simulator is today distributed for free by Lauterbach. Thanks

to this simulator, it is possible to execute real code collecting

a large set of debug and trace informations without having any

hardware device (neither the Lauterbach hardware instruments

nor the actual microcontroller) hence enabling the possibility



to build very powerful testing and development environment.

For this reason, we decided to extend the TRACE32 suite for

supporting the execution of the EDF kernel proposed in this

work. The next section describes the details of the realized

simulation framework.

B. Description of the framework

The main limitation of the TRACE32 suite is that it only

offers the instruction set simulator for the CPU of a microcon-

troller and not the simulation of its peripherals devices (e.g,

the timers). However, TRACE32 offers a standard interface,

referred to as Peripheral Simulation Model (PSM) [24], that

allows developing custom simulated peripherals. In particular,

the PSM allows a developer to write custom software that

reacts and accesses to specific registers located into the physical

memory of the simulated microcontroller, thus allowing the

simulation of memory-mapped peripheral registers. In addition,

the PSM provides functions for interacting with the simulated

CPU and other modules of the TRACE32 simulator. The

custom extensions are developed in C language and compiled as

dynamic linked libraries that can be loaded from the TRACE32

PowerView IDE.

In order to simulate the execution of our EDF kernel execut-

ing engine-triggered tasks we needed to implement two external

libraries for the simulator, that are

• Crankshaft Simulator, in charge of generating interrupts

related to the rotation of a simulated crankshaft, hence

generating the activation of AVR tasks;

• Free Running Timer, used by the EDF kernel to handle

the time representation in the system.

��������	

�
����

�����������	�


�����

��������

�����������

���������

���	���

����	�

�������

����

����������
�����


�����

� !

!��"#

#����������

$����%

Figure 7: Schematic representation of the implemented simu-

lation framework.

Figure 7 reports a schematic representation of the imple-

mented simulation framework. As a reference platform we

selected the STM32F4 produced by STMicroelectronics, whose

CPU simulation is offered by Lauterbach TRACE32. The

simulator module of the STM32F4 is connected to an interrupt

controller simulator module (provided by Lauterbach) which

is in turn connected to our Crankshaft Simulator module.

The Crankshaft Simulator module generates angular events as

interrupts, at which it is possible to react through interrupt

service routines containing ActivateTask primitives that

trigger AVR tasks (see Figure 5). As explained in Section II,

the time instants at which such angular events occur are

directly dependent on the speed evolution of the engine. Two

different sources are available for generating angular events:

(i) Random Speed Pattern, which generates a random speed

evolution according to the rotation source model presented

in Section II given a set of configurations parameters (like

maximum/minimum acceleration), and (ii) File, which loads

a predetermined speed pattern from a file. In addition to the

generation of angular events, the Crankshaft Simulator uses

the PSM interface for communicating the current engine speed

to the application into a memory area, thus simulating (as

example) the presence of a TPU [21].

The Free Running Timer module simulates a 32 bit timer

available in the STM32F4. Its implementation uses the PSM

interface for reacting to specific registers of the microcontroller

that are used for configuring the timer and reading its current

value. The value of such a timer is the temporal reference

needed by the kernel for computing absolute deadlines of

tasks and is configured with the resolution specified in the

TICK_TIME field in the OIL configuration (please refer to

Figure 6).

The realized simulation framework is able to collect a full

trace related to the execution of an application, which can then

processed, explored and partially re-executed. As an example,

we reported in Figure 8 a screenshot taken from the Lauterbach

TRACE32 PowerView IDE, where a functionality of the tool

is adopted for collecting the execution trace of the tasks.

Figure 8: Screenshot from the Lauterbach TRACE32 R© Pow-

erView IDE.

For the sake of completeness, Table IV reports the time

needed to collect the trace for a given simulation time (indicated

as Trace time), together with the processing time needed to

extract the execution trace (indicated as Processing time) and

the corresponding memory usage for storing the trace in RAM.

Such results are obtained executing the simulation framework

on a machine equipped with an Intel Core i7 4790k processor

running at 4 GHz with 32GBs of RAM. As it can be noted

from the table, the simulator is able to collect and process 6

seconds of simulation in about 3 minutes; however it requires

a significant amount of memory (up to 25 GBs) for the storage

of all such data. This huge amount of memory is required

by the tool because it stores all the state of the CPU and

the simulated peripheral devices for every CPU clock tick. At

today the possibility of limiting the information that are stored

during a simulation (hence limiting the memory occupancy) is

not available in the TRACE32 simulator. This limitation can

be overcome in part by storing execution traces into files that

can be later processed in batch.



Simulation

time

(secs)

Trace time

(secs)

Processing

time

(secs)

RAM

occupancy

1 19 16 4.1 GBs

3 48 40 12.3 GBs

6 96 92 25.2 GBs

Table IV: Times and memory consumption for the proposed

simulation framework.

VI. EXPERIMENTAL EVALUATION

In this section we report experimental results aiming at eval-

uating the implementation of the proposed EDF kernel (referred

to as EDF-AVR) in terms of footprint and run-time overhead.

For comparison purposes we report also experimental results

obtained with the OSEK kernel of ERIKA, the conformance

class FP (providing a minimal implementation of fixed-priority

scheduling) and the original EDF conformance class. Please

refer to Section II-C for further details. Regarding the OSEK

kernel we selected its variant named BCC2, which provides

fixed-priority scheduling with stack sharing, more than one task

per priority level and multiple pending task activations.

Figure 9 reports the footprint in bytes for OSEK BCC2, FP,

EDF and EDF-AVR kernels as a function of the number of AVR

tasks keeping the number of periodic tasks to 2. We decided to

study the footprint varying the number of AVR tasks because

the OSEK BCC2, AVR and FP kernels do not distinguish

such tasks from the periodic ones, while the kernel proposed

in this paper provides additional code and data structures for

AVR tasks. The results are obtained compiling the kernels for

the STM32F4 platform using the GNU ARM compiler with

the size optimization (-Os) flag enabled. In these experiments

we considered the EDF-AVR kernel configured for using the

FastSQRT algorithm for computing the deadlines of AVR tasks.

Please refer to Table II for evaluating the footprint for the case

in which the kernel is configured for using lookup tables.

As it can be observed from the graph, the OSEK BCC2

kernel shows the greater footprint: this is because it contains

a consistent number of data checks and mechanism required

for being fully OSEK compliant. The EDF-AVR kernel has

the same footprint when no AVR tasks are present (as clearly

expected) and requires around 200 additional bytes for han-

dling one AVR task (including the implementation of the

ActivateTask primitive) with respect to EDF kernel.

Another experiment has been conducted for measuring the

resulting run-time overhead of the ActivateTask system

call. Such a system call computes the task deadlines and

manages the ready queue, resulting in the most time-consuming

kernel mechanism. Table V reports the maximum and the

average run-time overhead (expressed in microseconds and

cycles) for the ActivateTask of EDF-AVR under both

the cases of application of the FastSQRT algorithm and the

lookup table. For comparison purposes, the table also reports

the overhead for the EDF kernel used as a baseline for this

work. The run-time overhead for the ActivateTask for the

FP kernel resulted about 2.2 µs (420 cycles) with marginal

variations with the number of tasks (due to the constant time

0 2 4 6 8 10 12 14 16 18 20
3500

4000

4500

5000

5500

6000

Number of AVR Tasks

F
o

o
tp

ri
n

t
(b

y
te

s)

OSEK BCC2

EDF-AVR

EDF

FP

Figure 9: Footprint in bytes for different conformance classes

of ERIKA Enterprise as a function of the number of AVR tasks

on STM32F4 with GNU ARM compiler.

ready queue management). As it can be observed from the table,

the run-time overhead of the proposed kernel is comparable

with the one of the FP kernel when a lookup table is used

(with integer speed representation), while is twice larger when

the FastSQRT algorithm is used (with floating point speed

representation). In both the cases a marginal increment has been

identified as the number of tasks increases.

VII. SUMMARY AND CONCLUSIONS

This paper presented a new kernel for the ERIKA Enterprise

real-time operating system for supporting EDF scheduling of

engine control applications. Being engine control applications

typically managed by an AUTOSAR/OSEK standard operating

system (RTOS), the new kernel has been conceived to have

an API with minimal differences with respect to the OSEK

standard, thus limiting the effort for adopting the proposed so-

lution in existing engine control applications. The same design

constraints have been considered for the RTOS configuration,

providing minimal extensions to the OSEK Implementation

Language (OIL), which is the standard language for configuring

an OSEK RTOS.

It has been identified that deadlines of engine-triggered tasks

depend on the engine speed and two different approaches

have been considered for the kernel implementation depending

on the representation of the engine speed available in the

system. An approach is based on a fast algorithm for computing

the square root function (FastSQRT), while the other one

relies on lookup tables. Both approaches have been discussed

and compared in terms of precision, footprint, and run-time

overhead. A comparison made with the existing EDF kernel

in ERIKA Enterprise, showed that the additional overhead

introduced by the proposed implementation ranges from a few

hundreds of nanoseconds to a maximum of 1.5 microseconds

(in a reference platform running at 168Mhz), depending on



Num. of Tasks 3 5 7 10

EDF MAX

µs
.

2.62 2.77 2.82 2.90

cycles
.

440 465 484 487

EDF AVG

µs
.

2.59 2.70 2.78 2.86

cycles
.

435 453 467 480

EDF-AVR
(FastSQRT)

MAX

µs
.

4.10 4.21 4.36 4.46

cycles
.

689 707 732 749

EDF-AVR
(FastSQRT)

AVG

µs
.

4.0 4.18 4.25 4.39

cycles
.

762 702 714 737

EDF-AVR
(Lookup Table)

MAX

µs
.

2.95 3.04 3.15 3.22

cycles
.

495 510 529 541

EDF-AVR
(Lookup Table)

AVG

µs
.

2.91 3.01 3.14 3.20

cycles
.

489 505 527 537

Table V: Maximum and average run-time overhead in mi-

croseconds and cycles for the proposed EDF kernel under

different configurations. The overhead has been measured on

an STM32F4 platform running at 168Mhz with FPU enabled.

its configuration. In the presence of 10 AVR tasks, the new

implementation requires about 250 bytes of additional footprint

with respect to the existing EDF kernel and less than 500 bytes

increment with respect to a minimal implementation of fixed-

priority scheduling.

In this paper, we also proposed a simulation framework for

studying the execution of tasks under the proposed kernel.

Such a framework has been realized extending the Lauterbach

TRACE32 R© suite with an engine crankshaft simulator and

other modules to support the execution of the implemented

EDF kernel. Thanks to the instruction set simulator offered

by Lauterbach TACE32, it is now possible to collect execution

traces of real code without adopting hardware debuggers/trac-

ers, nor the actual microcontroller.

As a final summary, to use the proposed kernel with an

existing engine control application running upon an OSEK

RTOS, the user has to

• identify the mechanism for reading the engine speed

(which is generally already present in such applica-

tions [2]);

• replace all the occurrences of the ActivateTask call

used for triggering the AVR tasks with the new version

proposed in Section IV-B;

• introduce the additional parameters (angular deadline and

maximum engine acceleration) in the OIL configuration

file, as specified in Section IV-D.

Please, also note that the proposed EDF kernel requires a

temporal reference for managing absolute task deadlines. Such

a reference can be implemented by reserving a timer in the

microcontroller (which can automatically be handled by the

device drivers in ERIKA) or connecting a temporal reference

already present in an existing application.

ACKNOWLEDGEMENTS

The authors like to thank Paolo Gai from Evidence S.R.L. and
Maurizio Menegotto from Lauterbach Italia for their support which
helped to improve this work.

REFERENCES

[1] L. Guzzella and C. H. Onder, Introduction to Modeling and Control of

Internal Combustion Engine Systems. Springer-Verlag, 2010.

[2] D. Buttle, “Real-time in the prime-time,” Keynote speeach given at the
24th Euromicro Conference on Real-Time Systems (ECRTS 2012), Pisa,
Italy, July 12th, 2012.

[3] OSEK, OSEK/VDX Operating System Specification 2.2.1.
http://www.osek-vdx.org: OSEK Group, 2003.

[4] AUTOSAR, AUTOSAR Release 4.1, Specification of Operating System,
http://www.autosar.org, 2013.

[5] A. Biondi, G. Buttazzo, and S. Simoncelli, “Feasibility analysis of
engine control tasks under EDF scheduling,” in Proceedings of the

27th Euromicro Conference on Real-Time Systems (ECRTS 2015), Lund,
Sweden, July 8-10, 2015.

[6] C. Liu and J. Layland, “Scheduling algorithms for multiprogramming in
a hard-real-time environment,” Journal of the Association for Computing

Machinery, vol. 20, no. 1, pp. 46–61, January 1973.

[7] Z. Guo and S. Baruah, “Uniprocessor EDF scheduling of AVR task
systems,” in Proc. of the ACM/IEEE 6th International Conference on

Cyber-Physical Systems (ICCPS 2015), Seattle, USA, April 2015.

[8] P. Gai, G. Lipari, L. Abeni, M. di Natale, and E. Bini, “Architecture for
a portable open source real-time kernel environment,” in Proceedings of

the Second Real-Time Linux Workshop and Hand’s on Real-Time Linux

Tutorial, November 2000.

[9] D. Faggioli, F. Checconi, M. Trimarchi, and C. Scordino, “An EDF
scheduling class for the linux kernel,” in Proc. of the 11th Real-Time

Linux Workshop (RTLWS), Dresden, Germany, September 28-30, 2009.

[10] C. Diederichs, U. Margull, F. Slomka, and G. Wirrer, “An application-
based EDF scheduler for OSEK/VDX,” in Proc. of the Design, Automa-
tion and Test Conference in Europe (DATE 2008), Munich, Germany,
March 10-14 2008.

[11] G. Buttazzo and P. Gai, “Efficient implementation of an EDF scheduler
for small embedded systems,” in Proceedings of the 2nd Workshop

on Operating Systems Platforms for Embedded Real-Time applications

(OSPERT 2006), Dresden, Germany, July 2006.

[12] G. Buttazzo, E. Bini, and D. Buttle, “Rate-adaptive tasks: Model, analysis,
and design issues,” in Proc. of the Int. Conference on Design, Automation

and Test in Europe (DATE 2014), Dresden, Germany, March 24-28, 2014.

[13] Y. Wang and M. Saksena, “Scheduling fixed-priority tasks with preemp-
tion threshold,” in Proc. of the 6th IEEE Int. Conference on Real-Time

Computing Systems and Applications (RTCSA’99), Hong Kong, China,
December 13-15, 1999.

[14] T. P. Baker, “Stack-based scheduling for realtime processes,” Real-Time
Systems, vol. 3, no. 1, pp. 67–99, April 1991.

[15] L. Marzario, G. Lipari, P. Balbastre, and A. Crespo, “IRIS: A new
reclaiming algorithm for server-based real-time systems,” in Proc. of the
IEEE Real-Time and Embedded Technology and Applications Symposium,
Toronto, Canada, May 25-28 2004.

[16] A. Biondi, G. Buttazzo, and M. Bertogna, “Supporting component-
based development in partitioned multiprocessor real-time systems,” in
Proceedings of the 27th Euromicro Conference on Real-Time Systems

(ECRTS 2015), Lund, Sweden, July 8-10, 2015.

[17] C. Diederichs, U. Margull, F. Slomka, and G. Wirrer, “Design method-
ologies and tools for real-time embedded systems,” in Special Issue of
Design Automation for Embedded Systems, 2002.

[18] M. Dertouzos, “Control robotics: the procedural control of physical
processes,” Information Processing, vol. 74, 1974.

[19] A. Biondi and G. Buttazzo, “Real-time analysis of engine control appli-
cations with speed estimation,” in Proc. of the Int. Conference on Design,

Automation and Test in Europe (DATE 2016), Dresden, Germany, March,
2016.



[20] R. I. Davis, T. Feld, V. Pollex, and F. Slomka, “Schedulability tests
for tasks with variable rate-dependent behaviour under fixed priority
scheduling,” in Proc. 20th IEEE Real-Time and Embedded Technology

and Applications Symposium, Berlin, Germany, April 15-17, 2014.
[21] Freescale semiconductor Application Note AN3769. Using the engine

position (CRANK and CAM) eTPU functions. [Online]. Available:
http://cache.freescale.com/files/32bit/doc/app note/AN3769.pdf

[22] C. Lomont. Fast inverse square root. [Online]. Available:
http://www.lomont.org/Math/Papers/2003/InvSqrt.pdf

[23] B. Self. Efficiently computing the inverse square
root using integer operations. [Online]. Available:
https://www.math.washington.edu/∼morrow/336 12/papers/ben.pdf

[24] Trace32 instruction set simulator. [Online]. Available:
http://www2.lauterbach.com/pdf/simulator api.pdf

APPENDIX A

ERROR OF THE FASTSQRT ALGORITHM

As part of this work we performed a numerical study on the deadline
computation by using the FastSQRT algorithm. Such an algorithm
has been applied considering all the speeds in a typical range for a
production car engine, that is from 500 to 6500 RPM. Then, the error
with respect to the exact square root function has been computed. The
results are reported in Figure 10 for both the measurement units of
the engine speed considered in this work.

1,000 2,000 3,000 4,000 5,000 6,000
0

0.02
0.04
0.06
0.08
0.1

Speed (RPM)

E
rr

o
r

(%
) RPM

rev/ticks

Figure 10: Error of the FastSQRT algorithm.

APPENDIX B

LOOKUP TABLE CONSTRUCTION

As stated in Section IV-C2, the values of Equation (4) are
computed off-line by using a quantization step ∆ω and stored as
constants in an array whose elements are denoted as Wj , j =

0, 1, . . . ,
⌈

ωmax
−wmin

∆ω

⌉

, so obtaining a lookup table. At run-time,

a weighted average is then used to estimate the value of the deadline.
More specifically, suppose to have a current engine speed ω and let

Y = ω−ωmin

∆ω
. An index j for the look table is computed as j = ⌊Y ⌋

and the value D(ω) is obtained as

D(ω) =
qWj + lWj+1

q + l
, (6)

where q and l represent the weights of the weighted average and
their definition depends of the measurement unit used to represent the
engine speed ω. When the speed is represented in RPM (as an integer
value) we defined q = ∆ω − l and l = (w − wmin)− j∆ω, leading
to q + l = ∆ω, where l can be computed by means of a modulo
operation. In this way, if ∆ω is defined as a power of two, the value
of D(ω) can be efficiently computed without involving any floating
point operation implementing the ratio as a bit shift operation.

On the other hand, when the speed ω is represented in revolution-
s/ticks (as a floating value), different formulations for q and l can be
defined to optimize the computation. In fact, defining q = 1 − l and
l = Y−j, we obtain q+l = 1, so avoiding the division in Equation (6).
In addition, the value of l can be computed by a truncation operation
by a casting to an integer value.

http://cache.freescale.com/files/32bit/doc/app_note/AN3769.pdf
http://www.lomont.org/Math/Papers/2003/InvSqrt.pdf
https://www.math.washington.edu/~morrow/336_12/papers/ben.pdf
http://www2.lauterbach.com/pdf/simulator_api.pdf



