
An Android Application for Head Tracking

Massimiliano Benedetto
Univeristy of Pisa

Pisa, Italy
massimiliano.benedetto.22@gmail.com

Alessio Gagliardi
Univeristy of Pisa

Pisa, Italy
alegaglia@hotmail.it

Pasquale Buonocunto
Scuola Superiore Sant’Anna

Pisa, Italy
p.buonocunto@sssup.it

Giorgio Buttazzo
Scuola Superiore Sant’Anna

Pisa, Italy
g.buttazzo@sssup.it

ABSTRACT
This paper presents a head-tracking system based on an in-
ertial sensor that sends rotation data to an Android applica-
tion in charge of recording and visualizing data in real time.
Data are sent via wireless channel using Bluetooth Low En-
ergy communication and are processed to provide a realistic
real-time 3D animation of the user head.

CCS Concepts
•Human-centered computing → Gestural input; Point-
ing devices; Pointing; •Applied computing → Consumer
health;

Keywords
Head Tracking, IMU, Real-time operating system, Multi-
tasking application

1. INTRODUCTION
Inertial measurements units (IMUs) represents an effective
solution for tracking human joint trajectories in a compact
and portable system. Several commercial tracking systems
are available today, such as the Moven motion capture suite
by Xsens [18], or a similar product by Intersense [8]. The
main disadvantages of these solutions are their cost (in the
range of 10K euros and beyond), and the use of proprietary
wireless communication protocols that requires special hard-
ware.

Several IMU-based tracking systems have been proposed in
the literature for different purposes. For instance, Foxlin [5]
presented a tracking system to measure the head movements
relative to a moving simulator platform using differential in-
ertial sensors. Avizzano et al. [2] developed a head tracking

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copy-
rights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permis-
sions@acm.org.
SAC 2016, April 4-8, 2016, Pisa, Italy
c©2016 ACM. ISBN 978-1-4503-3739-7/16/04. . . $15.00

DOI: http://dx.doi.org/10.1145/2851613.2851930

device based on accelerometers to provide a user interface
for navigation in virtual environments and remote control.
Keir et al. [9] proposed a head tracking device for robotics
applications based on accelerometers. All these devices how-
ever, were developed to be integrated in a larger system and
not to work as a stand-alone device for personal usage.

Other head tracking devices were proposed using different
technologies. For example, Mulder, Jansen, and van Rhijn [14]
developed an optical head tracking system, using two fixed
FireWire iBOT cameras that recognize a dot pattern mounted
onto shutter glasses. A similar system was developed by
Lee [11] using a Wii Remote device, a Bluetooth receiver
and IR LEDs. Wii Remote is a motion controller using an
IR filtered camera to track a number of IR LEDs placed on
the user’s head. Although the cost of these systems is more
affordable, they are not portable and suffers from occlusion
problems.

Other approaches developed for virtual reality and gaming
are represented by the Google Cardboard [7], the OCULUS
GEAR VR [13], or the Zeiss VR One [17], which exploit the
motion sensors and the display of an Android smartphone
mounted as mask visor. Such solutions, however, are quite
invasive for the average user, since require wearing a visor
that prevents the view of the real world.

A body motion tracker for Android platforms having char-
acteristics similar to the system presented in this paper is
the Run-n-Read developed by Weartrons Labs [10]. The sys-
tem, however, is specifically designed to support text reading
on tablets or Ebook readers during dynamic activities and
works by moving the image on the screen in sync with the
motion detected by the sensor.

In summary, all the solutions existing today are either too
expensive, too complex to be used, not portable, or not eas-
ily connectable with mobile devices. To fill this gap, the sys-
tem presented in this paper has been specifically designed
for personal purposes (sport, tele-rehabilitation, training, or
gaming), using low-cost components, and associated with an
Android application developed for non expert users.

This paper presents an Android application for storing and
visualizing the user head movements using data coming from
an inertial sensor mounted on the user head. A major ad-
vantage of the proposed system is the easy calibration phase,
which enables the system to be used by non expert people
for a range of different applications domains.

618

giorgio
Text Box
Proceedings of the 31st ACM Symposium on Applied Computing (SAC 2016), Pisa, Italy, April 4-8, 2016.



2. SYSTEM DESCRIPTION
The head tracking system consists of a head-mounted iner-
tial sensor communicating via wireless channel to a smart-
phone running the Android operating system [1].

One of the most interesting features of this system is that the
application does not require the user to mount the sensor in a
very precise position on the head. This is achieved through
a self-calibration routine executed at system initialization
that allows the application to automatically compensate for
different initial sensor positions.

More specifically, when the mobile device establishes the
connection with the sensor, the first received quaternion is
stored by the application as a reference quaternion, repre-
senting the zero position of the human head. From this
point on, all head rotations are computed as a difference be-
tween the current quaternion (received in real-time from the
sensor) and the initial reference quaternion. Such a simple
feature acts as a very effective self-calibration method that
solves all the problems resulting from the irregular morphol-
ogy of the head and relieves the user from being too precise
in positioning the sensor on its head. Thanks to this method,
the system can easily be worn by anyone by hiding it inside
a cap or fixing it at an elastic band around the head.

2.1 The inertial sensor
Head movements are detected through a wireless inertial
sensor developed at the RETIS Lab of the Scuola Superi-
ore Sant’Anna of Pisa for limb tracking in telerehabilitation
systems [4]. The sensor was specifically designed to reduce
power consumption with respect to similar commercial de-
vices, balancing lifetime with dimensions and incorporating
the state-of-the-art IMU device to provide accurate orienta-
tion data.

The device dimensions are 4∗3∗0.8 cm and it weights about
30 g. The sensor integrates a Nordic nRF51822 microcon-
troller with a 2.4 Ghz embedded transceiver [15], an In-
venSense MPU-9150 9-axis inertial measurement unit (IMU),
an integrated onboard chip-antenna, a USB port, a microSD
card for data logging, some I/O devices (3 LEDs, 2 buttons
and a buzzer), and six configurable GPIO pins that can be
used for digital I/O or analog ADC inputs for expanding
the board with other sensors. Figure 1 illustrates the block
diagram of the main logical components of the sensor node.

Figure 1: Block diagram of the sensor components.

The node is powered by a single cell LiPo battery that
guarantees more than 20 hours of continuous usage at the
maximum frequency (100 Hz) and can be charged via USB
or through a wireless recharge device. The device com-
municates with the table through the Bluetooth 4.0 Low

Energy (BLE) protocol [6] intended for strongly energy-
constrained applications, such as sensors or disposable de-
vices. Although the BLE data transmission is performed at
a reduced speed, compared to the standard Bluetooth [3]
or to WiFi communication, the available bandwidth (ap-
proximately 1 Mbit/s) resulted to be appropriate for the
implemented head tracking system, allowing us to exploit
the other advantages of the BLE protocol, as lower power
consumption, better immunity to interference, and compat-
ibility with widespread mobile devices.

3. 3D MODEL
To recreate the natural movement of the head, a 3D model
was imported in Blender to provide the definition of virtual
bones, used as a virtual skeleton for expressing rotations
around their joints. Each bone affects a specific portion of
the mesh, so that its movements will change the geometry
of the corresponding area of influence. A careful positioning
and dimensioning of the armature is crucial to achieve a
realistic head animation, since small position errors of the
armature inside the mesh may cause incorrect rotations of
the whole model.

The skeleton structure used in this application consists of
three bones, one for the bust (RootBone), one for the neck
(NeckBone), and one for the head (HeadBone). The rota-
tion detected by the head-mounted sensor is associated with
the HeadBone segment. The kinematic transformation per-
formed by the Android application on the 3D model is then
triggered by the reception of the quaternion, periodically
transmitted by the IMU every 20 milliseconds.

4. APPLICATION STRUCTURE
The application has been developed using the LibGDX li-
brary [12], which is an open source Java framework for game
development. The main advantage if this library is that it
provides APIs for multiple platforms, such as Linux, Mac,
Windows, Android, iOS, BlackBerry, and HTML5. This is
possible thanks to the presence of multiple project folders in
its layout. In particular,

• Core project: it contains all the application code, ex-
cept the so called starter classes. All the other projects
link to this project.

• Android project: it contains the starter class and other
necessary files to run the application on Android. The
assets/ folder stores the assets of the application for
all platforms.

• Desktop project: it contains the starter class to run
the application on the desktop. It links to the Android
project’s assets/ folder and to the core project.

• HTML5 project: it contains the starter class and other
necessary files to run the application as a native HTML5
application. It links to the Android project’s assets/
folder (see gwt.xml file) and to the core project.

• iOS RoboVM project: it contains the starter classes
and other necessary files to run the application on iOS
through RoboVM. It links to the Android project’s
assets folder (see robovm.xml) and to the core project.

619



For the head tracking application, only the Core and An-
droid project folders have been used. The Android project
contains the functions responsible for the Bluetooth commu-
nication and the user interface, whereas the ”Core project”
contains the functions responsible for rendering the model
and change its parameters. The data received from the sen-
sor are sent to the classes of the Android project and are
processed by the classes of the Core project. For this rea-
son, both folders contain specific code for exchanging data
between them. The structure of the application is shown in
Figure 2.

Figure 2: Application Structure.

The main menu of the application provides a Communica-
tion Interface responsible for managing the Bluetooth proto-
col (BLEIMUServices) and a Services Interface for selecting
of the offered services.

4.1 Communication interface
Using the Communication Interface the user can start or
stop the Bluetooth communication between the sensor and
the application, set the baud rate, scan the available devices
and even monitor the arrival of incoming packets. The Start-
Service and StopService buttons are used to start or stop
the communication service, respectively. The setHz button
allows setting the transmission frequency, whereas ScanDe-
vices is used to start searching for available sensors. The
Connect and Disconnect buttons allow starting and stop-
ping the connection and, finally, the ON/OFF button can
start/stop data acquisition from the connected devices.

In particular, when the ON button is pressed, the first re-
ceived quaternion is used as a reference for all the subsequent
data coming from the sensor, in the sense that all head rota-
tion angles are computed as a difference between the current
quaternion and the initial reference. In this way, the prelim-
inary phase of positioning the sensor on the user head is not
crucial, since any initial misalignment with respect to the
ideal fixed frame is compensated by the differential compu-
tation with the initial quaternion. Such a calibration phase
can be triggered by the user at any time by interacting with
the control panel.

4.2 Services interface
The Services Interface allows the user to start other activi-
ties, such as testing the system, checking for the credentials,

accessing the app manual, and turning the system off by
pressing the Exit button.

Pressing the Test button the system displays a menu that of-
fers two different operational modes. The Sensor Mode pro-
vides a real-time animation of the 3D model, whose angles
are updated every 20 milliseconds based on the data com-
ing from the sensor. The Manual Mode displays six screen
buttons that can be used to manually change the pitch, roll,
and yaw angles of the head, individually. The Reset but-
ton allows setting the head in the starting position. In both
modes, orientation and zoom of the avatar can be controlled
by the user via touch screen during the real-time animation.

Finally, pressing the Instructions button the system displays
the user manual, which reports the application features and
explains the user interface.

5. EXPERIMENTAL RESULTS
This section presents some experimental results carried out
to evaluate the effectiveness of the developed system in mea-
suring head orientations and providing timely data.

5.1 Orientation accuracy
The orientation errors of the sensor node was evaluated with
respect to a reference given by a Polhemus Patriot sys-
tem [16], which provides the position and orientation of a
mobile probe with respect to a fixed reference. In particu-
lar, the fixed reference emits a tuned electromagnetic field
that is measured by the mobile probe. This procedure avoids
performing hybrid data merging via software. The resulting
resolution is about 0.03 mm and 0.01 degrees, whereas the
static accuracy is of 1.5 mm RMS for the X, Y , and Z po-
sition and 0.4 degrees RMS for the orientation.

The orientation accuracy of the sensor node was measured
by converting quaternions to Euler angles and directly com-
paring them to the ones given by the Polhemus. Only the
angles around X and Y axes were measured, because rota-
tions around the Z-axis relies on the magnetometer, which
is strongly affected by the magnetic field generated by the
Polhemus.

Figure 3 shows the IMU measurement error distribution
with respect to the Polhemus reference. Note that the er-
ror mean is 0.8685 degrees and its RMS is 0.9871 degrees.
Considering the lower cost of the head sensor with respect
to the Polhemus (i.e., tens of euros compared to thousands
of euros) the achieved results are quite satisfactory.

0 0.5 1 1.5 2 2.5
0

50

100

150

200

250

300

N
um

be
r o

f p
oi

nt
s

Degrees

Figure 3: Distribution of the angular error.

620



5.2 Processing time and communication delay
Processing times on the sensor node were measured by switch-
ing a GPIO pin at the beginning and at the end of the
computation, and capturing them by a multi-channel logic
analyzer. The results of this experiment are shown in Ta-
ble 1, which reports the execution time statistics for the I2C
read routine and the CPU processing time, that is, the time
measured from the instant the packet is read from the I2C
bus to the time it is sent to the radio transceiver.

Time (ms) Mean RMS Std Dev. Variance

I2Cread 2.409 2.416 0.1833 0.0335
computation 0.218 0.228 0.0660 0.0043

Table 1: Execution times (ms).

Message delays were estimated by measuring the interval of
time from the instant at which the data packet is transmitted
by the sensor to the time at which the Android application
reacts to it by changing the color of a rectangular area of the
screen. The color change (from black to white and viceversa)
has been measured by a photoresistor attached to the screen.
With the setup described above, data have been acquired at
a sampling frequency of 20 Hz by a Nexus 7 tablet for 60 s.

The results of this test are shown in Figure 4, which reports
the measured delay distribution. Note that the end-to-end
delay of data processing and representation varies from 3 ms
to 30 ms, with an average value of 14.85 ms, leading to a
smooth and reactive the 3D head animation.

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

Delay (ms)

Nu
mb

er 
of 

po
int

s

Figure 4: End-to-end delay up to the Android app.

Table 2 reports the delay statistics of radio transmitting
times and the overall delay from the time the packet is sent
by the sensor to the time it is processed and displayed on
the screen by the Android application.

Delay(ms) Mean RMS Std Dev. Variance

BLEsend 2.627 2.634 0.197 0.039
display 14.8523 17.1974 8.6754 75.2621

Table 2: Delay times (ms).

The high variance observed in the end-to-end delay mea-
surements is due to the transmission variability of the BLE
protocol, the lack in the Android framework of a structured
support for managing time constraints, and the complexity
of the video rendering subsystem, which is optimized to im-
prove the average user experience rather than a predictable
timing behavior of data representation.

6. CONCLUSIONS
This paper presented a low-cost, portable head-tracking de-
vice that works in combination with an Android application
in charge of recording and visualizing head rotation data in
real time. Sensory data produced by a 9-axis inertial unit
are sent to a smartphone using the BLE communication pro-
tocol and then reconstructed to produce a realistic real-time
3D animation of the user head. The tests performed on the
device to measure the end-to-end delay show that all the sen-
sory data packets are processed and displayed within 30 ms,
with an average delay of 14 ms, making the proposed sys-
tem very competitive with respect to other (more expensive)
commercial solutions, and attractive for many applications,
including rehabilitation, sport, gaming, and virtual reality.

7. REFERENCES
[1] Android. Android operating system, 2014.
[2] C. Avizzano, P. Sorace, D. Checcacci, and

M. Bergamasco. A navigation interface based on head
tracking by accelerometers. In Proc. of the 13th IEEE
Int. Workshop on Robot and Human Interactive
Communication (ROMAN 2004), Kurashiki, Japan,
September 20-22, 2004.

[3] Bluetooth. The low energy tecnology behind bluetooth
smart, 2015.

[4] P. Buonocunto and M. Marinoni. Tracking limbs
motion using a wireless network of inertial
measurement units. In Proc. of the 9th IEEE Int.
Symp. on Industrial Embedded Systems (SIES 2014),
Pisa, Italy, June 18-20, 2014.

[5] E. Foxlin. Head-tracking relative to a moving vehicle
or simulator platform using differential inertial
sensors. In Proceedings of the AeroSense Symposium
on Helmet and Head-Mounted Displays V, SPIE Vol.
4021, Orlando, FL, April 24-25, 2000.

[6] Google. Bluetooth low energy, 2004.
[7] Google. Google cardboard, 2014.
[8] InterSense Inc. InertiaCube2+ Manual, 2008.
[9] M. Keir, C. Hann, G. Chase, and X. Chen.

Accelerometer-based Orientation Sensing for Head
Tracking in AR & Robotics. In Proc. of the 2nd Int.
Conference on Sensing Technology (ICST 2007),
Palmerston North, New Zealand, Nov. 2007.

[10] W. Labs. Run-n-read, 2013.
[11] J. C. Lee. Head-tracking for desktop vr displays using

the wii remote, 2008.
[12] LibGDX. Libgdx, 2013.
[13] O. V. LLC. Oculus gear vr, 2015.
[14] J. D. Mulder, J. Jansen, and A. van Rhijn. An

affordable optical head tracking system for desktop
vr/ar systems. In Proc. of the 7th Int. Immersive
Projection Technologies Workshop (9th Eurographics
Workshop on Virtual Environments), 2003.

[15] NORDIC Semiconductor. nRF51822 Product Spec.
v1.3, May 2013.

[16] Polhemus. Polhemus Patriot Product Spec., Feb. 2010.
[17] Z. VR. Zeiss vr one, 2015.
[18] Xsens Technologies B.V. MTi and MTx User Manual

and Technical Documentation., May 2009.

621


	MAIN MENU
	Help
	Search
	Print
	Author Index
	Keyword Index
	Table of Contents


 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
     Shift: move up by 18.00 points
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20160203085439
       792.0000
       US Letter
       Blank
       612.0000
          

     Tall
     1
     0
     No
     675
     322
     Fixed
     Up
     18.0000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     4
     3
     4
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move down by 3.60 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     322
     Fixed
     Down
     3.6000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

      
       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     4
     0
     1
      

   1
  

 HistoryList_V1
 qi2base





