
Schedulability Analysis of Hierarchical Real-Time
Systems under Shared Resources

Alessandro Biondi, Giorgio C. Buttazzo, Fellow, IEEE, and Marko Bertogna, Senior Member, IEEE

Abstract—Sharing resources in hierarchical real-time systems implemented with reservation servers requires the adoption of special

budget management protocols that preserve the bandwidth allocated to a specific component. In addition, blocking times must be

accurately estimated to guarantee both the global feasibility of all the servers and the local schedulability of applications running on

each component. This paper presents two new local schedulability tests to verify the schedulability of real-time applications running on

reservation servers under fixed priority and EDF local schedulers. Reservation servers are implemented with the BROE algorithm.

A simple extension to the SRP protocol is also proposed to reduce the blocking time of the server when accessing global resources

shared among components. The performance of the new schedulability tests are compared with other solutions proposed in the

literature, showing the effectiveness of the proposed improvements. Finally, an implementation of the main protocols on a lightweight

RTOS is described, highlighting the main practical issues that have been encountered.

Index Terms—Real-time systems, resource reservation, resource sharing, hierarchical scheduling

Ç

1 INTRODUCTION

WITH the rapid performance enhancement of modern
computer architectures, a computer system is typi-

cally required to execute several applications concurrently,
often independently developed by different teams, but shar-
ing the same resources (e.g., processor, memory, radio
transceiver, and other peripheral devices). For instance, in
automotive systems, the current trend is to confine the
exponential growth of the electronic control units (ECUs)
by integrating several software components into a reduced
number of more powerful hardware platforms [1].

When running multiple components in the same plat-
form, however, computational activities belonging to dif-
ferent components can affect each others. In particular,
the misbehavior occurring in a component could impact
on the performance of the entire system. Also, if not prop-
erly handled, computational activities can experience
reciprocal interference and jerky behavior due to long
blocking delays on shared resources. Such delays could
degrade the overall control performance, or even jeopar-
dize the system stability.

A possible solution to prevent these problems would be a
suitable kernel infrastructure capable of providing temporal
isolation among different components, thus allowing the
analysis of independently developed applications.

Resource reservation mechanisms [2], [3] can effectively
be used to isolate the temporal behavior of concurrent appli-
cations and limit their reciprocal interference [4]. The basic

idea behind this mechanism is to partition the processor
into a number of reservations, each behaving as a slower
virtual processor using a fraction of the full processor band-
width. A reservation can be efficiently implemented by a
reservation server Sk, providing a budgetQk for the applica-
tion every period Pk. In this case, the bandwidth reserved to
an application results to be ak ¼ Qk=Pk. The advantage of
this approach is that an overrun occurring in an application
does not interfere with the other applications, but only
affects the application experiencing the overrun. Moreover,
the application can be designed and analyzed indepen-
dently of the others, because its execution behavior only
depends on its own computational demand and the allo-
cated bandwidth.

A further step to support modularity and temporal isola-
tion on a single platform shared by multiple applications is
to provide a hierarchical scheduling framework, where a
system S consists of a number of subsystems (or compo-
nents), each implemented by reservation server, as schemat-
ically illustrated in Fig. 1.

In this approach, a global scheduler determines which sub-
system can access the CPU at any given time, whereas a local
scheduler selects the running task within the subsystem. In a
general hierarchical system, a component can in turn consist
of a number of subsystems, by partitioning the component
bandwidth through lower-level reservation servers, and so
on. In this paper, both EDF and FP are considered as local
scheduling policies for each subsystem. For the sake of sim-
plicity, this paper considers a two-level hierarchical system,
although the proposed methodology is valid for a generic
n-level hierarchical system considering the compositional
real-time scheduling framework proposed by Shin and
Lee [5].

Under Earliest Deadline First (EDF) scheduling [6], a res-
ervation can efficiently be implemented by a Constant
Bandwidth Server (CBS) [3], which has also been extended
by Lipari and Baruah [7] to support hierarchical schedulers.

� A. Biondi and G. Buttazzo are with the TeCIP Institute of the Scuola
Superiore Sant’Anna, Pisa, Italy.
E-mail: {alessandro.biondi, giorgio.buttazzo}@sssup.it.

� M. Bertogna is with the University of Modena and Reggio Emilia,
Modena, Italy. E-mail: m.bertogna@unimore.it.

Manuscript received 20 Feb. 2015; revised 25 May 2015; accepted 30 May
2015. Date of publication 11 June 2015; date of current version 13 Apr. 2016.
Recommended for acceptance by J.D. Bruguera.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2015.2444833

IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 5, MAY 2016 1593

0018-9340� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

One of the main problems that arises in reservation-
based systems comes from the blocking time experienced
by tasks when accessing shared resources. Unfortunately,
the use of classical synchronization mechanisms, such as
semaphores or monitors, may result in a well known phe-
nomenon called priority inversion [8]. To bound such a
problem, a number of protocols have been proposed,
both under fixed priority (FP) assignments [8] and EDF
scheduling [9]. Since in this work reservation servers are
scheduled using the EDF scheduling algorithm, resources
access is controlled by the Stack Resource Policy
(SRP) [9], which has been extended to be used in the pres-
ence of reservation servers. For example, applying SRP
under a two-level hierarchical system requires the defini-
tion of two types of resources: those shared among tasks
within the same reservation (local resources) and those
shared among tasks belonging to different reservations
(global resources). Integrating SRP with such a hierarchical
scheme requires addressing the following two problems
due to global resources.

Problem 1. When global resources are used by tasks handled
within a reservation server, a problem occurs when the
server budget is exhausted inside a critical section. In this
case, the served task cannot continue the execution, in order
to prevent other tasks from missing their deadlines; thus,
an extra delay is added to the blocked tasks to wait until
the next budget replenishment. Fig. 2 illustrates a situation
in which a high priority task t1 shares a resource with
another task t2 handled by a reservation server with budget
Qs ¼ 4 and period Ps ¼ 12. Tasks t1 and t2 execute upon
different reservation servers, S1 and S2, respectively. The
figure reports in the bottom timeline the budget consump-
tion of S2. At time t ¼ 3, t1 preempts t2 within its critical
section, and at time t ¼ 4 it blocks on the locked resource.
When t2 resumes, however, the residual budget is not suffi-
cient to finish the critical section, and t2 must be suspended
until the budget will be replenished at time t ¼ 12, so intro-
ducing an extra delay of 7 units in the execution of t1. This
example shows that suspending a task holding a
resource leads to unacceptably long delays for tasks in
other servers using the same resource.

To solve this problem various approaches have been
proposed in the literature. One of the first solutions is
based on a budget overrun: when the budget is exhausted
inside a resource, the server is allowed to consume some
extra budget until the end of the critical section. This
approach was first proposed by Ghazalie and Baker [10],
used by Abeni and Buttazzo under the Constant Band-
width Server [3], analyzed under fixed priorities by Davis
and Burns [11] and later extended under EDF by Behnam
et al. [12], [13]. Davis and Burns proposed two versions
of this mechanism:

� Overrun with payback, where the server pays back in
the next execution instant, in that the next budget
replenishment is decreased by the overrun value;

� Overrun without payback, where no further action is
taken after the overrun.

Note that the budget overrun technique does not increase
the response time of the served task, but implies a greater
bandwidth requirement for the reservation. Such an extra
bandwidth requirement leads to a violation of the temporal
isolation property of resource reservation, unless the server
is assigned a smaller budget, subtracting the largest possible
overrun.

Another proposed solution consists of introducing a bud-
get check before granting the access to a resource: if the bud-
get is sufficient to complete the critical section, the task can
access the resource, otherwise the access to the resource is
postponed until the next budget replenishment. This mech-
anism is used in the SIRAP protocol [14] to share resources
among reservations. This approach does not affect the exe-
cution of tasks in other reservations, but penalizes the
response time of the served tasks.

Another approach, named BROE (Bounded-Delay
Resource Open Environment), has been proposed by
Bertogna et al. [15]. According to this mechanism, when a
task wants to enter a critical section and the budget is not
sufficient for its completion, a full budget replenishment is
planned at the earliest possible time that preserves both the
server bandwidth and the maximum service delay. The
server is blocked until the budget replenishment.

As highlighted by Kuo and Li [16], since local resources
are used only by tasks within a server, no extra delay is
added to the blocked tasks that are waiting for a local
resource, hence the classical SRP can be adopted to access
local resources within each server. Note that the SRP

Fig. 1. Two-level hierarchical scheduling framework.

Fig. 2. Problem caused when a server budget is exhausted inside a
critical section.

1594 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 5, MAY 2016

parameters used in a server for local resources are defined
independently of the parameters used in the others servers.

Problem 2. When SRP is used in a hierarchical framework, pre-
emption rules need to be carefully defined when tasks lock
global resources. In fact, since tasks within a component may
have preemption levels unrelated to those assigned in another
component, there is the problem of assigning the ceilings of
global resources in a context where there is no global refer-
ence for preemption levels.

Davis and Burns [11] proposed the Hierarchical Stack
Resource Policy (HSRP) extending SRP for hierarchical sys-
tems. Their solution consists in defining a preemption level
for each server and use it to compute a resource ceiling for
each global resource. Similarly to the classical SRP, the ceil-
ing of a global resource is equal to the highest preemption
level of any server including tasks that can be blocked on
the global resource. Then, ceilings of global resources are
used to vary a global system ceiling during execution.

1.1 Contributions

This work provides the following novel contributions:

1) A new and more efficient method is proposed to ana-
lyze the schedulability of real-time applications run-
ning in a reservation, by incorporating resources
constraints directly into the supply bound function
describing the worst-case service time of a compo-
nent. The effectiveness of this approach is evaluated
through a set of experiments against existing tests
for different algorithms and configuration scenarios.

2) Two new local guarantee tests are proposed to verify
the schedulability of real-time applications running
on reservation servers implemented with the BROE
algorithm, under both fixed priority and EDF local
scheduling, in the presence of local and global
shared resources.

3) A comparative evaluation is presented to compare
the performance of BROE and SIRAP, under both FP
and EDF local scheduling, for different application
parameters.

It is also worth knowing that there exists an optimal
design algorithm [17] for computing the reservation param-
eters that minimizes the server bandwidth while guarantee-
ing the application schedulability. The design algorithm is
freely available on [18].

1.2 Paper Structure

The remainder of the paper is organized as follows. Section 2
presents the system model, the terminology, and the
assumptions used throughout the paper. Section 3 briefly
recalls the BROE algorithm for handling a reservation in the
presence of shared resources. Section 4 derives a new supply
bound function for a BROE server taking into account
resource holding times, and presents the local schedulability
test for real-time task sets scheduled with EDF on a BROE
reservation server. A similar test for task sets locally sched-
uled with fixed priority is presented in Section 5. Section 6
introduces an improvement of theHSRP protocol that allows
reducing the blocking time due to global resources. Section 7

reports two sets of experiments aimed at showing the perfor-
mance of the new schedulability tests for BROE with respect
to SIRAP and the original BROE test, under FP and EDF, for
different application parameters. Section 8 presents the
implementation work of BROE and SIRAP on an existing
RTOS, discussing practical implementation issues. Finally,
Section 9 states our conclusions and futurework.

2 SYSTEM MODEL

This paper considers a uniprocessor hierarchical system S

consisting of a number of subsystems Sk 2 S , each imple-
mented by a BROE [15] reservation server (also denoted as
Sk), characterized by a budget Qk and a period Pk. For the
sake of simplicity we consider a two-level hierarchical sys-
tem, although our contributions can be extended to a
generic n-level hierarchical system considering the compo-
sitional real-time scheduling framework proposed by Shin
and Lee [5]. The global scheduler is implemented by a hard
Constant Bandwidth Server [19], [20], whereas a local
scheduler can use either EDF and FP as scheduling policies
for each subsystem.

2.1 Task Model

Each subsystem Sk runs an application Gk consisting of nk

periodic or sporadic tasks. Each task generates a potentially
infinite sequence of instances (jobs), executed on different
data. They may be activated periodically, at fixed intervals
of time, or sporadically, with a minimum interarrival time
between consecutive jobs. Each task ti is characterized by a
worst-case execution time (WCET) Ci, a period (or mini-
mum interarrival time) Ti, and a relative deadlineDi. Under
local EDF scheduling, tasks are ordered by increasing rela-
tive deadlines, whilst under local FP scheduling tasks are
ordered by decreasing priorities, so that t1 is the highest pri-
ority task.

The Level-i notation is used in this paper to generalize the
application parameters under both EDF and FP local sched-
uling. A Level-i parameter provides an aggregate informa-
tion among all the tasks tk with k � i. This notation comes
useful for the FP schedulability analysis, which requires
computing a schedulability test for each task ti (ith level).
On other hand, the EDF schedulability analysis is based on
a single test covering all the tasks: this requirement fits also
well with the Level-i notation by simply considering the
application parameters for the nth level (i ¼ n).

2.2 Resource Model

Two types of resources can be defined:

� Local resource: a resource shared among tasks within
the same subsystem;

� Global resource: a resource shared among tasks
belonging to different subsystems.

In the following, di;j denotes the WCET for the longest critical

section of ti related to resource Rj.

Definition 1. The Resource Holding Time RHTk;jðiÞ of a
global resource Rj accessed by a task ti 2 Sk is the maximum
amount of budget consumed by Sk between the lock and the
corresponding release of Rj performed by ti.

BIONDI ET AL.: SCHEDULABILITY ANALYSIS OF HIERARCHICAL REAL-TIME SYSTEMS UNDER SHARED RESOURCES 1595

We also define the Level-i Resource Holding Time of a
global resource Rj accessed by th 2 Gk as

Hk;jðiÞ ¼ max
h�i

RHTk;jðhÞg:
�

(1)

Note that if global resources are accessed by disabling
local preemption,Hk;jðiÞ can be expressed as

Hk;jðiÞ ¼ max
h�i
fdh;j j th 2 Gkg: (2)

If local preemption is not disabled, Hk;jðiÞ must take into
account the worst-case local interference experienced by ti
during the lock of Rj (details on how to compute Hk;jðiÞ can
be found in [15]).

In addition, the Level-imaximum Resource Holding Time
for an application Gk is defined as

HkðiÞ ¼ max
j
fHk;jðiÞg; (3)

and the maximum Resource Holding Time for Gk is
defined as

Hk ¼ max
j
fHk;jðnkÞg: (4)

To access shared resources in such a hierarchical frame-
work, the SRP can be used as it is for local resources, while
it has to be extended for global resources. In the following,
the local and global version of SRP is denoted as SRP-L and
SRP-G, respectively, and it is summarized below. In the
following, the notation fxg0 is used to denote f0g [fxg.

2.2.1 Local SRP (SRP-L)

Within a server Sk, each task ti is assigned a local preemp-
tion level pi and preemption levels are ordered inversely
with respect to relative deadlines; that is, pi > ph ,
Di < Dh. Each local or global resource Rj is assigned a local

(static) ceiling C L
j equal to

C L
j ¼ max

i
fpi j Rj is used by tig0:

A subsystem ceiling is defined for each server Sk as

PL
k ¼ max

j
fC L

j j Rj is locked and used by Skg:

Then, a task ti running in a server Sk can preempt another

task in Sk only if pi > PL
k .

2.2.2 Global SRP (SRP-G)

To handle global resources, like in HSRP, each server Sk is

assigned a preemption level pS
k and server preemption lev-

els are ordered inversely with respect to server periods; that

is, pS
h > pS

k , Ph < Pk. Each global resource is assigned a

global (static) ceiling equal to

C G
j ¼ max

k
fpS

k j 9ti 2 Gk ^Rj is used by tig0:

A global system ceiling is defined as

PG ¼ max
j
fC G

j j Rj is lockedg:

Then, a server Sk can preempt the currently scheduled

server only if pS
k > PG.

Note that, when a global resource is locked, the system
ceiling PG is incremented and a number of servers is pre-
vented to execute, hence the blocking is extended to all the
tasks executing upon the blocked servers.

3 THE BROE SERVER

As stated in Section 1, suspending a task that holds a
global resource for a budget exhaustion would lead to
unacceptably long delays in tasks in other subsystems
wishing to access the same resource. More generally, con-
sider a task ti belonging to a server S and let q be the
residual budget of S at time t. For the sake of simplicity,
in this and in the following section we refer to a single
server and thus remove the index k, therefore H will
denote the maximum Resource Holding Time of server S,
as defined in Equation (4).

If ti wants to enter a critical section at time t and q < H,
then a budget depletion may occur inside the critical section.
Since ti cannot continue the execution to prevent other tasks
from missing their deadlines, an extra delay is added to the
blocked tasks to wait until the next budget replenishment.

To address the problem above, Bertogna et al. [15] pro-
posed the BROE server, which is based on a hard Constant

TABLE 1
Notation Used Throughout This Paper

Symbol Description

Sk kth subsystem (reservation server)
Gk Application (task set) handled by Sk

nk Number of tasks in Gk

Qk Budget of server Sk

Pk Period of server Sk

ak Bandwidth of server Sk

Dk Maximum of service delay of server Sk

sbfðSk; tÞ Generic supply bound function of server Sk

sbfBðSk; tÞ New proposed supply bound function of server Sk

sbfP ðSk; tÞ Periodic supply bound function of server Sk

sbfLðSk; tÞ Linear a-D supply bound function of server Sk

ti ith task
Ci Worst-case execution time (WCET) of ti
Ti Period (or minimum interarrival time) of ti
Di Relative deadline of ti

Rj jth shared resource
di;j WCET of the longest critical section of ti on Rj

Hk;jðiÞ Level-i RHT of Rj accessed by tasks in Gk

Hk Maximum RHT for Gk

HkðiÞ Level-i maximum RHT for Gk

pi Preemption level for ti
CLj Local resource ceiling for Rj

PL
k

Subsystem ceiling for Sk

pS
k

Preemption level for Sk

CGj Global resource ceiling for Rj

PG Global system ceiling

1596 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 5, MAY 2016

Bandwidth Server [19], [20] with period P and maximum
budget Q (the bandwidth is a ¼ Q=P). At any time t, the
server is characterized by an absolute deadline d and a
remaining budget q. When a job executes, q is decreased
accordingly. The rules of a BROE server are summarized
below:

1) Initially, q ¼ 0 and d ¼ 0.
2) When BROE is idle and a job arrives at time t, a

replenishment time is computed as tr ¼ d� q=a:
a) if t < tr, the server is suspended until time tr. At

time tr, the budget is replenished to Q and
d tr þ P .

b) otherwise the budget is immediately replenished
to Q and d tþ P ;

3) When q ¼ 0, the server is suspended until time d.
At time d, the server budget is replenished to Q
and the deadline is postponed to d dþ P .

4) When a pending task wishes to access a global
resource at a time t, a budget check is performed:
if q � H, there is enough budget to complete the
critical section, hence the access is granted. Oth-
erwise a replenishment time is computed as
tr ¼ d� q=a:
a) if t < tr, the server is suspended until time

tr. At time tr, the budget is replenished to
Q and d tr þ P .

b) otherwise the budget is immediately
replenished to Q and d tr þ P .

According to the above rules, a server running ahead
with respect to its guaranteed processor utilization will self-
suspend in two cases: when reactivating after an idle time
(Rule 2), and when trying to enter a global critical section
with insufficient budget (Rule 4). In both cases, it will self-
suspend until the guaranteed processor utilization is
matched (time tr ¼ d� q=a). At time tr, the server budget is
replenished to Q and the deadline is set to d tr þ P .
When instead the server consumed less processor resources
than its allowed share, it will immediately replenish its bud-
get in the two mentioned cases. However, the deadline
set when reactivating after an idle (d tþ P , according to
Rule 2) differs from the one set when trying to enter a global
critical section with insufficient budget (d tr þ P , accord-
ing to Rule 4).

4 LOCAL SCHEDULABILITY TEST FOR BROE
UNDER EDF

The local schedulability analysis of a reservation server can
be performed using the test proposed by Shin and Lee [5],
later extended by Baruah [21] to account for shared resour-
ces. According to this test, a task set G is schedulable by
EDF on a reservation server S if

8t > 0 BLðtÞ þ dbfðG; tÞ � sbfðS; tÞ (5)

where dbfðG; tÞ is the demand bound function of the task set G
(i.e., the maximum computational demand of G in any inter-
val of length t > 0), sbfðS; tÞ is the supply bound function of
the server S, (i.e., the minimum amount of service time pro-
vided by the server in any interval of length t > 0), and

BLðtÞ is the blocking time in interval ð0; t�, computed as the

maximum critical section of tasks having deadline > t,
accessing resources common to at least one task with dead-
line � t, that is,

BLðtÞ ¼ max
i;j
fdi;j j Di > t

^ 9t‘ accessing Rj with D‘ � tg:
(6)

As shown in [21], it is possible to limit the number of test
points for Equation (5) to a discrete set for an efficient
implementation.

In the original paper presented by Bertogna et al. [15], the
supply bound function used in the test was actually a linear
lower bound sbfLðS; tÞ of a bounded-delay partition (a, D),
where a is the server bandwidth and D is the maximum ser-
vice delay:

sbfLðS; tÞ ¼ aðt� DÞ; (7)

where a ¼ Q=P and D ¼ 2ðP �QÞ.
In the following theorem, we improve the effectiveness of

the local schedulability test by deriving the actual supply
bound function sbfBðS; tÞ of BROE as a function of the maxi-
mum resource holding time H of the global resources
accessed by G. Note that the use of H for the local analysis is
compliant with BROE, since resource holding times are also
required for the global schedulability analysis, as well as used
by the resource access policy to avoid budget depletionwithin
critical sections. The improved supply bound function is illus-
trated in Fig. 3 (continuous line) together with the linear
bound (dotted line) proposed in the original work. As clear
from the figure, the new supply bound function introduces

some additional areas over the linear bound sbfLðtÞ, for time
intervals in ½D;Dþ ðdQ=He � 1ÞP �. Such areas may be effi-
ciently exploited by the schedulability test in Equation (5) to
improve the schedulability analysis. For time intervals outside

this domain, the original sbfLðtÞ can be used instead.

Theorem 1. In any interval of length t 2 ½D;Dþ ðdQ=He�
1ÞP �, the supply provided by a BROE server with a maximum
resource holding time of H cannot be lower than the following
function:

sbfBðtÞ ¼
t� D� ðk� 1ÞðP �QÞ tA < t � tB
kQ� kH tB < t � tC
aðt� DÞ tC < t � tD

8<
: (8)

Fig. 3. Supply bound functions: periodic (dashed line), linear a-D (dotted
line), and new sbf proposed for BROE (continuous line).

BIONDI ET AL.: SCHEDULABILITY ANALYSIS OF HIERARCHICAL REAL-TIME SYSTEMS UNDER SHARED RESOURCES 1597

where

k ¼ t� D

P

� �
; (9)

and

tA ¼ Dþ ðk� 1ÞP
tB ¼ Dþ ðk� 1ÞP þ ðQ� kHÞ
tC ¼ Dþ kP � kH=a
tD ¼ Dþ kP:

8>><
>>:

Proof. When no global resource is shared, BROE behaves as
a classical hard CBS server (see [20]), whose supply
bound function is described as [22], [23]:

sbfP ðtÞ ¼ max
0;

ðhðtÞ � 1ÞQ;
t� ðhðtÞ þ 1ÞðP �QÞ

8<
:

9=
; (10)

where hðtÞ ¼ t�PþQ
P

� �
. Function sbfP ðtÞ is shown in Fig. 3

as a dashed line.
When considering resource sharing, the worst-case

supply can be found by considering Rule 4 of BROE in
Section 3, which reduces sbfP ðtÞ in some time intervals.

Note that Rule 2 does not affect the sbfBðtÞ, since it is
applied only when the server is resumed from an idle
state, and therefore will never be invoked in the busy
period considered in the worst-case scenario by the
schedulability test of Equation (5).

After its worst-case delay t ¼ D, the server will be able
to execute for at least Q�H units of time. After time
t ¼ DþQ�H, a pending task wishing to access a global
resource Rj can experience the condition q < Hj.
According to Rule 4 of BROE, such a condition causes a
deadline shift to tr þ P , suspending the server H units

earlier than in the more favorable sbfP ðtÞ. Then, the latest
time the server can resume execution is at time
tr þ P �Q. Since tr ¼ DþQ�H=a, then the server can
restart executing at tr þ P �Q, which, rephrasing the
terms, is equal to Dþ P �H=a. Such a point lies at the

intersection of the original sbfLðtÞ (dotted line in Fig. 3).
Since the same condition imposed by Rule 4 can occur

at any time in (DþQ�H; DþQ], then sbfBðtÞ ¼ sbfLðtÞ
in the interval (Dþ P �H=a; Dþ P].

Note that, in the next interval [Dþ P; Dþ 2P], the

reduction of the sbfBðtÞ with respect to sbfP ðtÞ is more
significant. The reason is that the server, when resuming
the execution at time Dþ P �H=a, can be suspended

again after executing for Q�H time units, thus the

sbfP ðtÞ is “cropped” earlier than in the previous period
(i.e., at t ¼ Dþ P þ ðQ� 2HÞ). By computing tr þ P �Q
using Rule 4, the server is resumed at time
Dþ 2P � 2H=a. This point lies again at the intersection

of the original sbfLðtÞ.
In general, the reduction of the sbfBðtÞ with respect to

sbfP ðtÞ increases period by period, until it reduces to

sbfLðtÞ. Considering the kth period after D, the intervals

in which sbfBðtÞ ¼ sbfLðtÞ are

½Dþ kP � kH

a
; Dþ kP �: (11)

The larger k, the larger such intervals. The first period in

which, for all t, sbfBðtÞ ¼ sbfLðtÞ can be derived by find-
ing the smallest k that satisfies the following inequality:

Dþ kP � kH

a
� Dþ ðk� 1ÞP;

which gives k � Q=H. Therefore, from the dQ=He-th
period on, the supply bound function cannot be larger

than sbfLðtÞ.
Fig. 4 shows the sbfBðtÞ in the kth period after D, i.e.,

for t 2 ½Dþ kP; Dþ ðkþ 1ÞP �, when k < dQ=He. The
values of the timing parameters used in the figure are
reported in Table 2.

The supply provided between tA and tB can be com-
puted as t� tA þQA, giving t� D� ðk� 1ÞðP �QÞ. The
supply between tB and tC is equal to QB ¼ kQ� kH.
Finally, the supply between tC and tD coincides with the

linear supply bound function sbfLðtÞ ¼ aðt� DÞ.
The theorem follows noting that for any t � D þ

ðdQ=He � 1ÞP , k is smaller than dQ=He. tu
Considering that the sbfB has been derived as the mini-

mum supply provided by BROE for all actual worst-case
scheduling scenarios, the resulting schedulability test is
tight by construction.

Moreover, it is worth observing that H is just an upper
bound of the resource holding time, while the effective lock-
ing time can be significantly smaller, depending on the inter-
ference caused by higher priority jobs preempting the critical
section. Note that the presented analysis is robust and sus-
tainable, according to the criteria outlined in [24]. In fact, the
analysis does not make any assumption on the actual dura-
tion of the resource holding time. One may be tempted to
improve the supply bound function by assuming that a bud-
get replenishment due to a global lock request (Rule 4) will

Fig. 4. sbfBðtÞ in the kth period after the service delay.

TABLE 2
Values for Fig. 4

tA Dþ ðk� 1ÞP
tB Dþ ðk� 1ÞP þ ðQ� kHÞ
tC Dþ kP � kH=a
tD Dþ kP
QA ðk� 1ÞQ
QB kQ� kH
QD kQ

1598 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 5, MAY 2016

then cause the corresponding server to execute for H time
units. In this case, the supply providedwould be higher than

in our sbfB. However, an analysis using such an improved
supply function would be not sustainable, i.e., it would not
provide sufficient guarantees to tasks that may execute for
less than their worst-case execution times. Our supply bound
function correctly considers also the case in which a global
lock is released an infinitesimal time after the budget replen-
ishment, and another lock request is made QH time units
after that, as correctly considered in the proof above.

Analyzing the improved supply bound function, it
becomes apparent that the improvement with respect to
the original sbfLðtÞ is magnified when H is much smaller
than Q. In the extreme case in which no global resource is

shared, we have H ¼ 0 and sbfBðtÞ coincides with the sup-

ply bound function sbfP ðtÞ of a periodic server. Conversely,

when H ¼ Q, sbfBðtÞ is always equal to sbfLðtÞ. Different
methods have been proposed in the literature to reduce
resource holding times by limiting (or disabling) local pre-
emption when accessing global resources [25]. In particular,
all critical sections having a length smaller than D=2 can be
executed non-preemptively by BROE (Theorem 7 in [15]),
leading to a minimal resource holding time equal to the crit-
ical section length, so magnifying the improvement allowed
by the supply bound function presented in this paper.

Note that the improved supply bound function can be
simply plugged in the schedulability test of Equation (5).
The obtained improvement does not affect the computa-
tional complexity of the schedulability test, which remains
pseudo-polynomial as the original test based on the linear

sbfLðtÞ. In fact, computing the value of the novel supply
bound function for a given time t just requires identifying
the kth period by Equation (9) and then computing the

sbfBðtÞ value by Equation (8). Hence, the total computation
requires a modulo operation and a constant number of
additions and multiplications.

Also, the new proposed method preserves the modular-
ity of BROE’s original approach, where the local schedul-
ability of each application can be validated in isolation,
without requiring the knowledge of the parameters of the
other applications. The global schedulability of the various
applications on open environments can then be verified
based on simple application interfaces [15]. Such a modular
approach scales well with the number of tasks and servers,
allowing an efficient integration of multiple applications in
an open environment.

5 LOCAL SCHEDULABILITY TEST FOR

BROE UNDER FP

This section presents the local schedulability analysis of a
real-time application scheduled under FP within a BROE
server. The guarantee test can be derived from the FP-test
proposed by Lehoczky et al. [26] considering that, in any test
interval [0; t], only a fraction of time given by sbfðS; tÞ is avail-
able for the application. Hence, a task set G ¼ fti; . . . ; tng is
schedulable under FP on a reservation server S if

8i ¼ 1; . . . ; n 9t 2 tSeti rbfiðtÞ þBL
i � sbfðS; tÞ

where tSeti is the set of test points [26], [27], relative to task
ti, where the schedulability check has to be performed,
that is

tSeti ¼ rTj j j ¼ 1 . . . i; r ¼ 1 . . .
Ti

Tj

� �	

;

and

rbfiðtÞ ¼ Ci þ
Xi�1
j¼1

t

Ti

� �
Cj;

BL
i ¼ max

‘;j
fd‘;jjp‘ < pi

^ 9Rj used by th : ph � pig
(12)

As explained in Section 4, the sbfBðS; tÞ for a BROE
server depends on resource holding times in G: in particu-
lar, for EDF local schedulability, it depends on their maxi-
mum value H. Since, under FP, the schedulability test has
to be computed for each task ti, the BROE supply bound
function only depends on the maximum among resource
holding times of the i highest priority tasks, that is, the
Level-i maximum resource holding time HðiÞ defined in
Equation (3).

Hence, to have a more precise schedulability test, the
BROE supply bound function presented in Equation (8) can
be redefined by introducing the Level-i supply bound func-
tion sbfBi ðS; tÞ, obtained by replacing H with HðiÞ. Using
such a refinement, a task set G is schedulable by FP on a
BROE server if

8i ¼ 1; . . . ; n 9t 2 tSeti rbfiðtÞ þBL
i � sbfBi ðS; tÞ: (13)

6 IMPROVING SRP-G

The next example shows a particular situation in which
the global SRP-G rule causes an unnecessary blocking. Con-
sider four servers S1, S2, S3, and S4, with periods
P1 > P2 > P3 ¼ P4. Each server Si runs a single task ti. A
global resource R1 is shared between t1 and t3, and another
global resource R2 is shared between t2 and t4.

Server preemption levels are defined according to SRP-G,
thus pS

1 < pS
2 < pS

3 ¼ pS
4 , and when any resource is locked,

its ceiling will be C G
j ¼ pS

3 ¼ pS
4 . Suppose that t1 starts exe-

cuting and locks R1. After the lock operation, the global sys-

tem ceiling will be PG ¼ pS
3 . Hence, if t4 arrives when t1 is

locking R1, it cannot preempt, because its server (S4)

is blocked by SRP-G (PG � pS
4). However, such a blocking

is not necessary for t4, because no task in S4 uses R1. A simi-
lar situation can occur if S4 does not use global resources. In
the described example, only a single task experiences the
unnecessary blocking, but in a general system configuration
several served tasks could be affected.

To avoid the blocking situation described above, a new
preemption test is proposed in this section to manage pre-
emptions among servers. The proposed improvement
allows global preemption when a server Sk has pS

k ¼ PG

and its task set Gk does not use resources that are currently
locked. Note that the improvement is effective only when
two or more servers have the same preemption level, like in

BIONDI ET AL.: SCHEDULABILITY ANALYSIS OF HIERARCHICAL REAL-TIME SYSTEMS UNDER SHARED RESOURCES 1599

the example presented above, hence it can be disabled
(to save runtime overhead) whenever it is not needed.

Considering such a new rule, the new SRP-G preemption
test can then be formally expressed as follows.

A server Sk can preempt another server only if one of the
following conditions is verified:

pS
k > PG

ðpS
k ¼ PGÞ ^ ð6 9Rj used by Sk j Rj is locked Þ:

����

6.1 Global Schedulability Analysis

The SRP-G extension introduced above affects the calcula-
tion of the blocking time due to global resources, hence it
affects the global schedulability analysis.

A set of reservation servers S1; . . . ; Sm can be scheduled
under an EDF-based global scheduler (such as IRIS [19]) if 1

8k ¼ 1; . . . ;m
X
hepðiÞ

ai þBG
k

Pk
� 1 (14)

where hepðiÞ denotes the set of servers with period higher

than or equal to Pk and BG
k is the blocking factor of server

Sk. Note that the improvement proposed in this paper for
SRP-G can reduce the blocking factor with respect to the
classical formulation.

In particular, the maximum blocking time that server Sk

can experience is equal to the maximum resource-holding-
time among all the servers S‘ with period P‘ > Pk that
share a global resource with some server Sh with period
Ph < Pk, or with period Ph ¼ Pk when S‘ shares a resource

with Sk. Formally, BG
k can be expressed as follows:

BG
k ¼ max

P‘ >Pk
fH‘;j j Rj used by Sh 2 Vðk; jÞg0 (15)

with

Vðk; jÞ ¼ fSh j ðPh < PkÞ
_ ððPh ¼ PkÞ ^Rj used by SkÞg:

7 EXPERIMENTAL RESULTS

This section presents a set of experiments carried out to
evaluate the performance of the new local schedulability
test proposed for BROE, under local EDF and FP, for differ-
ent configuration parameters. Performance results are also
compared with the original schedulability test for BROE
proposed by Bertogna et al. [15] and the schedulability test
for SIRAP proposed by Behnam et. al. [28] in 2010, reformu-
lated by van den Heuvel et al. [23] in 2011.

A comparison with overrun-based approaches [11] is not
carried out here, considering that extensive experiments [23]
have shown that SIRAP clearly outperforms such methods.

Since we assume global EDF-based scheduling of reser-
vation servers, we use as global schedulability test the same
test proposed by Bertogna et al. in [15].

Note that, in the performance study reported by van den
Heuvel et al. [23], the BROE schedulability is tested by using
the original analysis based on the linear bound a-D.

In all the experiments, the performance of each resource
sharing algorithm is evaluated by measuring the ratio of the
number of feasible task sets and the total number N of ran-
domly generated task sets, for a given configuration param-
eter. In each graph, for each value of the configuration
parameter the ratio is computed overN ¼ 2;500 task sets.

7.1 Task Set Generation

Given m servers with a total system utilization U , server
parameters are generated as follows:

� server utilization Uk is randomly generated by the
UUniFast algorithm [29], which guarantees a uni-
form distribution, limiting the minimum server utili-

zation to Umin
S .

� server budget Qk is randomly generated with uni-

form distribution in a given range ½Qmin;Qmax�;
� server period Pk is computed as Pk ¼ Qk=Uk.

Within each subsystem Sk, the task set Gk, consisting of n
tasks, is generated with a total utilization CkUk, where Ck rep-

resents the application load normalized with respect to the

server bandwidth. Note that such a normalized load represents

a crucial parameter affecting the performance of the schedul-

ability test.

The other task set parameters are generated as follows:

� the task utilization Ui is randomly generated by
UUniFast;

� the task period Ti (or minimum interarrival time) is
randomly generated with uniform distribution in a

given range ½Tmin
k ; Tmax

k �, set for the considered
server Sk;

� the task WCET Ci is computed as Ci ¼ TiUi;
� the relative deadline Di is randomly generated with

uniform distribution in ½Ci þ bðTi � CiÞ; Ti�, where b

is a parameter of the algorithm, such that 0 � b � 1.
Considering that the extra delay problem highlighted in

Section 1 is not caused by local resources, and that the proto-

cols compared in this study are explicitly designed to solve

such a problem, only global resources are taken into account.

Global resources are randomly assigned to tasks following an

exponential distribution, in order to simulate a more realistic

resource sharing among tasks. In this way we obtain a high

probability that a resource is shared among a small number of

tasks and, viceversa, a low probability that is shared by a high

number of tasks.

To simplify the computation of Hk;jðiÞ and the local

blocking time BL
k ðtÞ, global resources are accessed using a

non-preemptive scheme. For each global resource Rj, the
corresponding resource holding time Hk;j is randomly gen-

erated with uniform distribution in the range ½Hmin;Hmax�.
Since both BROE and SIRAP require Hk < Qk, H

min and
Hmax are computed as a fraction of the actual minimum
budget Q� deriving from the random generation of the
server parameter:

Q� ¼ min
k
fQkg:1. Note that the global feasibility test can also be performed using

the processor demand criterion extended under resource sharing by
Baruah [21].

1600 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 5, MAY 2016

During our experiments we noticed that some parameters
do not significantly affect the schedulability ratio, so we
decided not to present the corresponding experiments. In
all the experiments reported below, all fixed parameters are
reported in Table 4 and the following notation is used to
refer to the compared algorithms:

BROE-aD Original schedulability test for BROE based on
the linear supply bound function sbfLðtÞ,
proposed by Bertogna et al. [15].

BROE New test for BROE presented in Section 4
(for EDF) and Section 5 (for FP).

SIRAP Schedulability test for SIRAP [23], [28] proposed
by Behnam et. al. in 2010.

For each scheduling policy (EDF and FP) we performed
three experiments: Table 3 reports a short description for
each experiment.

7.2 Experiments under Local EDF

7.2.1 Experiment 1

In the first experiment we tested the schedulability ratio of
feasible task sets as a function of the normalized application
load C, varied in the range [0.25, 1], with step 0.05, for all
the servers. In addition, the number of global resources is

set to 5 and task periods are varied between Tmin
k ¼ 2Pk and

Tmax ¼ 12Pk. Note, in fact, that applications including tasks
with a period smaller than Dk ¼ 2ðPk �QkÞ cannot be
guaranteed on the reservation server Sk.

In order to show the influence of the resource holding
time Hk;j on the performance of the algorithms, three differ-
ent graphs are reported in Fig. 5 for different ranges

½Hmin;Hmax�.
As it is clear from the graphs, the new schedulability test

for BROE proposed in this paper always outperforms the
other two tests for all configuration parameters. For very
small critical sections (see Fig. 5a), SIRAP performs better
than BROE-aD, whereas for medium critical sections (see
Fig. 5b) BROE shows a significant improvement with

respect to SIRAP. For instance, for C ¼ 0:6, BROE schedules
three times more task sets than SIRAP.

It is worth observing that, as critical sections get larger,
all the algorithms tend to degrade (see Fig. 5c), but SIRAP
degrades more quickly, and for application loads higher

TABLE 4
Fixed Parameters Used in All Experiments

Number of servers m ¼ 5
Total utilization U ¼ 0:8
Minimum budget Qmin ¼ 300
Maximum budget Qmax ¼ 1;000
Minimum server utilization Umin

S ¼ 0:08
Number of tasks per server 8
Deadline constraint b ¼ 1

Fig. 5. Schedulability under local EDF as a function of C, for different
values ofHmin andHmax.

TABLE 3
Descriptions of the Performed Experiments

Experiment 1 Schedulability ratio as a function of the
application load, for three different ranges
of resource holding time.

Experiment 2 Schedulability ratio as a function of the
average maximum resource holding time.

Experiment 3 Schedulability ratio as a function of the
application load for two different numbers
of global resources.

BIONDI ET AL.: SCHEDULABILITY ANALYSIS OF HIERARCHICAL REAL-TIME SYSTEMS UNDER SHARED RESOURCES 1601

than 60 percent it is not able to guarantee a significant load,
while BROE shows a more graceful degradation.

7.2.2 Experiment 2

To better illustrate the dependency of the tests on the
resource holding time Hk;j, we carried out another experi-
ment by monitoring the schedulability ratio as a function of
the average maximum resource holding time normalized

with respect to Q�, that is H=Q�, setting Hmax �Hmin ¼
0:2Q�, C ¼ 0:6, and five global resources. Note that, as

H=Q� increases, the average number of critical sections that
can be inserted in the task code decreases. To limit the effect
of such a phenomenon, in this experiment we varied the

task periods in a larger interval by setting Tmin
k ¼ 2Pk and

Tmax ¼ 16Pk, so obtaining tasks with higher worst-case exe-
cution times.

The results shown in Fig. 6 confirm the observed degra-
dation. Again, SIRAP degrades more quickly, and for

H=Q� ¼ 0:4 it guarantees only 20 percent of the load, while
BROE reaches almost 80 percent.

It is worth observing that, although the sbfP ðtÞ used by

SIRAP does not reduce while increasing H, the observed
degradation is due to the self-blocking phenomenon which
significantly increases the blocking term [14]. On the other
hand, BROE degradation is due to the cropping of its

sbfBðtÞ, as explained in Section 4. As a consequence, it
appears that self-blocking has a higher negative impact on
local schedulability than the cropping effect present in
BROE. Note that this behavior becomes even more apparent
when global resources are accessed without using a non-
preemptive scheme, causing larger blocking times that sig-
nificantly penalize SIRAP.

7.2.3 Experiment 3

A final experiment has been carried out to show the depen-
dency of the schedulability tests on the number of global
resources used by the task set. Here, resource holding times
have been generated using the medium case, with

Hmin ¼ 0:1Q� and Hmax ¼ 0:4Q�, and task periods have

been varied between Tmin
k ¼ 2Pk and Tmax ¼ 12Pk. The

number of global resources has been set to 1, 5, and 10. The
case with five global resources has already been shown in
Fig. 5b, while the other two cases are reported in Fig. 7.
Although all the tests exhibit a degradation as the number
of global resources increases, the SIRAP test degrades more
significantly, while the new test proposed for BROE is
much less sensitive to such a variation.

7.3 Experiments under Local FP

This section compares the performance of BROE, BROE-aD
and SIRAP schedulability tests under local FP scheduling.
Since in the original BROE paper [15] the local schedulabil-
ity analysis was derived only under EDF, we extended

the BROE-aD test by replacing sbfBi ðS; tÞ with sbfLðS; tÞ in
Equation (13) in order to make a comparison under local FP.

7.3.1 Experiment 1

The Experiment 1 made under EDF has been repeated
under FP with the same configuration parameters: results
are reported in Fig. 8. The graphs show that, under FP,
SIRAP performs better than BROE-aD with respect to the
EDF case, while the new BROE schedulability test proposed

Fig. 6. Schedulability under local EDF as a function of the average value

H=Q�, forC ¼ 0:6.

Fig. 7. Schedulability under local EDF as a function of C, for different
numbers of global resources.

1602 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 5, MAY 2016

in this paper again outperforms the other two tests, confirm-
ing the relevance of our contribution.

7.3.2 Experiment 2

Experiment 2 has been repeated under FP with different
configuration parameters. In fact, as C increases, the

performance under local FP degrades more quickly than
under EDF. We therefore ran the experiment setting
C ¼ 0:5 (instead of C ¼ 0:6). To allow inserting a sufficient
number of critical sections in the tasks, periods have been

generated using Tmin
k ¼ 2Pk and Tmax ¼ 18Pk, while

resource holding times have been generated using the same
constraints as in the EDF case. The number of global resour-
ces has been also kept to 5. Results are reported in Fig. 9. In
this case, SIRAP outperforms BROE-aD for all values of

H=Q�, but it is always dominated by the improved BROE.

7.3.3 Experiment 3

A last experiment has been carried out under FP to show the
dependency of the schedulability tests on the number of
global resources, using the same parameter ranges used in
the third experiment for EDF. The number of global resour-
ces has been set to 1, 5, and 10. The case with five global
resources has already been shown in Fig. 8b, while the other
two cases are reported in Fig. 10. The results of this experi-
ment show that, under local FP, both BROE and SIRAP are
less sensitive to the number of global resources with respect
to the EDF case, although BROE still dominates the other
two tests for all ranges of parameters.

8 IMPLEMENTATION ISSUES

This section discusses some guidelines related to the imple-
mentation of the two resource sharing protocols SIRAP and
BROE. These protocols have been implemented on the
ERIKA Enterprise real-time kernel [30], using the Hard-
CBS [19], [20] as a global scheduler. The Hard-CBS is a
bandwidth preserving server algorithm that has been
extended in this work to support resource sharing.

It is worth noting that both SIRAP and BROE have also
been implemented on the mC/OS-II operating system by
van den Heuvel et al. [31]. However, their SIRAP imple-
mentation relies on a periodic-idling server algorithm as
global scheduler, which discharges the budget every time
the server becomes idle. Viceversa, bandwidth preserving
servers preserve the server budget as long as possible with-
out violating the guaranteed reservation bandwidth. Due to

Fig. 8. Schedulability under local FP as a function of C, for different
values ofHmin andHmax.

Fig. 9. Schedulability under local FP as a function of the average value

H=Q�, forC ¼ 0:5.

BIONDI ET AL.: SCHEDULABILITY ANALYSIS OF HIERARCHICAL REAL-TIME SYSTEMS UNDER SHARED RESOURCES 1603

such a difference, the considerations in [31] on the imple-
mentation complexity do not apply to bandwidth preserv-
ing server algorithms like the Hard-CBS. In summary, the
implementation comparison presented in [31] considers dif-
ferent global schedulers for BROE and SIRAP, hence the
reported results do not represent a consistent evaluation
between these two resource sharing protocols.

The implementation carried out for this work has shown
that BROE can be easily implemented on a bandwidth pre-
serving server, because it does not require additional data
structures in the kernel and its behavior is realized just by
acting on two state variables: the current budget qk and the
absolute deadline dk. In particular, the BROE suspension
required by Rule 4-a can be implemented in a transparent
fashion without modifying the Hard-CBS implementation:
when a server experiences such a suspension, its remaining
budget qk can be discarded and the Recharging Time
defined by the Hard-CBS can be set to tr ¼ dk � qk=ak. The
same considerations are valid for IRIS [19], which is a Hard-
CBS algorithm that also includes a reclaiming mechanism
for exploiting available idle times.

On the other hand, SIRAP requires specific data struc-
tures, one for each server, to manage self-blocked tasks. In

terms of implementation, handling such data structures
increases both the kernel footprint and the runtime
overhead. As a side note, implementing SIRAP over the
Hard-CBS implies an additional complication, needed for
handling a situation in which all served tasks ti that are

active and eligible for execution (pi > PL) experience a
self-blocking. This situation is not compliant with the Hard-
CBS rules, because the Hard-CBS does not handle a server
with active tasks that is waiting for a budget replenishment.
Solving such an inconsistency requires additional coding
and timer operations that introduce extra overhead.

9 CONCLUSIONS

In this paper we presented two local schedulability tests
(one under local FP and one under local EDF schedulers) to
verify the schedulability of real-time applications in a two-
level hierarchical system under an EDF-based global sched-
uler, where resource sharing among reservations is per-
formed by the BROE service algorithm. A simple extension
of the global SRP protocol has been also proposed to possi-
bly reduce the blocking time of the servers while accessing
global resources in certain conditions.

The performance of the new BROE schedulability tests
has been compared with the ones of SIRAP and the original
test proposed for BROE based on the linear bound a-D.
Since both algorithms have been implemented on the Erika
Enterprise real-time kernel, practical issues related to imple-
mentation complexity and runtime overhead have also been
discussed for bandwidth preserving servers.

Experimental results showed that the new BROE tests
outperform the others for all configuration parameters. For
several configuration parameters, the new BROE test is able
to accept 2-3 times more task sets than the older BROE test
and up to eight times more than SIRAP.

Although the schedulability of all tests degrades as criti-
cal sections get larger, BROE exhibits a more graceful degra-
dation with respect to the other tests, making it the best
choice for implementing reservations in hierarchical sys-
tems under global resource sharing. This choice is also justi-
fied by the existence of an optimal design algorithm [17]
that exploits the novel analysis methodology proposed in
this paper. The design method allows computing the reser-
vation parameters that minimize the server bandwidth for
guaranteeing the schedulability of the real-time application.
A proof-of-concept implementation of the server design
algorithm is freely available on [18].

REFERENCES

[1] M. D. Natale and A. S. Vincentelli, “Moving from federated to inte-
grated architectures in automotive: The role of standards, methods
and tools,” Proc. IEEE, vol. 98, no. 4, pp. 603–620, Apr. 2010.

[2] C. W. Mercer, S. Savage, and H. Tokuda, “Processor capacity
reserves for multimedia operating systems,” in Proc. IEEE Int.
Conf. Multimedia Comput. Syst., May 1994, pp. 90–99.

[3] L. Abeni and G. Buttazzo, “Resource reservations in dynamic real-
time systems,” Real-Time Syst., vol. 27, no. 2, pp. 123–165, 2004.

[4] E. Bini, G. Buttazzo, J. Eker, S. Schorr, R. Guerra, G. Fohler,
K.-E. Arzen, V. R. Segovia, and C. Scordino, “Resource man-
agement on multicore systems: The ACTORS approach,” IEEE
Micro, vol. 31, no. 3, pp. 72–81, May-Jun. 2011.

[5] I. Shin and I. Lee, “Compositional real-time scheduling frame-
work,” in Proc. 25th IEEE Real-Time Syst. Symp., lisbon, portugal,
Dec. 5-8, 2004, pp. 57–67.

Fig. 10. Schedulability under local FP as a function of C, for different
numbers of global resources.

1604 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 5, MAY 2016

[6] C. Liu and J. Layland, “Scheduling algorithms for multiprogram-
ming in a Hard-real-time environment,” J. Assoc. Comput. Machin-
ery, vol. 20, no. 1, pp. 46–61, Jan. 1973.

[7] G. Lipari and S. Baruah, “A hierarchical extension to the constant
bandwidth server framework,” in Proc. 7th Real-Time Technol.
Appl. Symp., Taipei, Taiwan, Jun. 2, 2001, pp. 26–35.

[8] L. Sha, R. Rajkumar, and J. Lehoczky, “Priority inheritance proto-
cols: An approach to Real-time synchronization,” IEEE Trans.
Comput., vol. 39, no. 9, pp. 1175–1185, Sep. 1990.

[9] T. P. Baker, “Stack-based scheduling for realtime processes,” Real-
Time Syst., vol. 3, no. 1, pp. 67–99, Apr. 1991.

[10] T. Ghazalie and T. Baker, “Aperiodic servers in a deadline sched-
uling environment,” Real-Time Syst., vol. 9, pp. 31–67, 1995.

[11] R. I. Davis and A. Burns, “Resource sharing in hierarchical fixed
priority pre-emptive systems,” in Proc. IEEE Real-Time Syst.
Symp., Rio de Janeiro, Brazil, Dec. 5-8, 2006, pp. 257–268.

[12] M. Behnam, I. Shin, T. Nolte, and M. Nolin, “Scheduling of semi-
independent real-time components: Overrun methods and
resource holding times,” in Proc. 13th IEEE Int. Conf. Emerging
Technol. Factory Autom., Hamburg, Germany, Sep. 15-18, 2008,
pp. 575–582.

[13] M. Behnam, T. Nolte, M. Sj€odin, and I. Shin, “Overrun methods
and resource holding times for hierarchical scheduling of semi-
independent real-time systems,” IEEE Trans. Indus. Informat.,
vol. 6, no. 1, pp. 93–104, Feb. 2010.

[14] M. Behnam, I. Shin, T. Nolte, and M. Nolin, “SIRAP: A synchroni-
zation protocol for hierarchical resource sharing in real-time open
systems,” in Proc. 7th ACM IEEE Int. Conf. Embedded Softw., Salz-
burg, Austria, Oct. 1-3, 2007, pp. 279–288.

[15] M. Bertogna, N. Fisher, and S. Baruah, “Resource-sharing servers
for open environments,” IEEE Trans. Indus. Informat., vol. 5, no. 3,
pp. 202–219, Aug. 2009.

[16] T.-W. Kuo and C.-H. Li, “A fixed prioriy driven open environ-
ment for real-time applications,” in Proc. IEEE Real-Time Syst.
Symp., Phoenix, AZ, Dec. 1-3, 1999, pp. 256–267.

[17] A. Biondi, A. Melani, M. Bertogna, and G. Buttazzo, “Optimal
design for reservation servers under shared resources,” in Proc.
26th Euromicro Conf. Real-Time Syst., Madrid, Spain, 9-11 Jul. 2014,
pp. 153–164.

[18] A MATLAB� optBROE algorithm implementation, [Online]. Avail-
able: http://retis.sssup.it/~a.biondi/optBROE

[19] L. Marzario, G. Lipari, P. Balbastre, and A. Crespo, “IRIS: A new
reclaiming algorithm for server-based real-time systems,” in Proc.
IEEE Real-Time Embedded Technol. Appl. Symp., Toronto, Canada,
May 2004, pp. 211–218.

[20] A. Biondi, A. Melani, and M. Bertogna, “Hard constant band-
width server: Comprehensive formulation and critical scenarios,”
in Proc. 9th IEEE Int. Symp. Indus. Embedded Syst., Pisa, Italy, 18-20
Jun. 2014, pp. 29–37.

[21] S. Baruah, “Resource sharing in EDF-scheduled systems: A closer
look,” in Proc. 27th IEEE Real-Time Syst. Symp., Rio de Janeiro,
Brazil, Dec. 5-8, 2006, pp. 379–387.

[22] A. Easwaran, M. Anand, and I. Lee, “Compositional analysis
framework using EDP resource models,” in Proc. 28th IEEE Real-
Time Syst. Symp., Tucson, AZ, Dec. 3-6, 2007, pp. 129–138.

[23] M. van den Heuvel, M. Behnam, R. J. Bril, J. Lukkien, and T. Nolte,
“Opaque analysis for resource sharing in compositional real-time
systems,” in Proc. 4th Workshop Compositional Theory Technol. Real-
Time Embedded Syst., Nov. 2011.

[24] S. Baruah and A. Burns, “Sustainable scheduling analysis,” in
Proc. IEEE Real-Time Syst. Symp., Rio de Janeiro, Brazil, Dec. 5-8,
2006, pp. 159–168.

[25] M. Bertogna, N. Fisher, and S. Baruah, “Resource holding times:
Computation and optimization,” Real-Time Syst., vol. 41, no. 2,
pp. 87–117, Feb. 2009.

[26] J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling
algorithm: Exact characterization and average case behavior,” in
Proc. 10th IEEE Real-Time Syst. Symp., Santa Monica, CA, Dec. 5-7,
1989, pp. 166–171.

[27] E. Bini and G. C. Buttazzo, “Schedulability analysis of periodic
fixed priority systems,” IEEE Trans. Comput., vol. 53, no. 11,
pp. 1462–1473, Nov. 2004.

[28] M. Behnam, T. Nolte, and R. J. Bril, “Bounding the number of self-
blocking occurrences of SIRAP,” in Proc. 31st IEEE Real-Time
Systems Symp. (RTSS 2010), San Diego, CA, USA, Nov. 30-Dec. 3,
2010.

[29] E. Bini and G. C. Buttazzo, “Measuring the performance of sched-
ulability tests,” Real-Time Syst., vol. 30, no. 1-2, pp. 129–154, 2005.

[30] P. Gai, G. Lipari, L. Abeni, M. di Natale, and E. Bini, “Architecture
for a portable open source real-time kernel environment,” in Proc.
2nd Real-Time Linux Workshop Hand’s on Real-Time Linux Tuts.,
Nov. 2000.

[31] M. van den Heuvel, R. Bril, and J. Lukkien, “Transparent synchro-
nization protocols for compositional real-time systems,” IEEE
Trans. Indus. Informat., vol. 8, no. 2, pp. 322–336, May 2012.

Alessandro Biondi graduated (cum laude) in
computer engineering at the University of Pisa,
Italy, within the excellence program. Currently,
he is working towards the PhD degree at the
Real-Time Systems (ReTiS) Laboratory of the
Scuola Superiore Sant’Anna in Pisa, Italy, under
the supervision of Prof. Giorgio Buttazzo. In
2011, he was a visiting student at San Diego
State University, San Diego, CA. His research
interests include design and implementation of
real-time operating systems, schedulability analy-

sis, cyber- physical systems, synchronization protocols, and component-
based design for real-time multiprocessor systems.

Giorgio C. Buttazzo graduated in electronic
engineering at the University of Pisa in 1985,
received the MS degree in computer science at
the University of Pennsylvania in 1987, and the
PhD degree in computer engineering at
the Scuola Superiore Sant’Anna of Pisa in 1991.
He is a full professor of computer engineering at
the Scuola Superiore Sant’Anna of Pisa. From
1987 to 1988, he worked on active perception
and real-time control at the G.R.A.S.P. Labora-
tory of the University of Pennsylvania, PA. He

has been a program chair and a general chair of the major international
conferences on real-time systems and a chair of the IEEE Technical
Committee on Real-Time Systems. He is an editor-in-chief of Real-Time
Systems and an associate editor of the IEEE Transactions on Industrial
Informatics. He has authored seven books on real-time systems and
more than 200 papers in the field of real-time systems, robotics, and
neural networks. He is a fellow of the IEEE.

Marko Bertogna graduated (cum laude) in tele-
communications engineering at the University of
Bologna, Italy where he also received the PhD
degree in computer engineering (cum laude). He
is an associate professor at the University of
Modena and Reggio Emilia, Italy. Previously, he
was an assistant professor at the Scuola Superi-
ore Sant’Anna of Pisa, Italy. In 2006, he visited
the University of North Carolina at Chapel Hill,
working with Prof. Sanjoy Baruah on resource
reservation and shared resource protocols for vir-

tualized open environments. His research interests include schedulabil-
ity analysis for real-time multiprocessor systems, protocols for
accessing shared resources, integrated resource management and vir-
tualization. He has authored more than 60 papers in international confer-
ences and journals in the field of real-time and multiprocessor systems,
receiving six Best Paper Awards and one Best Dissertation Award. He
served in the program committees of the major international conferences
on real-time systems. He is a senior member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

BIONDI ET AL.: SCHEDULABILITY ANALYSIS OF HIERARCHICAL REAL-TIME SYSTEMS UNDER SHARED RESOURCES 1605

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

