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Abstract— Parallel computation is fundamental to satisfy the
performance requirements of advanced safety-critical systems.
OpenMP is a good candidate to exploit the performance op-
portunities of parallel platforms. However, safety-critical sys-
tems are often based on static allocation strategies, whereas cur-
rent OpenMP implementations are based on dynamic schedulers.
This paper proposes two OpenMP-compliant static allocation ap-
proaches: an optimal but costly approach based on an ILP formu-
lation, and a sub-optimal but tractable approach that computes a
worst-case makespan bound close to the optimal one.

I. INTRODUCTION

Parallel programming models are fundamental to exploit

the massively parallel computation capabilities of many-core

embedded architectures (e.g., Kalray MPPA [1], TI Keystone

II [2]). To that aim, current architectures already incorpo-

rate them in their software developer kits (SDKs) to provide

the abstraction level required to program parallel applications,

while hiding the complexity of the underlying processing plat-

form. This paper focuses on OpenMP [3], the de-facto standard

for shared memory parallel programming in high-performance

computing (HPC) that is being adopted also in parallel real-

time embedded systems, e.g., MPPA and Keystone II embed-

ded architectures support OpenMP in their SDKs.

OpenMP incorporates a tasking model that enables very so-

phisticated types of fine-grained and irregular parallelism, in

which the programmer may define explicit tasks and their re-

lated data dependencies. At run-time, tasks are scheduled in a

team of threads according to the two types of tasking models,

i.e., tied and untied, effectively utilizing many-core architec-

tures. Interestingly, recent works [4, 5] have demonstrated that

the structure and syntax of an OpenMP program resembles the

Directed Acyclic Graph (DAG) scheduling model [6, 7, 8], en-

abling the time predictability of OpenMP programs. [9] further

computed a worst-case response time analysis of common dy-

namic scheduling strategies used by OpenMP run-times for the

untied model, and acknowledged the impossibility of deriving

an accurate schedulability analysis for the tied model due to its

non-work-conserving scheduling nature.

This work is funded by the EU projects P-SOCRATES (FP7-ICT-2013-

10) and HERCULES (H2020/ICT/2015/688860), and the Spanish Ministry of

Science and Innovation under contract TIN2015-65316-P.

However, despite the proven timing predictable behaviour of

the untied tasking model when using current dynamic sched-

ulers, the use of OpenMP is not allowed in certain high-

criticality real-time systems that guarantee a predictable exe-

cution by binding tasks to cores in a static fashion. This is

the case, for example, in the automotive domain, in which the

static allocation of system components defines a valid appli-
cation configuration, for which the application is tested and

validated [10, 11]. This configuration defines a specific or-

der in which components process data, which in turns impact

on the end-to-end latency between sensors and actuators [12],

e.g., the gas pedal (sensor) and the injection (actuator). The

use of static allocation is therefore of paramount importance

for these types of systems to guarantee the correct functionality

by (i) statically determining where each task will execute and

(ii) simplifying the certification activities reducing the run-time

configurations to be considered. Moreover, the only alternative

to provide timing predictability for the tied tasking model is

by means of static allocation solutions, due to the non-work-

conserving nature when using dynamic scheduling.

This paper poses the first step towards the adoption of

OpenMP in safety-critical systems by proposing two OpenMP-

compliant static allocation strategies that comply with the re-

strictive predictability requirements of these systems, whilst

exploiting the performance opportunities brought by the lat-

est many-core embedded architectures. The first strategy de-

rives a computationally expensive but optimal allocation solu-

tion based on a non-trivial ILP formulation, which computes

the minimum possible response time achievable for a given

OpenMP application. The second strategy is based on well-

known sub-optimal heuristic strategies that allow providing re-

sponse times comparable to the optimal one, but within a much

smaller computational complexity, and that can be adopted in

the case of OpenMP applications with a very large number of

tasks. Interestingly, the first strategy provides also a reference

point to evaluate any other (static or dynamic) scheduling solu-

tion. Finally, this paper completes the analysis of the OpenMP

tasking model, by providing a response time analysis of the tied

model by means of static allocation strategies. Experiments on

a real case-study and randomly generated workloads prove that

our OpenMP-compliant static allocation reduces the worst-case

makespan compared with existing worst-case response time
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analysis of dynamic schedulers.

II. RELATED WORK

Several parallel task models have been proposed in the lit-

erature to analyze the timing behaviour of parallel real-time

applications: the fork-join [13], the synchronous parallel [14],

and the DAG task model [6, 8]. Although being inspired by

the most common parallel programming paradigms, none of

these models and corresponding schedulability analyses is di-

rectly applicable to OpenMP. Moreover, none of these works

addresses static solutions, which is the focus of this paper.

Affinities and differences between DAG scheduling and the

OpenMP tasking model were first identified in [4], and the only

schedulability analysis approach addressing the two execution

models supported by OpenMP, i.e. tied and untied, has been de-

veloped in [9]. In particular, the work in [9] reasons about the

capability of the OpenMP specification to provide precise and

tight timing guarantees on the most common dynamic sched-

ulers, i.e., breadth-first scheduler (BFS) and work-first sched-
uler (WFS), implemented in most OpenMP runtimes. More-

over, it computes a response time analysis for the untied model,

and proves that timing guarantees can only be derived by means

of static solutions due to the non-work-conserving nature of

the tied scheduling model. In addition, a compiler method has

been proposed in [5] to construct an augmented DAG compli-

ant with the OpenMP semantics. This implementation enables

the practical applicability of the schedulability analysis pre-

sented in [9]. As a result, in Section VI, our approach will be

only evaluated in comparison with [9], which is the only other

work that explicitly targets scheduling strategies for OpenMP

applications.

III. OPENMP TASKING MODEL

In OpenMP, an executing task may be suspended and the

hosting thread can be rescheduled to a different task. The

points in the program where this can happen are called task
scheduling points (TSP), because they are associated to a

scheduling decision. TSPs, which occur upon task creation/-

completion, synchronization, taskyield and target di-

rectives, divide task regions into task-parts, which are uninter-

ruptedly executed from start to end. As a result, task-parts be-

come the de-facto units of any scheduling solution (either static

or dynamic) of tasks to threads [4]. Moreover, OpenMP defines

two tasking models: tied and untied. A task is defined as tied

unless the untied clause is present in the task construct. Parts

from a tied task can execute only in the same thread that started

its execution, whereas parts from the same untied task can exe-

cute in any available thread.

Therefore, when a TSP is encountered, the set of task
scheduling constraints (TSC) defined by the OpenMP speci-

fication must be fulfilled, depending on whether the task is tied
or untied. In addition, OpenMP defines an extra TSC for tied

tasks (named TSC 2) that limits the scheduling of new tasks to

threads depending on the set of tied tasks suspended on it. If

this set is empty, any new tied task may be scheduled in the

considered thread. Otherwise, a new tied task may be sched-

uled in the considered thread only if it is a descendant task

of every suspended task in the set. The descendant relation-

ships of task τi are τi’s child tasks and child’s descendant tasks

1 #pragma omp p a r a l l e l num threads ( 3 ) {
2 #pragma omp s i n g l e { / / τ1
3 p1,1

4 #pragma omp t as k { / / τ2
5 p2,1

6 #pragma omp t as k / / τ3
7 { p3,1 }
8 p2,2

9 #pragma omp t a s k w a i t
10 p2,3

11 }
12 p1,2

13 #pragma omp t as k depend
14 ( out : a ) / / τ4
15 { p4,1 }
16 p1,3

17 #pragma omp t as k depend
18 ( in : a ) / / τ5
19 { p5,1 }
20 }}

(a) OpenMP source code.
(b) OpenMP-DAG.

Fig. 1. Example of an OpenMP program composed of tied tasks (a) and its

corresponding OpenMP-DAG (b).

(similarly, antecedents tasks of τi are τi’s parent task and par-

ent’s antecedents tasks). Finally, OpenMP defines the depend
clause, which describes a list of input/output data dependencies

existing among tasks. If a task has an input dependence on a

variable, it cannot start executing until the set of tasks having

an output dependency on the same variable complete. Depen-

dences can only be defined among sibling tasks (first-level de-

scendant tasks of the same parent task).

Figure 1a shows an OpenMP program composed of five tied

tasks. The figure also shows the parts in which tasks are divided

due to the TSPs task creation/completion of τ2, τ3 and τ4, and

the taskwait directive, e.g., τ1 is composed of p1,1, p1,2 and

p1,3 (lines 3, 12 and 16).

A. System Model

There is a tight correspondence between the structure and

syntax of an OpenMP program and the sporadic DAG task

model [4], recently introduced in the real-time community

[6, 7, 8]. The sporadic DAG model represents a parallel appli-

cation by means of a DAGG = (V,E), a minimum interarrival

time T and a relative deadline D. Each vertex v ∈ V denotes

a sequential operation or job, while the edges represent prece-

dence constraints between jobs, that is, if (v1, v2) ∈ E, then

job v1 must complete its execution before job v2 can start exe-

cuting. When a DAG task is released at time t, vertices become

ready to execute as precedence constraints are fulfilled, and all

jobs must finish before time t + D. Each DAG task instance

is released with a minimum separation of T time units to the

following one.

The execution of an OpenMP task-part resembles the execu-

tion of a vertex in the DAG, while OpenMP synchronization

directives can be modeled as edges in the DAG. Exploiting this

similarity, this paper considers an OpenMP application mod-

eled as a (single) OpenMP-DAG G composed of N OpenMP

tasks τ1, . . . , τN . Each task τi is composed of ni task-parts

pi,1, . . . , pi,ni
. The Worst-Case Execution Time (WCET) of

task-part pi,j of task τi is denoted as Ci,j . Figure 1b shows the

corresponding OpenMP-DAG of the program shown in Figure

1a, obtained using the compiler technique presented in [5]. In
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the Figure, there exist a task creation dependency among task-

parts p1,1 and p2,1, a control-flow dependency among p1,1 and

p1,2 and a data dependency among p4,1 and p5,1.

The total number of threads where task-parts can be executed

on a multi-/many-core platform is denoted as m and specified

in the num_threads clause. The volume of an OpenMP-

DAG is defined as the sum of the WCETs of all its task-parts,

i.e.,
∑N
i=1(

∑ni

j=1 Ci,j). Also, the OpenMP application may

be recurring (or sporadic), as long as the makespan1 of the

OpenMP-DAG does not exceed the period (or minimum inter-

arrival time) of the application. We finally assume all OpenMP-

DAG parameters are integer.

IV. OPTIMAL STATIC ALLOCATION OF

OPENMP-DAGS

The problem of optimally allocating OpenMP task-parts to

threads can be modeled with an Integer Linear Programming

(ILP) formulation. The problem aims to determine the mini-

mum time interval needed to execute a given OpenMP appli-

cation on m threads, considering both, tied and untied tasking

models. In other words, we seek to derive the optimal map-

ping of task-parts to threads so that the task-set makespan is

minimized.

A. Tied Tasks

The optimal allocation problem for tied tasks is modeled

by starting from the set of tasks τ1, . . . , τN and by adding

a sink task τN+1 with a single task-part having null WCET

(i.e., CN+1,1 = 0) and with incoming edges from the task-

parts without any successors in the original OpenMP-DAG.

The starting time of τN+1 corresponds to the minimum com-

pletion time of the considered application, hence it represents

our minimization objective.

A.1 Input parameters

(1) m: number of threads available for execution; (2) N : num-

ber of OpenMP tasks in the system; (3) Ci,j : WCET of the jth

part of task τi; (4) G = (V,E): DAG representing the struc-

ture of the OpenMP application; (5) D: relative deadline of

the OpenMP-DAG; (6) succi,j : set of immediate successors of

task-part pi,j of task τi; (7) reli: set of tasks having a relative

relationship with τi (either as antecedents or descendants) as

defined by the task creation dependencies.

A.2 Problem variables

(1) Xi,k ∈ (0, 1): binary variable that is 1 if task τi is executed

by thread k, 0 otherwise; (2) Yi,j,k ∈ (0, 1): binary variable

that is 1 if the jth part of task τi is executed by thread k, 0
otherwise; (3) ψi,j : integer variable that represents the starting

time of part Pi,j of task τi (i.e., its initial offset in the opti-

mal schedule); (4) ai,j,w,z,k, bi,w,k ∈ (0, 1): auxiliary binary

variables.

1The makespan of a set of precedence constrained jobs is defined as the total length
of the schedule (i.e., response-time) of the collection of jobs.

A.3 Objective function

The objective function aims to minimize the starting time of

the dummy sink task τN+1, i.e. min ψN+1,1, and represents

the minimum makespan. A scheduling can be declared feasible

if the minimum makespan is ψN+1,1 ≤ D.

A.4 Initial Assumptions

(i) The first part of the first task must begin at time t = 0, i.e.,

ψ1,1 = 0

(ii) The first task is executed by thread 1.

X1,1 = 1;X1,k = 0 ∀k ∈ {2, . . . ,m};
Y1,j,1 = 1 ∀j ∈ {1, . . . , n1};

Y1,j,m = 0 ∀j ∈ {1, . . . , n1}, ∀k ∈ {2, . . . ,m};

A.5 Constraints

(i) Each task is executed by only one thread.

m∑

k=1

Xi,k = 1 ∀i ∈ {1, . . . , N} (1)

This constraint enforces the tied scheduling clause, i.e., for

each task τi, only one binary variable Xi,k is set to 1 among

the m variables referring to the available threads.

(ii) All parts of each task are allocated to the same thread.

ni ·Xi,k =

ni∑

j=1

Yi,j,k ∀i ∈ {1, . . . , N}, ∀k ∈ {1, . . . ,m}

(2)

This constraint establishes the correspondence between the

Xi,k and Yi,j,k variables. Please note that the constraint ni =∑ni

j=1

∑m
k=1 Yi,j,k is not needed since it is already implied by

constraints (i) and (ii).

(iii) All precedence requirements between task parts must be
fulfilled.

∀i, w ∈ {1, . . . , N + 1}, ∀j ∈ {1, . . . , ni},
∀z ∈ {1, . . . , nw} | Pw,z ∈ succi,j ,

ψi,j + Ci,j ≤ ψw,z.

(3)

For each pair of task-parts, if a precedence constraint connects

them because of a control-flow, task creation of data depen-

dency, then the latter cannot start until the former has com-

pleted execution. Notice that this constraint also applies to the

sink task τn+1.

(iv) The execution of different task-parts must not overlap.

∀i, w ∈ {1, . . . , N}, ∀j ∈ {1, . . . , ni}, ∀z ∈ {1, . . . , nw},
∀k ∈ {1, . . . ,m} | (w �= i) ∨ (j �= z),

(Yi,j,k = 1 ∧ Yw,z,k = 1)⇒
(ψi,j + Ci,j ≤ ψw,z ∨ ψw,z + Cw,z ≤ ψi,j)

In other terms, if two task-parts are allocated to the same

thread, then either one finishes before the other begins, or vice

8A-2

661



versa. This constraint can be written as:

∀i, w ∈ {1, . . . , N}, ∀j ∈ {1, . . . , ni}, ∀z ∈ {1, . . . , nw},
∀k ∈ {1, . . . ,m} | (w �= i) ∨ (j �= z),

ψi,j + Ci,j ≤ ψw,z +M(2 + ai,j,w,z,k − Yi,j,k − Yw,z,k)
ψw,z + Cw,z ≤ ψi,j +M(3− ai,j,w,z,k − Yi,j,k − Yw,z,k),

(4)

where M is an arbitrarily large constant. When ai,j,w,z,k = 1,

the first inequality is always inactive, while the second one is

active only if Yi,j,k = 1 and Yw,z,k = 1. Similarly, when

ai,j,w,z,k = 0, the first inequality is active only if Yi,j,k = 1
and Yw,z,k = 1, while the second one is always inactive.

(v) Task Scheduling Constraint 2 (TSC 2) must be satisfied.

∀i, w ∈ {1, . . . , N}, i �= w, Tw /∈ reli, ∀k ∈ {1, . . . ,m},
(Xi,k = 1 ∧Xw,k = 1)⇒

(ψi,ni + Ci,ni ≤ ψw,1) ∨ (ψw,nw + Cw,nw ≤ ψi,1).

This constraint imposes that parts from a task cannot be allo-

cated to a thread where parts from another task that is neither a

descendant nor antecedent of the considered task is suspended.

This is equivalent to say that if parts from two tasks not re-

lated by any descendancy relationship are allocated to the same

thread, then one of them must have finished before the other

one begins. Therefore, the last task-part of either task plus its

WCET must be smaller or equal than the starting time of the

first task-part of the other one. As for constraint (iv), this con-

straint can be rewritten as:

∀i, w ∈ {1, . . . , N}, i �= w, Tw /∈ reli, ∀k ∈ {1, . . . ,m},
ψi,ni + Ci,ni ≤ ψw,1 +M(2 + bi,w,k −Xi,k −Xw,k)

ψw,nw + Cw,nw ≤ ψi,1 +M(3− bi,w,k −Xi,k −Xw,k).
(5)

Note that all constraints (except constraint (iii)) need not be

applied to τN+1.

B. Untied Tasks

The ILP formulation proposed for tied tasks can be applied

for untied tasks with the following modifications.

The initial assumption (ii) is replaced as follows: Y1,1,1 = 1
Moreover, since different parts of the same task are allowed

to be executed by different threads, the constraints (i) and (ii)

are replaced by:

m∑

k=1

Yi,j,k = 1 ∀i ∈ {1, . . . , N}, ∀j ∈ {1, . . . , ni} (6)

and the variables Xi,k are no longer needed. Finally, constraint

(v) does not apply for untied tasks and thus the auxiliary vari-

ables bi,w,k are not needed.

C. Complexity

The problem of determining the optimal allocation strategy

of an OpenMP-DAG composed of untied tasks has a direct cor-

respondence with the makespan minimization problem of a set

of precedence constrained jobs (task parts in our case) on iden-

tical processors (threads in a team in our case). This prob-

lem, also known as job-shop scheduling, has been proven to

be strongly NP-hard by a result of Lenstra and Rinnooy Kan

[15]. The complexity of the problem for the tied tasks cannot

be smaller than in the untied case. Indeed, when each task has

a single task part, the problem for tied tasks reduces to that for

untied tasks.

In the presented ILP formulations for both the tied and untied

tasks, the number of variables and the number of constraints

grow as O(N2p2m), where p = maxi=1,...,N ni. Given the

problem complexity and poor scalability of the ILP formula-

tion, the next section proposed an efficient heuristic for provid-

ing sub-optimal solutions within a reasonable amount of time.

V. SUB-OPTIMAL STATIC ALLOCATION OF

OPENMP-DAGS

In the context of production scheduling, several heuristic

strategies have been proposed to solve the makespan minimiza-

tion problem of precedence constrained jobs on parallel ma-

chines [16, 17]. More specifically, different priority rules have

been proposed in the literature to sort a collection of jobs sub-

ject to arbitrary precedence constraints on parallel machines.

Such priority rules allow selecting the next job to be executed

in the set of ready jobs.

The priority rules that have been shown to perform well in

the context of parallel machine scheduling are [16, 17]:

• Longest Processing Time (LPT): the job with the longest

WCET is selected;

• Shortest Processing Time (SPT): the job with the shortest

WCET is selected;

• Largest Number of Successors in the Next Level (LNSNL):

the job with the largest number of immediate successors

is selected;

• Largest Number of Successors (LNS): the job with the

largest number of successors overall is selected;

• Largest Remaining Workload (LRW): the job with the

largest workload to be executed by its successors is se-

lected.

We build upon such results to make them applicable to the

considered problem. At any time instant, the set of ready jobs

of a given instance of an OpenMP-DAG corresponds to the

set of task parts that have not completed execution and whose

precedence constraints are fulfilled.

This section presents a sub-optimal, yet efficient static allo-

cation algorithm considering both the tied and untied tasking

model, to map task-parts on the different threads following one

of the above-mentioned priority rules, so that the partial order-

ing between task parts is respected.

A. Tied Tasks

Algorithm 1 instantiates the procedure for the case of tied

tasks, for which existing heuristic strategies cannot be applied

directly. The algorithm takes the structure G of an OpenMP-

DAG and the number of available threads m defined in the

num_threads clause as inputs. It returns as outputs a heuris-

tic allocation of tied OpenMP tasks to threads, i.e., a vector
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ψ representing the starting times of task-parts in the obtained

schedule, a mapping θ of task-parts to threads, and the corre-

sponding value of makespan μ.

Algorithm 1 Heuristic allocation of an OpenMP application

comprising tied tasks

1: procedure HEURTIED(G,m)
2: A ← ∅;R ← p1,1
3: L ← ARRAY(m, 0); S ← ARRAY(m, ∅)
4: while SIZE(A) ! =

∑N
i=1 ni do

5: k ← FIRSTIDLETHREAD(L)
6: Pi,j ← NEXTREADYJOB(k,R, Sk, G)
7: if j == 1 then
8: θi ← k
9: if j ! = ni then

10: Sk ← APPEND(i, Sk)
11: end if
12: else if j == ni then
13: Sk ← REMOVE(i, Sk)
14: end if
15: ψi,j = max(Lθi

, ψi,j); Lθi
← ψi,j + Ci,j

16: A ← APPEND(Pi,j , A);R ← REMOVE(Pi,j , R)
17: for Pk,z | (Pi,j , Pk,z) ∈ E do
18: if ψk,z < ψi,j + Ci,j then
19: ψk,z ← ψi,j + Ci,j ;
20: end if
21: Fk,z ← Fk,z + 1
22: if Fk,z == SIZE(INEDGESk,z) then
23: R ← APPEND(Pk,z, R)
24: end if
25: end for
26: end while
27: μ = maxm

i=1 Li

28: return (μ, ψ, θ)
29: end procedure

The reasoning behind the algorithm is to allocate ready-task

parts to the first available thread, following a pre-determined

rules of selection among ready tasks, while enforcing the spe-

cific semantics of the OpenMP tied tasking model.

First, a list R of ready task-parts is initialized with the initial

task-part of the first task, i.e. p1,1, and an array L of size m
with null initial values is used to store the last idle time on each

thread (lines 2-3). The while loop at lines 4-26 iterates until

all task-parts have been allocated, i.e., until the size of list A,

which contains the allocated task-parts, reaches the total num-

ber of parts in the task-set (
∑N
i=1 ni). Such value is passed

as input to the procedure as part of the graph structure G. At

each iteration, a new task-part is allocated to one of the threads.

Specifically, at line 5, the index k of the earliest available thread

is determined by function FIRSTIDLETHREAD. Then, the pro-

cedure NEXTREADYJOB returns the ready task part pi,j se-

lected according to one of the priority rules described above.

The allocation of the selected task-part must respect TSC 2.

Hence, any time the first part of a new task is selected, the func-

tion must check its descendance relationships with the tasks

currently suspended on thread k, stored in the list Sk. If pi,j is

the first part of τi, i.e. when j = 1, (line 7), then the task is

allocated on thread k; otherwise, its allocation must have been

previously defined (according to the tied scheduling clause, all

task parts must be allocated on the same thread). Also, if that

task-part is not the final one (line 9), τi is appended to the list

of tasks currently suspended on thread k. Otherwise, if pi,j is

the final part of τi (line 12), τi can be removed from the list of

tasks currently suspended on thread k. In both cases, the start-

ing time of pi,j is updated, as well as the last idle time on thread

k (line 15). In addition, pi,j is added to the list of allocated

jobs and removed from the list of ready jobs (line 16). Once

pi,j has been allocated, other jobs may become ready. All the

successors of pi,j are scanned and an internal counter (Fk,z) is

incremented for each task-part (lines 17-25). Once the counter

reaches the number of its immediate predecessors, the task part

may be appended to the list of ready vertices (line 23). Finally,

the makespan μ for the obtained allocation is returned as out-

put. The procedure also returns the vector ψ, which stores the

starting times of task parts in the final schedule, and the vector

θ, which stores the task-to-thread mapping.

The algorithm runs in polynomial time in the size of the task-

set; specifically, the time complexity is O(N2p2).

B. Untied Tasks

Algorithm 1 can be applied also in the case of untied

tasks with some simplifications. In particular, the function

NEXTREADYJOB does not need to check the validity of TSC

2. Hence, the array S is not required, and all the operations

on S at lines 7-14 need not be performed. On the other hand,

the algorithm must keep track of the thread associated to each

task-part (instead of each task).

VI. EVALUATION

In this section, the proposed allocation strategies are evalu-

ated in terms of running time and performance. To the best of

our knowledge, no other static approaches are directly compa-

rable with our proposed strategies. Therefore, they are com-

pared with the schedulability bound derived in [9], which

upper-bounds the response time of an OpenMP application

composed of untied tasks, considering a dynamic scheduler.

Experiments have been performed on an Intel R©CoreTM i7-

4770K CPU 3.50 GHz with 16GB RAM, with the ILP solver

IBM ILOG CPLEX Optimization Studio v.12.61.

A. A real case study: an OpenMP 3D path planning (3DPP)

application

This application is used for airborne collision avoidance in

UAVs [18] to compute the path between the current position

and the target position, while avoiding obstacles in a 3D en-

vironment.We tested it with two different program inputs: (1)

3DPP1 generating an OpenMP-DAG with 66 tasks and 129

task-parts; and 3DPP2 generating a DAG of 130 tasks and 257

task-parts. The OpenMP-DAGs have been obtained with the

compiler technique presented in [5].

The WCET of each task-part has been computed by measur-

ing the high watermark execution time running in “isolation”.

Then, a safety marging of 20% has been added2. Since the two

DAGs have a nesting level of parallelism equal to 2 (i.e., all

tasks are descendants of the first (master) task), the formula-

tion for the tied and untied cases yield the same solutions. The

experiments have been performed assuming m = 8; two other

configurations (m = 2 and m = 4) have been examined for

3DPP2, which is computationally intensive and has a very high

degree of connectivity.

Worst-case makespan results are reported in Table I. Con-

cretely, each application configuration is evaluated with: (1)

2The most common industrial practice to obtain WCET values still relies

on software simulation and testing, reinforced by the application of safety mar-
gins [19].
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TABLE I

CASE STUDY RESULTS.

3DPP1 3DPP2 3DPP2 3DPP2
(m=8) (m=2) (m=4) (m=8)

ILP-BF 254 506 506 506

SPT 317 824 660 571

LPT 254 659 577 530

LNS 254 715 506 506

LNSNL 300 748 619 549

LRW 254 717 506 506
(7s) (11m41s) (11m48s) (11m53s)

BOUND-untied 331 827 666.5 586.25

the optimal allocation based on the ILP formulation (labeled

as ILP-BF)3; (2) the sub-optimal allocation based on the heuris-

tics presented in Section V (labeled as SPT, LPT, LNS, LNSNL,

and LRW; and (3) the schedulability bound derived in [9],

which upper-bounds the response time of an OpenMP appli-

cation composed of untied tasks, considering a dynamic sched-

uler. The work in [9] also highlighted the complexity of deriv-

ing a tight upper-bound on the response time in the case of tied

tasks, for which no schedulability analysis exists. In case of

the LRW, we report the running time of LRW in parenthesis as

well (the most computationally intensive heuristic).

Although ILP-BF constantly provides the best worst-case

makespan compared with the sub-optimal static allocation

heuristics, results are very similar, with a 38% of variation in

the worst-case (SPT for the 3DPP2 with m = 2). The run-

ning time of LRW reported in the Table shows that, while for

3DPP1 the solution is found rapidly, the running time of 3DPP2

appears significantly larger (but still reasonable), due to its big

and complex structure. Finally, BOUND-untied always over-

estimates the ILP solution of at least 15% (65% in the worst-

case), mainly because the bound is tight for very peculiar graph

structures that are not representative of the general behavior.

Although for this particular application none of the heuristic

strategies clearly dominates the others, all of them are able

to effectively reduce the pessimism determined by BOUND-

untied.

B. Synthetic OpenMP-DAG generation

The synthetically generated task graphs compliant with the

OpenMP semantics are generated as follows: Initially, the

number N of tasks in the system is uniformly chosen in the

interval [Nmin, Nmax], while the number of parts ni of each

task is randomly selected as an integer in the interval [1, nmax].
Each task part is labeled with a value of WCET Ci,j uniformly

selected in the interval [1, 10]. Then, the precedence constraints

between task parts, i.e., control-flow, task creation and data de-

pendencies (See Figure 1b) are generated. First, control flow

dependencies are assigned between any pair of consecutive task

parts to guarantee the correct order of execution among them.

Then, task creation dependencies are determined as follows:

First, descendance levels �1, . . . , �k, k ≤ n, are randomly as-

signed to tasks, making sure that each level contains at most

as many tasks as the number of task parts in the previous level

(since each task part corresponds to a TSP where at most one

task can be created). Also, for any pair of tasks τi and τj , if

3Due to the high complexity of this approach, the best found solution is

recorded after running the solver for 5 hours. In all cases, however, the ILP-BF

converged very rapidly (∼10 sec.) to the best found solution.

i < j then �i ≤ �j . Second, dependencies are randomly as-

signed between parts of tasks belonging to consecutive descen-

dance levels by enforcing that each task τi can generate at most

ni tasks. Finally, data dependencies are created between pairs

of tasks τi and τj (i < j) belonging to the same descendance

level (i.e., �i = �j) by adding a dependency between pi,ni and

pj,1, with probability Ps = 0.2.

C. Synthetic OpenMP-DAG experimental results

C.1 Small task sets

A first set of experiments has been performed to evaluate the

optimal solutions computed by ILP solver as a function of the

number N of tasks in the system. For each value of N , 500
random instances are generated.

Figs. 2a and 2b report the average makespan and the average

running time of the ILP solver respectively, for N ∈ [3, 15],
m = 4 and nmax = 8 and for both tied and untied tasks.

Fig. 2a shows that on average the optimal makespan in the

tied case (labeled as ILP-OPT-tied) is as for the untied case (la-

beled as ILP-OPT-untied), and that the solutions differ in only

few instances with minor difference of makespan value. The

figure also compares the optimal solutions to the schedulabil-

ity upper-bound for untied tasks (labeled as BOUND-untied)

given in [9] and the pessimistic bound for the tied case (labeled

as BOUND-tied) given by the volume of the OpenMP-DAG.

For the largest task-sets, i.e. N = 15, the bounds for tied and

untied tasks over-estimate the optimal solution of about 43%

and 170%, respectively. The figure also highlights the excel-

lent performance of the heuristic approach based on LNSNL

priority rule, which closely matches the optimal solutions and

slightly outperforms on average the other priority rules (not re-

ported for readability).

Although the number of constraints and variables of the ILP

formulation for untied tasks grow asymptotically as those for

tied tasks in the worst case, the running time of the ILP solver

(Fig. 2b) is significantly larger in the untied case. This differ-

ence is due to the larger solution space size of the problem for

untied tasks. As expected, in both cases the running time to

solve the ILP grows exponentially as N increases. The same

trends of Figs. 2a and 2b have been observed also when vary-

ing the number of threads, hence the corresponding plots are

not reported.
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Fig. 2. Average makespan (a) and running time (b) as a function of N , with

m = 4 and nmax = 8.
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C.2 Large task sets

A second set of experiments aims at evaluating the scalability

of the heuristics proposed in Section V for task sets in which

the ILP solver is unable to find the optimal solution in a rea-

sonable time. For each value of N , 100 task-set instances have

been generated and for each of them, the best feasible solution

found by the ILP solver (ILP-BF) in 300 s is collected. Sim-

ulation results have confidence interval values of at least 10%,

with a confidence level of 95%.

Figs. 3a and 3b depict the average makespan for the tied and

untied case when m = 4, nmax = 8 and N is varied in the

range [16, 30]. As in the case of 3DPP, the different priority

rules yield a similar performance, but in average the LNSNL

priority rule slightly outperforms the others, and even ILP-BF-

tied for high values of N . As the problem size increases, ILP-

BF-untied has a significantly slower convergence than ILP-BF-

tied (see also Fig. 2b), leading to a significant performance

gap between the two curves. Also, the heuristic strategies are

able to quickly find nearly optimal solutions. For instance, for

N = 30, the execution time of LRW (the most computation-

ally intensive heuristic strategy) is on average of about 9.84

ms and 22.23 ms, for the tied and untied case, respectively. In

the worst-case, LRW-tied and LRW-untied take 147.62 ms and

242.48 ms, respectively. In Figs. 3a and 3b, the schedulability

bounds (not reported for readability) are as the one observed in

Fig. 2a.
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Fig. 3. Average makespan as a function of N , with m = 4 and nmax = 8
for the tied (a) and untied (b) case.

VII. CONCLUSIONS

The adoption of OpenMP is fundamental for an efficient

exploitation of many-core embedded systems. However,

OpenMP relies on dynamic scheduling strategies, which is not

allowed in certain safety-critical domains in which the use of

static allocation guarantees the correct functionality of the sys-

tem. This paper proposes an ILP formulation to derive an

optimal static allocation compliant with the OpenMP tasking

model. With the objective of reducing the complexity of the

ILP solver, the paper also proposes five heuristics for an ef-

ficient (although sub-optimal) allocation. Results show a sig-

nificant reduction in the worst-case makespan comared with

an existing schedulability upper-bound (for untied tasks only).

Moreover, the proposed heuristics perform very well, closely

matching the optimal solutions.
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