
A framework for the co-simulation of engine
controls and task scheduling

Paolo Pazzaglia, Marco Di Natale, Giorgio Buttazzo, Matteo Secchiari

Scuola Superiore Sant’Anna, Pisa, Italy
{paolo.pazzaglia,marco.dinatale,giorgio.buttazzo}@sssup.it

msecchiari@gmail.com

Abstract. To evaluate the impact of scheduling latency and task de-
sign on the performance of engine control applications, we developed a
co-simulation framework, based on Simulink and an extension of the T-
Res scheduling simulator tool. The objective of the research and the tool
development is to provide a better characterization of the very popu-
lar problem of scheduling and analysis of Adaptive Variable Rate Tasks
(AVR) in engine control. The purpose of the tool is to go beyond the sim-
plistic model that assumes hard deadlines for all tasks and to study the
impact of scheduling decisions (and possibly missed deadlines) with re-
spect to the functional implementations of the control algorithms and the
engine performance. The developments include a co-simulation frame-
work and a set of models for the engine components in order to evaluate
the performance with respect to fuel efficiency, consumption, soot and
NOx emissions.

1 Introduction

The study of the schedulability conditions for engine control tasks (denominated
as adaptive variable rate - AVR [1]) has become popular in the real-time research
community because of the novel nature of the problem, which applies to the
concept of Cyber-physical systems; the special activation conditions that apply
to some of the system tasks and the adaptive nature of the computations.

Several engine control tasks are not periodic or sporadic, but are activated
by the rotation of the engine crankshaft (a parameter of the physical controlled
system). In addition, to compensate for the increased CPU load at high rotation
speeds (and more frequent activation times), the code implementation of these
tasks is defined in such a way that at given speed boundaries, the implemen-
tation is simplified and the execution time is reduced. A typical engine control
application consists of time-driven periodic tasks with fixed periods, typically
between a few milliseconds and 100 ms (see [2], page 152), and angular tasks
triggered at specific crankshaft angles.

The activation rate of such angular tasks varies with the engine speed (variable-
rate tasks). For example, for speeds from 500 to 6500 revolutions per minute
(RPM), the interarrival times of the angular tasks range from about 10 to 120
ms (assuming a single activation per cycle).

Proc. of the 1st Workshop on Formal Co-Simulation of Cyber-Physical Systems, Trento, Italy, September 5, 2017.



2 A framework for the co-simulation of engine controls and task scheduling

With respect to the set of activation instants, the dependency from a physical
phenomenon characterizes this problem as truly belonging to the class of prob-
lems in cyber-physical systems (CPS). However, in many papers the dependency
of the timing and scheduling problem from the physics of the controlled system
is restricted to the set of activation events and every other concern is hidden
under the typical assumption of hard deadlines.

In reality, this problem (as many others) is representative of a class of control
systems in which deadlines can be missed without catastrophic consequences,
and the problem should actually be defined as a design optimization, where the
objective is to select the controls implementations and the scheduling policy in
such a way that a set of engine performance functions are optimized (includ-
ing power, emissions, noise, pollution). These performance functions depend in
complex ways from timing parameters, such as jitter and latency. Informally, the
objective of the scheduler is not to miss too many deadlines or produce actuation
signals that are too much delayed.

Formally, the problem is quite complex and extremely unlikely to be solved in
a simple, closed analytical form or even with a general procedure for expressing
the dependency of the performance from scheduling. This is the reason for the
investigation of alternative approaches that are based on the simulation of the
three system components in a joint environment:

– A model of the engine combustion process (the physical system or plant)
– A model of the engine controls
– A model of the task configuration and execution and of the scheduler.

In this work we describe the framework that was developed for this task;
the components developed for modeling the AVR tasks and the engine subsys-
tems of interest; and the early results obtained from simulations. This framework
significantly improves our previous work [3], especially in the combustion mod-
eling and control parts. The co-simulation framework is based on the popular
Simulink tool from the Mathworks and a simulator of real-time scheduling and
task execution for single-and multicore platforms: the T-Res framework.

In the following sections, the problem is introduced (in Section 2). Then, in
Section 3 we outline the main components and functionality of the framework,
and in Section 4 we briefly introduce the T-Res framework. The extensions
to the TRes custom components are outlined in Section 5. The Engine model
and controller components are described in Section 6. The preliminary analysis
results are in Section 7, and the related work is in Section 9.

2 The problem

One of the main objectives of a fuel injection system is to determine the point(s)
in time and the quantity of fuel to be injected in the cylinders of an engine,
relative to the position of each piston, which is in turn a function of the angular
position of the crankshaft. In a reciprocating engine, a common reference is the
top dead centre (TDC), that is, the position in which one of the pistons is nearest
to the crankshaft (Figure 1). In a four-cylinder engine, the pistons are paired



A framework for the co-simulation of engine controls and task scheduling 3

in phase opposition, so that, when two of them are in a TDC, the others are in
the bottom dead center or BDC. The TDC is the typical reference point for the
functions and actions that need to take place within the rotation. These action
include (among others) computing the phase (time relative to the TDC) of the
injection and the quantity of fuel to be injected, but also checking whether the
combustion occurred properly.

=0φ

BDC BDC

fuel
injection

TDC

=180

TDC

φ

Fig. 1. Relationship among engine phases and reference points in the crankshaft rota-
tion period. In a 4-cylinder engine, cylinder pairs are in phase opposition.

The time between two activations (at the TDC) is not constant, nor arbi-
trary, but depends on the rotation speed of the engine, which can vary within
given ranges with a given maximum acceleration. At low revolution rates, the
time interval between two reference points (the TDC for a set of cylinders) is
large and allows the execution of sophisticated controls and possibly multiple fuel
injections. The same algorithm cannot be executed at higher revolution rates,
because it would lead to an overload, generating several deadline misses. There-
fore, the implementation is adapted using a simplified algorithm that reduces
the (worst-case) execution time (i.e., the functions to be executed) when the
rotation speed falls within pre-defined ranges. For most cars, the rotation speed
typically varies between 600 and 6000 revolutions per minute (rpm), which maps
to activation intervals between 100 and 10 ms.

The model proposed to describe such a type of engine control tasks is referred
to as Adaptive Variable Rate task model, or AVR-model [1].

The analysis of the schedulability conditions for AVR tasks has been con-
ducted by assuming that tasks have hard deadlines, often implicit, meaning that
each task must complete before its next activation. This is not necessarily true.
Besides evidence gathered from the common industrial practice, an indication
that this is indeed the case is that the AUTOSAR automotive standard (and its
predecessor OSEK) allow system configurations in which multiple instances of
the same task are active at the same time.

If deadline misses are allowed, it is important to understand what are the
consequences of a late task and what action (if any) should be performed by the
scheduler. In our model, we assume that control tasks program a TPU (Time
Processing Unit) that is in charge of actuating the fuel injectors. In this case,



4 A framework for the co-simulation of engine controls and task scheduling

the effect of a missed deadline is that the TPU remains programmed with the
parameters (angle of injection and duration of the injection) computed in the
previous cycle.

An additional objective of our framework is to explore scheduling options,
including the use of the Earliest Deadline First scheduling policy in the context
of applications of this type. Finally, we aim at verifying the conjecture that
the engine performance functions can be fit with an exponential function. This
assumption was used to derive an algorithm for computing the optimal mode
switching speeds in [4]. Overall, the parameters of interest that are meant to
be captured by the model are (i) the engine thermodynamic efficiency, (ii) the
NOx emissions and (iii) the soot emissions.

3 The Simulation Framework for the Performance
Analysis of Controls and Scheduling Design

To explore the impact of scheduling on the engine performance we constructed
a co-simulation framework in which the master simulation engine is Simulink.
The engine model has been defined as a Simulink model, which will be presented
in detail in Section 6. Next, we leveraged the T-Res cosimulation environment
for the co-simulation of the task execution and scheduling [5]. An introduction
to T-Res is presented in Section 4, while some extensions of the framework are
described in Section 5.

For the development of the engine model we leveraged information from
several sources, including engine models for the steady state and event-based
models as described in [6] and other empirical models found online.

The engine controls have been incrementally defined and now include sev-
eral components that allow to simulate individual cylinders, with injectors, the
turbocharger, the intake and exhaust manifolds, and the gas recirculation. The
desired angle of injection and the injection time are defined by calibration tables
obtained from the literature.

4 The T-Res cosimulation framework

The T-Res (Time and Resource-aware simulator) framework is the result of a
project that aims at integrating in Simulink the effect of code execution latencies
and scheduling delays. T-Res consists of a set of custom Simulink blocks repre-
senting tasks and kernels and allows to interface the Simulink simulation engine,
acting as master, with a scheduling simulator in a co-simulation environment
(see Figure 2). The scheduling simulator (we use RTSim [7], but the backend
simulation engine can be changed) computes the scheduling delays and holds
the output valuess of the corresponding tasks until their simulated completion
time. This allows to simulate delays in the production of output values and the
corresponding impact on the control function.

T-Res provides a custom block for representing the kernel and its scheduler
(left side of Figure 3). The block is configured with the selection of the scheduling



A framework for the co-simulation of engine controls and task scheduling 5

Simulink Simulation engine

OMNeT++NS−3

RTSim

MetaSim

abstract network sim API

...

abstract scheduling sim API

adaption layer

ot
he

r

adaption
layer

adaption
layer

extensionextension

kernel

network

Simulink S−function API

Custom blocks
TRes libraryStandard blocks

Co−simulation framework

task

message

P
la

nt

C
on

tr
ol

le
r

Fig. 2. The TRes cosimulation architecture.

policy and the behavior in case of deadline (period) overrun. The possible options
are to drop the task or to let it execute until its late completion. The kernel block
provides a set of activation signals as output for the tasks it manages.

Fig. 3. The custom block for schedulers in T-Res.

These activation signals go to instances of the second type of custom blocks,
representing tasks (right side of Figure 3). Each task receives an activation signal
from the kernel (indicating when the task begins or resumes execution), and is
characterized by an execution time estimate (a configuration parameter), and
a signal going back to the kenel and providing the amount of time that is still
required by the task at each point in time. The execution time of a task is
defined in T-Res as a sequence of instructions of predefined execution (constant
or computed from a distribution) using a simple language and assigned as one of
the task block parameters. The task block produces as output a set of activation
and latch signals for all the functional subsystems that are executed by the task.
With respect to the activation, sporadic tasks are characterized by an activation
event going as input to the kernel block, or a periodic activation specification,
provided as a configuration parameter to the kernel (for details, refer to [5]).



6 A framework for the co-simulation of engine controls and task scheduling

5 Extending T-Res for modeling AVR tasks

For the purpose of this project we extended the task model block and the timing
information associated with it to allow the representation of Adaptive Variable
Rate tasks.

For what concerns the activations, the AVR task can be treated as a par-
ticular case of aperiodic task. The task block in T-Res includes a signal for the
explicit activation in case of event-triggered tasks. This signal is used to define
the activation of the task in correspondence to given angular positions of the
engine crankshaft, as defined by a simple trigger block which is activated at spe-
cific angles. For what concerns the execution, an ad-hoc AVR task block must be
created for handling the mode switching: this AVR task block has a dedicated
mode input that is referred to the active mode index, as presented in Figure 4.
The mode input can be used for multiple purposes, and in particular it is used
to select which control functionality must be executed. For the engine control
system, each execution mode represents the need of having different execution
times, associated with different control strategies: the most complex and com-
plete control tasks (which are time-consuming) will be activated at low speeds,
while the simpler (and time-saving) ones will be used at higher speeds.

Fig. 4. A custom block for modeling an AVR task.

The AVR block triggers an arbitrary number of pairs of segment-latch blocks,
each implementing a set of actions, as the classic task block. The segment block
contains the control instructions and it is triggered at the start of execution of
the job. On the other hand, the latch block holds the previous data until it is
triggered at the completion of the job, thus releasing the new data from the
segment to the model.

For each modality it is possible to specify which pairs of blocks are executed
or skipped, and also specify different execution times. The implementation of the
AVR segment-latch blocks that has been used for this paper is presented in Fig-
ure 5. This particular implementation has been created for modelling a multiple
injection control: the first segment block computes the main injection parame-
ters, the second the post-injection and the third the pre-injection parameters.
The strength of this approach is that the activation of the second and third pair
can be selectively disabled when the injection mode is changed, without losing
information because intermediate outputs are sensed after each latch block.

The mode index is provided by an external block called mode selector which
senses the current engine speed and selects the execution modality that is re-
quired, according to a user-defined map. Each mode is activated when the engine



A framework for the co-simulation of engine controls and task scheduling 7

Fig. 5. An example of AVR task modelled with TRES, implementing the multiple
injection control

speed value lies in a specific interval of switching speeds. The optimal selection of
the switching speeds is a non-trivial process, and a performance-based analysis
on the topic has been provided in [4]. The mode selector supports also hysteresis
between the switching, in order to avoid potentially dangerous oscillations when
the engine operates near the switching speeds.

5.1 Variable deadline implementation

In order to correctly test the system under EDF scheduling, the deadline of the
AVR task must be changed at every job activation, accordingly to its activation
rate. The deadline value, which in the original TRes implementation is statically
defined as a workspace value, must then be treated as a variable.

A formulation for the relative deadline of an AVR task has been calculated
in [8] and is reported here:

Di(ω) = δi
(√

ω2 + 2Θiα− ω
)
/α, (1)

where ω is the engine speed, δi a fraction of angular period (δ ∈ [0, 1]), Θi

the angular period and α the engine acceleration, supposed constant during the
angular intervalΘi. However, if this formula is implemented as it is in a real ECU,
it implies iteratively solving on-line calculations, which could excessively increase
the overhead of the scheduler. The possible solutions for this problem are: (i)
creating a sufficiently detailed look-up table for different (ω, α) combinations,
or (ii) using an approximated computation. In order to reduce the number of
inputs in the Kernel block (thus reducing the overall complexity of the scheduler)
we decided to use an approximate computation, where the deadline at every
iteration k has the value:{

Di(0) = δiT0
Di(k) = δi

(
tact(k)− tact(k − 1)

) (2)

where T0 is the (precomputed) interval between two activations at the starting
speed, and tact(k) is the absolute time of the k-th job activation. The deadline
is then directly provided to the external scheduler RTSIM at the job arrival.

6 Simulink Models of the Engine and the Control Tasks

Figure 6 shows the model of the engine and the control functionality in Simulink.
The blocks in the upper part of the figure represent the engine subsystems that



8 A framework for the co-simulation of engine controls and task scheduling

are currently considered and include a turbocharger, compressor manifold, in-
tercooler, intake and exhaust manifolds and the model of the engine cylinders.
The subsystem on the bottom part of the figure wraps our model of the engine
controller, with its outputs: the injection angle and duration and the VGT.

Fig. 6. Physical part of the engine model implemented in Simulink

The framework has been improved since the one presented in our previous
work [3], both in the physical and control parts. The engine now supports the
simulation of multiple cylinders, properly phased, instead of a mean-modelling
with a single cylinder. This choice allows to precisely capture the influence of
control errors which are split on different cylinders.

6.1 The engine model

The main improvements of the physical model are related to the cylinder dy-
namics and the analysis of the effect of multiple injections in the same cycle.
A generic cylinder block has been created, containing all the mechanical and
combustion dynamics, as a Simulink library block, with the possibility to con-
sider a large number of status variables of the internal dynamics. An arbitrary
number of cylinders can then be easily added to the model, by only changing the
initial conditions and angular phasing. The equations used for this framework
have been carefully implemented using the state-of-the-art models, mainly from
the work of Kiencke and Nielsen [9]. In detail, the block is composed by:

– valves dynamics, modelled as variable area flow restrictions, in order to have
a more realistic model of the intake and exhaust flow through the cylinders;

– injector dynamics, controlling directly the timing of the nozzle opening and
the rail pressure, in order to manage multiple-injection strategies;

– energy release of combustion using the zero-dimensional Chmela model pro-
posed in [10], which assures a good sensitivity to the shape of the fuel injec-
tion profile, while maintaining low computational requirements;

– piston dynamics as a crankshaft-rod mechanism;



A framework for the co-simulation of engine controls and task scheduling 9

– pressure and temperature dynamics, with equations of energy balance, wall
losses and flow exchanges

– NOx formation dynamics, modelled using the semi-empirical equation from
the work of Guardiola et al. [11];

– soot formation, with both formation (Hiroyasu model [12]) and oxidation
(Nagle and Strickland-Constable model [13]) dynamics;

– thermodynamic efficiency of the entire combustion cycle, computed as the
ratio of generated work to the heat released by the combustion;

The model presents also the dynamics of the crankshaft and engine friction, a
Variable Geometry Turbocharger, the air path of intake and exhaust gas, and
the dynamics of the temperature for these blocks. Finally, the model has also
been enriched with an Exhaust Gas Recirculation block for reducing the NOx
emission. A general overview of the physical model is presented in Figure 6.

6.2 The engine control

A control block has been developed to take care of the most important dynamics
of the engine. The control uses data from sensors (engine speed, acceleration,
intake air flow, boost pressure, exhaust pressure and pedal input) to compute
the actuation signals. The control variables are the turbine palettes orientation
and a mix of injection-related variables: rail pressure, injection angles, injection
duration and fraction of fuel. The control laws are implemented using both
lookup tables and classic controllers such as PID blocks.

For what concerns the injection control, three strategies have been imple-
mented: triple injection (pre-main-post), double injection (either pre-main or
main-post) and single injection. The reason behind this choice is that splitting
the injection with different shapes provides better results in terms of combustion
of fuel and reduction of pollutants. In particular, pre-injections are used to have
a better initial mixture and a more uniform combustion, while post-injection are
typically used to burn the residual fuel.

The framework is able to capture changing of performance in NOx, soot
and thermodynamic efficiency by varying a great number of parameters, such as
starting angle of injection, duration of injections, fraction of fuel, relative angle
between splits and so on.

The model consists of a kernel, and seven tasks. One of the seven tasks is an
AVR, three are periodic controllers and two represents other computations.

As the modelled engine has 4-cylinders and the injection must be performed
once every two cycles for each cylinder, the AVR task is activated every half
rotation. The TPU is actuated after 180o of the AVR task activation, and that
instant corresponds also to the AVR deadline.

7 Objective and Status

A detailed modeling of the control function is necessary to better understand the
impact of deadline misses or long latencies. Depending on the implementation of



10 A framework for the co-simulation of engine controls and task scheduling

the control function, a deadline miss may result in a late actuation, or a missed
actuation or even an actuation with old data. In our controls implementation, the
AVR task computes the phase and duration of the injection and passes them to
the task that simulates the injection actuators. Hence, a missed deadline results
in actuating the injectors with the values computed in the previous cycle with
a likely error in phase and duration with respect to the ideal values.

The objective of our framework is multifold:

– To understand the effect of the scheduling on the engine performance and
to use the environment for analyzing the impact of scheduling policies and
parameters, such as evaluating fixed priority vs EDF or different possible
priority assignments and task configurations.

– To analyze the timing parameters that truly of interest for evaluating the
performance of the engine and possibly attempt a characterization that iso-
lates the attributes of interest. This includes, among others, the evaluation
of schemes like m-k deadline misses, or overload management (maximum
lateness).

– To better characterize the design problem consisting in the optimal selection
of the transition speeds for AVR tasks.

The final application goal of this work is to create a tool for testing differ-
ent strategies of control and scheduling before implementing them in real cars,
which can be particularly useful especially for automotive companies. However,
currently the scope of the analysis is relatively limited, due to the huge com-
plexity of both the physical model and the real software implementation. The
difference among the engine control laws at different speeds (one for each possible
execution mode of the AVR tasks) mostly consists in the possibility of defining
one, two or three fuel injections. We assume at low speeds three injections are
possible, while at high rotation speeds there is only enough computation time
available to compute the angle and duration of a single injection.

The current engine model is capable of simulating several performance func-
tions of interest for a variable number of injections. Figure 7 shows the simulated
amount of NOx pollutants produced for simulation runs in which one (green
line), two (red) or three (blu line) injections are performed during the cycle.
The figure shows the benefit on the pollutant emissions that can be obtained by
using multiple injections in the cycle.

Similarly, the graph in Figure 8 shows the quantity of soot produced in the
simulated runs under the hypothesis of one, two or three injections for each cycle.

8 Studying the effects of deadline misses on performance

In Diesel engine control, the injector actuation is managed by the Time Process-
ing Unit (TPU), or by its most recent version called Enhanced Time Process-
ing Unit (eTPU). The TPU is a co-microprocessor which works in synchronous
modality, driven by both an internal clock and an Angle Clock that is based on
the crankshaft angular position. Among all its functions, it generates the volt-
age signal for the injectors, using the control data provided by the CPU. This



A framework for the co-simulation of engine controls and task scheduling 11

Fig. 7. Decrease in NOx emission with multiple injections

Fig. 8. Decrease in soot production with multiple injections

action is done with high precision at very specific angles, synchronized with the
crankshaft rotation.

It is essential that the control of injection provides the computed values
before the TPU injection process is activated. For this reason, this instant has
been defined as the deadline of the AVR task: if the AVR task misses its deadline
and cannot provide new data to the TPU, the TPU must and does use the old
data for the next injection. However, this effect can produce errors in the timing
of injection (i.e., the starting angle) and in the quantity of fuel injected, if the
old data are not good for the next cycle, for example if the engine suddenly
accelerates. In this case, the errors can be significant and worsen the combustion
performance. Thus, in order to minimize emissions of pollutants and wear on
the engine components, having a model to understand how scheduling delays
are related to performance is of critical importance.

Currently, within the assumptions of our model, the simulation is able to
show how the scheduling delays result in errors in the angle/duration of the
injection actuation and the corresponding loss in performance (for each selected
metric). Our objective is to relate the errors in phase and duration of the injection
to a possible loss of efficiency or an increase in pollutants, providing ways to
analyze the impact of scheduling with respect to the first performance function



12 A framework for the co-simulation of engine controls and task scheduling

of interest. Figure 9 shows the results of an example run in which the task
execution times have been defined to have one or two deadline misses on each
cycle (for one or two cylinders) under a throttle input consisting of a ramp (to
force a variation in the engine rpm and the ideal injection conditions).

Fig. 9. Angular error because of deadline misses

In the figure graph, the vertical axis shows the phase error in the actuation
of the injection for a sample manoeuvre consisting of a sudden acceleration and
a corresponding increase in the engine rotation speed from low to high values.
Three graphs are plot in the figure. The graph in blue (dark) color shows the
angle error when the execution time of the AVR task does not generate any
deadline miss. When forcing a single miss (red line) or two misses on each cycle
(green line) the injection angle error grows to almost 15 degrees.

The angular error in the injection is related to a variation (loss) in the power
performance of the engine. Figure 10 shows the corresponding effect of the dead-
line misses imposed on the system (in the same experiment configuration) on the
thermodynamic efficiency. The graph clearly shows how deadline misses result in
a loss of efficiency. Similar results are obtained for the performance that relate
to the pollutants NOx and soot.

9 Related Work

The presentation of the task model in which engine control tasks are implemented
with a variable computational requirements for increasing speeds is in [14],

These tasks are also referred to adaptive variable-rate (AVR). Analyzing the
schedulability of tasks sets consisting of both periodic and AVR tasks is a difficult
problem that has been addressed by several authors under various simplifying
assumptions, under both fixed priority scheduling [15–17] and Earliest Deadline
First (EDF) [18–20]. Other authors proposed methods for computing the exact
interference [1] and the exact response time [17] of AVR tasks under fixed pri-
ority scheduling. It has been shown [20] that, given the large range of possible



A framework for the co-simulation of engine controls and task scheduling 13

Fig. 10. Performance loss because of deadline misses

interarrival times of an AVR task, fixed priority scheduling is not the best choice
for engine control systems since, while EDF exhibits a nearly optimal scheduling
performance. Based on this fact, Apuzzo et al. [21] provided an operating system
support for AVR tasks under the Erika Enterprise kernel [22].

All the papers considered above, however, focus on the schedulability analysis
of task sets consisting of periodic and AVR tasks, without any concern on engine
performance. A performance-driven design approach has been addressed in [23]
for finding the transition speeds that trigger the mode changes of an AVR task.

A very large number of projects target the evaluation of scheduling policies
and the analysis of task implementations. A necessarily incomplete list includes
Yartiss [24], ARTISST [25], Cheddar [26], and Stress [27].

Finally, TrueTime [28] is a freeware1 Matlab/Simulink-based simulation tool
that has been developed at Lund University since 1999. It provides models of
multi-tasking real-time kernels and networks that can be used in simulation
models for networked embedded control systems. TrueTime is used by many re-
search groups worldwide to study the (simulated) impact of lateness and deadline
misses on controls. In TrueTime, the model of task code is represented by code
functions that are written in either Matlab or C++ code. Several research works
investigate the consequences of computation (scheduling) and communication
delays on controls. An overview on the subject can be found in [29].

10 Conclusions and Future Work

The co-simulation framework is in its early developing stages and starts produc-
ing results of interest. However, to better characterize the performance impact
of scheduling delays, a better model of the control tasks and of some engine
characteristics is still needed. In the context of the project we also aim at the
evaluation of different task allocation strategies on multicore platforms.

1 http://www3.control.lth.se/truetime/LICENSE.txt



14 A framework for the co-simulation of engine controls and task scheduling

References

1. A. Biondi, A. Melani, M. Marinoni, M. D. Natale, and G. Buttazzo, “Exact interfer-
ence of adaptive variable-rate tasks under fixed-priority scheduling,” in Proceedings
of the 26th Euromicro Conference on Real-Time Systems (ECRTS 2014), Madrid,
Spain, July 8-11, 2014.

2. L. Guzzella and C. Onder, Introduction to modeling and control of internal com-
bustion engine systems. Springer Science & Business Media, 2009.

3. P. Pazzaglia, A. Biondi, M. Di Natale, and G. Buttazzo, “A simulation framework
to analyze the scheduling of avr tasks with respect to engine performance.”

4. A. Biondi, M. Di Natale, and G. Buttazzo, “Performance-driven design of en-
gine control tasks,” in Proceedings of the 7th International Conference on Cyber-
Physical Systems. IEEE Press, 2016, p. 45.

5. F. Cremona, M. Morelli, and M. Di Natale, “Tres: a modular representation of
schedulers, tasks, and messages to control simulations in simulink,” in Proceedings
of the 30th Annual ACM Symposium on Applied Computing, Salamanca, Spain,
April 13, 17 2015, pp. 1940–1947.

6. L. Guzzella and C. H. Onder, Introduction to Modeling and Control of Internal
Combustion Engine Systems. Springer-Verlag, 2010.

7. L. Palopoli, G. Lipari, L. Abeni, M. D. Natale, P. Ancilotti, and F. Conticelli,
“A tool for simulation and fast prototyping of embedded control systems,” in
LCTES/OM, S. Hong and S. Pande, Eds. ACM, 2001, pp. 73–81.

8. A. Biondi and G. Buttazzo, “Engine control: Task modeling and analysis,” in
Design, Automation & Test in Europe Conference & Exhibition (DATE), 2015.
IEEE, 2015, pp. 525–530.

9. U. Kiencke and L. Nielsen, “Automotive control systems: for engine, driveline, and
vehicle,” 2000.

10. F. G. Chmela and G. C. Orthaber, “Rate of heat release prediction for direct injec-
tion diesel engines based on purely mixing controlled combustion,” SAE technical
paper, Tech. Rep., 1999.

11. C. Guardiola, J. López, J. Martin, and D. Garcia-Sarmiento, “Semiempirical in-
cylinder pressure based model for no x prediction oriented to control applications,”
Applied Thermal Engineering, vol. 31, no. 16, pp. 3275–3286, 2011.

12. H. Hiroyasu and T. Kadota, “Models for combustion and formation of nitric oxide
and soot in direct injection diesel engines,” SAE Technical Paper, Tech. Rep., 1976.

13. J. Nagle and R. Strickland-Constable, “Oxidation of carbon between 1000-2000
c,” in Proceedings of the fifth carbon conference, vol. 1, no. 1. Pergamon Press
London, 1962, p. 154.

14. D. Buttle, “Real-time in the prime-time,” in Keynote speech at the 24th Euromicro
Conference on Real-Time Systems, Pisa, Italy, July 12, 2012.

15. J. Kim, K. Lakshmanan, and R. Rajkumar, “Rhythmic tasks: A new task model
with continually varying periods for cyber-physical systems,” in Proc. of the Third
IEEE/ACM Int. Conference on Cyber-Physical Systems (ICCPS 2012), Beijing,
China, April 2012, pp. 28–38.

16. R. I. Davis, T. Feld, V. Pollex, and F. Slomka, “Schedulability tests for tasks with
variable rate-dependent behaviour under fixed priority scheduling,” in Proc. 20th
IEEE Real-Time and Embedded Technology and Applications Symposium, Berlin,
Germany, April 2014.

17. A. Biondi, M. D. Natale, and G. Buttazzo, “Response-time analysis for real-time
tasks in engine control applications,” in Proceedings of the 6th International Con-
ference on Cyber-Physical Systems (ICCPS 2015), Seattle, Washington, USA, April
14-16, 2015.



A framework for the co-simulation of engine controls and task scheduling 15

18. G. Buttazzo, E. Bini, and D. Buttle, “Rate-adaptive tasks: Model, analysis, and
design issues,” in Proc. of the Int. Conference on Design, Automation and Test in
Europe, Dresden, Germany, March 24-28, 2014.

19. A. Biondi and G. Buttazzo, “Engine control: Task modeling and analysis,” in Proc.
of the International Conference on Design, Automation and Test in Europe (DATE
2015), Grenoble, France, March 9-13, 2015, pp. 525–530.

20. A. Biondi, G. Buttazzo, and S. Simoncelli, “Feasibility analysis of engine control
tasks under EDF scheduling,” in Proc. of the 27th Euromicro Conference on Real-
Time Systems (ECRTS 2015), Lund, Sweden, July 8-10, 2015.

21. V. A. A. Biondi and G. Buttazzo, “OSEK-like kernel support for engine control ap-
plications under EDF scheduling,” in Proceedings of the 22nd IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS 2016), Vienna, Austria,
April 11-14, 2016.

22. “ERIKA enterprise: an OSEK compliant real-time kernel,” http://erika.tuxfamily.
org/drupal/.

23. A. Biondi, M. D. Natale, and G. Buttazzo, “Performance-driven design of en-
gine control tasks,” in Proceedings of the 7th International Conference on Cyber-
Physical Systems (ICCPS 2016), Vienna, Austria, April 11-14, 2016.

24. Y. Chandarli, F. Fauberteau, D. Masson, S. Midonnet, M. Qamhieh et al., “Yartiss:
A tool to visualize, test, compare and evaluate real-time scheduling algorithms,” in
Proceedings of the 3rd International Workshop on Analysis Tools and Methodologies
for Embedded and Real-time Systems, 2012, pp. 21–26.

25. D. Decotigny and I. Puaut, “Artisst: an extensible and modular simulation
tool for real-time systems,” in Object-Oriented Real-Time Distributed Computing,
2002.(ISORC 2002). Proceedings. Fifth IEEE International Symposium on. IEEE,
2002, pp. 365–372.

26. F. Singhoff, J. Legrand, L. Nana, and L. Marcé, “Cheddar: a flexible real time
scheduling framework,” in ACM SIGAda Ada Letters, vol. 24, no. 4. ACM, 2004,
pp. 1–8.

27. N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings, “Stress: A simulator
for hard real-time systems,” Software: Practice and Experience, vol. 24, no. 6, pp.
543–564, 1994.

28. A. Cervin, D. Henriksson, B. Lincoln, J. Eker, and K.-E. Årzén, “How does control
timing affect performance?” IEEE control systems magazine, vol. 23, no. 3, pp. 16–
30, 2003.

29. K. J. Astrom and B. Wittenmark, “Adaptive control,” in Prentice Hall, 2016.


