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Abstract—In applications involving unmanned aerial vehicles,
the use of simulation environments is typically employed to speed
up the development phase, reduce the associated costs, and in
particular to safely verify and validate the software behavior
without jeopardizing the hardware in case of faults or bugs. In
addition, testing other properties as scalability, robustness, and
fault tolerance is much more convenient in simulation.

Communities dealing with unmanned autonomous vehicles
often develop their own custom simulation frameworks, which
are often tailored to the specific system under development, with
the consequence that they are either incomplete or not fully
supported.

To fill such a gap, this work presents a hardware-in-the-loop
development simulation framework for multi-vehicle autonomous
systems, addressing in particular maintainability, predictability,
and capability of integrating multiple heterogeneous autopilot
boards and user interface applications. The proposed framework
also supports a multi-agent configuration, which is a noteworthy
novel characteristic, since existing frameworks often deal with a
single agent.

I. INTRODUCTION

In recent years, unmanned aerial vehicles have been used in
several application domains and many contributions have been
proposed to improve their performance and autonomy. The
aroused interest has mainly been driven by their flexibility and
scalability, making them usable in a multi-agent framework in
very different settings [1] [2]. The continuous improvements
of computational platforms and materials paved the way to-
wards real ”autonomous” vehicles capable of interacting with
dynamic environments in a wide range of circumstances [3] [4]
[5]. Significant progress has also been made on miniaturizing
hardware platforms for unmanned aerial vehicles (UAVs), as
well as providing programming guidelines [6] to promote code
reusability and maintainability.

In spite of the support provided by several research com-
munities, the development of multi-agent systems still requires
considerable effort when testing the software related to navi-
gation, guidance, control, and collaborative tasks.

The possibility of validating and testing the software behav-
ior on a realistic simulation framework would allow significant
benefits, as reducing the development time, avoiding crashing
the vehicles due to software failures, and evaluating the
reaction to peculiar situations that could be too rare or not
reproducible in practice. The possibility of evaluating control
software in a simulation framework is particularly important in

a research setting, where not fully tested open-source solutions
are typically adopted to develop innovative approaches.

Reproducing realistic scenarios in the simulation environ-
ment is a crucial objective in the development process, of-
ten achieved through hardware-in-the-loop simulations. This
method, schematically illustrated in Figure 1, consists in
running the control software directly on the board of the
vehicle, which interacts with a virtual environment. In this
setting, the physical sensors and actuators of the vehicle are
disabled and replaced with virtual counterparts running in the
simulator.

Fig. 1. Hardware-in-the-loop scheme.

Since the aim of the simulation process is also to test high-
level functions (i.e., obstacle avoidance, target recognition and
tracking, integration of video information for navigation, etc.),
it is crucial to model all the interactions between the vehicle
and the virtual environment, implementing proper physical
models.

The success of a simulation tool also depends on its main-
tainability and interoperability with other software. It should
be possible to use the tool with a large variety of systems,
and any possible upgrade should be easy to do. Without such
properties the tool is likely to become obsolete in a short time.

Research communities dealing with unmanned autonomous
vehicles often develop their own custom simulation frame-
works. As a consequence, such tools are often too specific
and tailored to the system under development, and not always
documented and supported.

To fill such a gap, this paper presents a hardware-in-the-loop
simulation framework for multi-vehicle autonomous systems
with the following characteristics:
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2) Modular design to improve maintainability;
3) Support for integrating generic autopilot boards;
4) Possibility to interoperate with a wide range of user

interfaces for autonomous vehicles;
5) Support for testing high-level functions of the vehicles;
6) Precise time management to increase the realism of the

simulation.
The rest of the paper is organized as follows. Section II

presents a brief survey of the related literature. Section III
introduces the proposed framework, its main components and
the actual implementation used in this work. Section IV gives a
detailed description of the software structure of the framework.
Section V reports some experimental results aimed at testing
the timing properties of the system. Finally, Section VI states
our conclusions and future work.

II. RELATED WORK

Many tools have been developed within the research com-
munity addressing different application scenarios. A valuable
effort to classify existing simulators depending on their pro-
vided functionalities has been presented by Parodi et al. [7].

Focusing on hardware-in-the-loop simulators, several so-
lutions have been proposed in the literature [21] [24] [9]
[22] [1], but they all consider a single vehicle and do not
extend to a multi-agent scenario. To manage multiple vehicles
the simulator has to be properly designed to support such
a feature. Kamali and Shikha [8] presented a simulation
model developed in Matlab/Simulink and running on an FPGA
to support real-time communication on I/O data buses (I2C
and SPI). This approach allows achieving a good level of
realism but it does not provide good scalability, because all
the communication interfaces need to be wired to the FPGA
that is in charge of simulating the models. A similar approach
has been used by Pollini et al. [9], where Matlab/Simulink
is used to simulate a single model on a PC, implementing
a synchronization procedure between the autopilot board and
the simulator.

The simulation of a vehicle can also be done using dedicated
simulation tools, like X-Plane1 or FlightGear2, as done by
Santos [10]. The major drawback of using a dedicated flight
simulator, however, is that the overall execution rate is coupled
with the refresh rate of the video. In addition, the user has
not full control on the mathematical model. For this reason,
Lugo-Cardenas et al. [11] implemented the model dynamics
from scratch using an open-source simulator. Another useful
feature of this solution, often missing in many existing tools,
is the capability of embedding heterogeneous platforms in the
simulator through the MAVLink protocol [12]. Using such a
protocol, in fact, it is possible to connect all the supported
autopilot boards without additional coding effort.

Unfortunately, there are only very few works supporting
hardware-in-the-loop simulation for a multi-vehicle system.
Often the multi-agent scenario is proposed within a fully

1http://www.x-plane.com/ (X-Plane Flight Simulator)
2http://www.flightgear.org/ (FlightGear Flight Simulator)

simulated environment, with a very limited interaction between
vehicles and the virtual environment, as in [13]. A hardware-
in-the-loop simulation tool for multi-agent systems has been
proposed by Kamal and Shumaker [14], who also considered
gimbaled platforms. While such a solution is highly realistic,
it has the problem of being quite expensive and difficult to
scale with many vehicles.

Parodi et al. [7] proposed a well-structured simulation
framework for underwater vehicles able to manage multiple
heterogeneous agents. The simulator models the environment,
including obstacles, water properties and constraints related
to communication in water, but the framework does not in-
clude a 3D visualization. In addition, considering the possible
problems related with communication between the different
components, it would have been interesting to see some results
about the timing properties of the system (latency, periodicity
of messages, etc.).

Indeed, a proper characterization of the timing properties is
quite important for a hardware-in-the-loop simulator, since the
hardware should be provided with simulated sensor/actuator
data as if they were produced by real devices. Providing
simulated sensory data with high latency or jitter is like
introducing a non constant artificial delay in the control
loop, which would make the simulation less realistic. Such a
timing characterization is rarely reported by authors, with very
few exceptions. For instance, Pollini et al. [9] implemented
a synchronization process between the autopilot board and
the simulator, reporting the timing properties. Mueller [15]
addressed such a problem by running the simulation code
directly on the autopilot board, but this solution increases the
workload of the autopilot processor and could alter the realism
of the test.

III. SYSTEM DESCRIPTION

The overall structure of the simulation framework consists
of four main components and a message router, as illustrated
in Figure 2.

The message router guarantees a correct interoperability
among components and ensures that data exchange is carried
out within bounded delay, also considering the worst-case
blocking times on the access to shared resources. The commu-
nication with the ground station and the synthetic environment
is performed using the UDP protocol, which allows spreading
the components over separate machines to better distribute the
computational workload.

1) Autopilot boards
The aim of the simulation tool is to test the control
software running on the target autopilot boards. When in
a hardware-in-the-loop configuration, each board expects
sensor data from the simulator and produces control
signals back to the simulator. In addition, a board can
exchange messages as during normal functioning, for
example with a ground station. The system supports
boards that can communicate via serial port or network
interface using the MAVLink protocol. The rationale
behind this choice is that MAVLink has become a de



facto standard communication protocol for open-source
autopilot boards. In this way, the proposed simulation
framework natively supports all of them without requir-
ing ad-hoc modification.

2) Simulator
The simulator takes the actuation commands from each
autopilot and uses the model of the vehicle dynamics
to simulate the sensory data. In order to achieve good
performance, scalability, and have full control on the
model, the functions for describing the vehicle dynamics
and the output of the sensors have been implemented
using the C language. The simulation frequency can
be changed by the user and it is not bounded by the
video refresh rate, as in common flight simulators. The
sensory data output frequency can be decoupled from the
simulation frequency by simulation sub-stepping, that is,
by sending the sensory data every N simulation cycles,
where N is the number of sub-steps.

3) Synthetic Environment
This component provides the capability of 3D visualiza-
tion of the vehicles in a synthetic environment. Visual-
izing the vehicles in a virtual environment is a valuable
feature that simplifies the verification of the developed
functions. It is also possible to simulate the output of
cameras on the vehicles for testing advanced functions,
as vision-based maneuvers. An important feature of this
component is that it can be employed not only as a
bare viewer, but also to retrieve information about the
interaction of a vehicle with the synthetic environment,
such as collisions with virtual obstacles.

4) Ground station
The ground station is the application that allows user
interaction with the autopilot board through an user-
friendly interface. It allows the user to change the values
of autopilot firmware parameters and perform mission
planning and flight control operations. It also provides
an interface to visualize the telemetry data and the status
of the connected vehicles. Instead of proposing an ad-
hoc ground station, in line with the goal of modularity
and interoperability, the proposed framework can operate
with any ground station implementing the MAVLink
protocol over UDP. This is the case with most of the
common available ground station applications, which
can be tested, together with the autopilot board, in this
simulation environment.

A. Actual Implementation

The modeling of the simulated vehicles and its sensors has
been carried out using Matlab/Simulink, taking advantage of
C code generation to ensure scalability and fast execution,
which is required in case of multi-vehicle systems. In this
way a trade-off between maintainability, extensibility and
scalability has been achieved. In this work the vehicles have
been modeled as identical quadrotors, but it is possible to add
also other kind of vehicles, simply modeling them with Matlab
and generating the C code.

Fig. 2. Overall structure of the hardware-in-the-loop simulation framework.

The ground station used in our implementation is QGround-
Control3, that is a free open source application allowing
full modification and code analysis. This application supports
the MAVLink protocol for communicating with the connected
vehicles. It supports different communication interfaces for
connecting to the vehicles, also allowing the required UDP
protocol. Through it the user can visualize the vehicle on a
map (Google Maps, Bing Map), plan missions putting way-
points directly on the maps, plot telemetry data and simplifies
several operations on the vehicles, such as flashing firmware,
setting up the controller parameters and the remote controller.

The synthetic environment has been designed with Unreal
Engine4, which is a free complete suite of game development.
It makes possible to design realistic scenarios without directly
concerning about complex visual effects, which are managed
automatically by the graphical engine of the application. This
is necessary to support the design of computer vision solutions,
where real common phenomena like light reflections, shadows,
and mist constitute a problem that must be taken into account.
The suite includes useful libraries to create realistic effects,
move objects, measure the distance between points, manage
events like collision, and so on.

IV. HARDWARE-IN-THE-LOOP FRAMEWORK STRUCTURE

A generic hardware-in-the-loop simulation (see Figure 1)
consists of two interacting elements: the software under test,
running on the autopilot board, and the simulator application
executing on a separate machine, respectively. Since the two
elements run on separate platforms, it is crucial to have a
correct synchronization between them and, in achieving this,
it is necessary to take into account the implementation of
the software under test. Moreover, as shown in Figure 2, in
the proposed hardware-in-the-loop framework, the simulator is
one of the components of the system and the interaction among
them is to be done considering timing issues. Indeed the
realism of the simulation depends not only on the correctness
of the computed values, but also on the time at which they are
provided.

3http://qgroundcontrol.com/ (QGroundControl - Drone Control)
4https://www.unrealengine.com/ (Unreal Engine 4)



As far as the synchronization problem is considered, a pos-
sible approach is to let the autopilot board trigger the simulator
(board driven synchronization), as done by Pollini et al. [9].
Another approach, adopted by the PX4 Flight stack [16], is
to make the simulator responsible for triggering the exchange
of messages (simulator driven synchronization). This solution
is based on a publisher/subscriber middleware and a chained
execution pattern optimized to reduce the control latency. The
timing of this chain is given by the publication of new sensor
data achieved by means of high precision timers.

Depending on the kind of synchronization used, the simula-
tor should provide different features. In case of a board driven
synchronization, low-latency response is requested to model
the dynamics with high fidelity, that is, without introducing
extra delay. In case of a simulator driven synchronization, it
is still important to provide low latency, but it is also necessary
to ensure periodicity and regularity of the simulation cycle to
reproduce the output of sensors managed by high precision
timers.

In order to provide the previous features, the hardware-
in-the-loop development framework has been designed with
a multi-thread architecture, and an example of detailed im-
plementation with two vehicles is shown in Figure 3. The
architecture includes four different kinds of threads:

• Inflow thread
This thread reads data from the autopilot board via the
selected communication channel and then routes each
message to the corresponding recipient (e.g., simulator,
ground station).

• Simulator thread
This thread simulates the dynamics of the vehicle and its
sensors. It reads the control value updated by the Inflow
thread and the external reactions of the environment
updated by the synthetic environment; then, it computes
the new vehicle state and sensors values, which will be
sent directly to the autopilot board. Depending on the
synchronization method used, the thread can perform
a busy wait for the new data from the Inflow thread,
which triggers the simulation to ensure low latency, or
can freely run and sending sensor data to the board with
high precision and accuracy.

• Ground Station thread
This thread manages the messages exchange between the
ground station and the vehicles connected to it.

• Synthetic Environment thread
This thread manages the data exchange between the
simulator threads and the synthetic environment appli-
cation. It reads the state of the vehicles and it updates
the information about the interaction with the virtual
environment.

For each connected vehicle an Inflow thread and a Simulator
thread are created. The design choice of separating threads for
different vehicles has been undertaken to improve scalability
and reduce blocking time due to shared resources.

Fig. 3. Structure of the simulation software with two vehicles.

V. EXPERIMENTAL EVALUATION

This section reports some experiments that have been car-
ried out to characterize the system performance in terms of
delays introduced by the simulation structure and achievable
timing accuracy. The experiments consist in the measurement
of the latency introduced by the simulator framework and its
capability to produce data with a given frequency.

A. Experimental Setup

The proposed simulation framework has been employed to
simulate a system with multiple quadrotor vehicles, all running
the PX4 Flight Stack firmware. The simulations lasted 30
minutes each. The components of the simulation system were
allocated on different PCs. A dedicated PC, equipped with
a Intel(R) Core(TM) 2 Duo - E8500 @ 3.16Ghz CPU
and 3GB of RAM, hosted the core components, that is, the
message routing and the simulator, whereas the ground station
and the synthetic environment were running on another PC
connected via Ethernet.

Three kinds of setup have been used in the experiments. In
the first one, three autopilot boards (two Raspberry 2 extended
with the Navio+5 modules and a Pixhawk6) were employed.
The Raspberry 2 boards hosted the Navio+ version of the
Raspbian OS, with a real-time patched Linux kernel, and
were connected to the simulation framework via Ethernet on
a dedicated LAN to reduce the jitter and the latency due to
external network traffic, while the Pixhawk was connected via
serial port.

In the other two experiments the simulation framework has
been connected also to additional instances of the autopilot
software, executed on a dedicated PC on the same LAN to
verify the scalability property of the system. The number of
the supplementary instances in these two tests was 7 and 12,
respectively.

In order to acquire time measurements in a precise and non
invasive way, the free I/O pins of one Raspberry Pi 2 board
were connected to a logic analyzer and toggled at specific
events. Figure 4 illustrates an example of execution where τsim

5https://emlid.com/ (Navio Linux autopilot on Raspberry 2)
6http://px4.io/ (PX4 Pro Open Source Autopilot)



is the periodic simulation thread, with period Tsim, while τctr,
τsnd are the control and the communication tasks running on
the autopilot board, respectively. The measured events were the
reception time tsns of a new sensor data, the actuation time
tc, and the instant tcs when the control data is sent to the
simulator. The latency has been computed as the difference

Fig. 4. Example of execution behavior.

between the time at which the actuation message is sent to
the simulator and the time at which the corresponding sensor
data is received back, that is Lsim = tsns(k + 1) − tcs(k).
To measure the precision of the simulator, the inter-arrival
time of sensor data (Tsns = tsns(k + 1) − tsns(k)) has been
measured. Also the actuation time (tc(k)) has been recorded
to check the behavior of the autopilot board while interacting
with the simulator.

Two kinds of tests have been carried out under both the
simulation driven synchronization and the board driven one.
The former gives an insight on the periodicity capability of
the proposed framework, whilst the latter allows assessing the
simulation latency of the bare simulation framework.

The simulation latency, measured with 3, 10 and 15 ve-
hicles, exhibited a linear trend with respect to the number of
vehicles (see Table I). However, the differences in performance
between the three cases resulted to be negligible, with a
simulation latency variation in the order of 5 µs, confirming
the good scalability property of the simulation framework. Due
to the marginal differences in the performance and for lack of
space, only the results of the experiment with 15 vehicles are
reported here.

Num. Vehicles 3 10 15
Latency mean value 0.445 ms 0.448 ms 0.450 ms
Latency Std 0.089 ms 0.091 ms 0.101 ms

TABLE I
LATENCY AS A FUNCTION OF THE NUMBER OF CONNECTED VEHICLES

B. Experimental Results

The test using the simulator driven synchronization ap-
proach allowed us to verify the capability of the simulation
framework to periodically trigger the autopilot board with
sufficient precision. With a sending period set to 4 ms, the

achieved mean value for the sensor data inter-arrival times was
4.001 ms with a standard deviation of 0.022 ms. Figure 5
presents the distribution of the inter-arrival times between
successive sensor messages. The distribution of the latency
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Fig. 5. Characterization of the simulation framework periodicity with the
simulator driven synchronization approach.

of the simulation framework is instead shown in Figure 6,
resulting in a mean value of 1.781ms and a standard deviation
of 0.723 ms. Such a high standard deviation was unexpected
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Fig. 6. Latency of the simulation framework when using the simulator driven
synchronization approach.

in consideration of the design of the autopilot software [16],
and thus further tests were performed to understand the source
of such a variability. In particular, the control latency on the
autopilot board (Lctr = tc(k) − tsns(k)) was monitored and,
as shown in Figure 7, it was seen that control messages were
evaluated after several microseconds, but there was a signifi-
cant and quite varying delay in sending them to the simulator.
Therefore, we concluded that the observed variability is mainly
due to such a transmission latency introduced by the autopilot
software (which is not under our control).

Time [ms]

0 0.05 0.1 0.15 0.2 0.25 0.3

O
c

c
u

rr
e

n
c

e
s

×10
4

0

0.5

1

1.5

2
Histogram of the control latency

mean = 0.117ms | std = 0.013ms

Fig. 7. Latency from publication of the new sensor topic to the control signal
computation.

As a consequence, the timing behavior of the system under
the simulator driven approach cannot be fully characterized
from the measurements of the latency Lsim, since its timing
behavior also depends on the implementation of the com-
munication on the autopilot. A better test for characterizing
the latency property of the proposed framework comes from



the measurement under the board driven synchronization ap-
proach. The results reported in Figure 8 show that the data is
given back to the board after an interval of time with a mean
value of 0.450 ms and a standard deviation of 0.101 ms.
These results were also consistent with the minimum latency
observed in Figure 6.

Figure 9 reports the inter-arrival time of the sensor data
when using the board driven approach. In this case, it has been
noticed that the frequency at which sensory data were sent was
not accurate. As in the previous case, by inspecting the control
latency Lctr, we concluded that the variability observed in the
timing behavior was also due to the implementation of the
communication on the autopilot board.
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Fig. 8. Latency of the simulation framework with the board driven synchro-
nization approach.
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Fig. 9. Characterization of the simulation framework periodicity with the
board driven synchronization approach.

VI. CONCLUSIONS

This paper presented a hardware-in-the-loop development
framework aimed at simplifying and supporting the develop-
ment of multi-UAV applications. Design choices have been
explained and tests were performed to characterize it in terms
of timing behavior.

The experimental results showed that it is possible to
achieve good performance in terms of timing accuracy and
precision, together with a simulation latency sufficient for
common control problems. The maximum simulation latency
observed under the simulator synchronization approach was
in the order of the data sending period, that is 4 ms, while
under the board synchronization approach it was less than
0.8 ms, below the control task period. The timing accuracy
for the simulation periodicity resulted to be in the order
of 20 µs. In conclusion, the proposed framework resulted
to be quite effective for analyzing the timing behavior of
the firmware directly on autopilot boards, hence highlighting
possible timing problems when running hardware-in-the-loop
simulations.

Future extensions of the proposed framework include the
capability of simulating a realistic communication between
vehicles (e.g., packet loss, delays) and a better integration
with the synthetic environment to enable onboard camera
simulation for computer vision applications.
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