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Abstract: Laser rangefinders are used in several applications for measuring the distance of a 
target. Distance is computed by measuring the time of flight of a light pulse to hit the target and 
come back. The resolution of these devices is strictly related to the precision for measuring time 
intervals, limited by the oscillator clock frequency of the time-to-digital converter. This paper 
proposes a novel technique that allows achieving high resolution distance measurements with 
lower clock frequencies, enabling the development of low cost laser rangefinders. The idea is to 
increase precision by integrating multiple coarse measurements performed at slightly different 
clock frequencies, which are properly selected and integrated to produce a time measure with a 
higher resolution. 
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1 Introduction 

A laser rangefinder is a device that measures the distance of 
a target from itself. In particular, a laser rangefinder 
(Goldstein and Dalrymple, 1967) (also referred to as laser 
radar) estimates distance by transmitting a short laser pulse 
towards the target and measuring the time of flight (ToF) of 
the reflected pulse detected by an optical sensor. The 
distance to the target is then calculated by multiplying the 
ToF of the pulse with the known velocity of light (Nissinen 
et al., 2003). A laser radar, hence, consists of a laser 
transmitter, an optical detector, a time-to-digital converter 

(TDC), and a microcontroller for the necessary computations. 
A block diagram illustrating such components is shown in 
Figure 1. 

Precise distance measurement and real-time distance 
evaluation is required in several domains like robotics, 
navigation, camera auto-focusing, vehicular traffic 
monitoring, traffic congestion control, sports, mobile  
robot localisation, and military systems (Nissinen and 
Kostamovaara, 2009; Song et al., 2015; Pu et al., 2015). In 
surveillance systems, laser rangefinders could effectively be 
used in conjunction with vision systems for energy 
efficiency: a camera could be activated only when some 
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intrusion is detected based on distance measurements (Chen 
et al., 2014). Laser rangefinders have also been used for 
reconstructing real world scenarios in virtual reality 
applications (Dias et al., 2006; Amato et al., 2015). In 
industrial applications, laser radars are required for 
measuring the level of liquids in containers and profiling or 
scanning surfaces. In military systems, they are used for 
target identification and missile guidance, whereas in traffic 
safety applications they are used for obstacle detection, road 
edge recognition, position estimation, and collision 
avoidance (Kaisto et al., 1993; Kawashima et al., 1995; 
Määtta et al., 1993; Tanaka and Kochi, 2013; Wang et al., 
2010). 

Figure 1 Block diagram of a laser radar (see online version  
for colours) 

 

The measurement ranges and accuracy required by a laser 
radar greatly vary with the specific application in which it is 
used (Nissinen and Kostamovaara, 2009). For example, the 
measurement ranges vary from a few metres to some tens of 
metres in industrial applications and up to several 
kilometres in military applications. Similarly, the accuracy 
required by a laser radar also depends upon the specific 
application in which it is used. The precision required in 
industrial applications ranges from a few millimetres to 
some metres; whereas some military applications require 
precision ranging from tens to hundreds of metres (Nissinen 
and Kostamovaara, 2009). 

The accuracy of pulsed laser rangefinder is determined 
by the time resolution of its TDC (Nissinen et al., 2003). In 
the simplest case, the TDC is just a counter that measures 
the time interval of any event by counting the number of 
clock pulses of an oscillator running at a given frequency. 
Hence, the resolution of such a counter-based TDC is 
limited by the minimum time period of the oscillator. For 
example, using a clock frequency of 100 MHz the time 
resolution is 10 ns corresponding to a spatial resolution of 
about 1.5 metres (Nissinen and Kostamovaara, 2009). 

To achieve higher resolutions, several interpolation 
techniques have been proposed in the literature. For 
example, Kostamovaara and Myllylä (1986) described  
an analogue interpolation circuit composed of two  
time-to-amplitude converters for digitising the time 
fractions. This specific TDC combines the good single-shot 
accuracy of time-to-amplitude conversion with the long 
measurement range of the direct counting method. The 
effects of averaging the measurement results on the 
resolution and accuracy of the device are also discussed. 

Määtta and Kostamovaara (1998) described another 
interpolation method that increases the resolution  
from 10 ns to 10 ps, while improving the stability by a  
real-time calibration procedure. Similarly, a time interval 

measurement unit based on a counter and two-level 
interpolation with stabilised delay lines has been presented 
by Jansson et al. (2006). Such stabilised delay lines not only 
improve the nonlinearity of the interpolator but also enable 
the use of a lower clock frequency. 

Raisanen-Ruotsalainen et al. (2000) exploited a  
counter-based TDC utilising two separate time digitisers 
interpolating within the clock period. These interpolators 
are based on analogue dual-slope conversion achieving a 
single-shot precision of 30 ps. Szplet et al. (2000) proposed 
another technique able to reduce the random error from  
170 ps to 70 ps by a software correction of the nonlinearity 
of the delay lines. 

A Vernier-based TDC has been discussed by Ronald 
(1970) and Rashidzadeh et al. (2010), where the achievable 
resolution is in the range of a few tens of picoseconds. A 
review of the time-interval measurements in the  
sub-nanosecond regime was presented by Porat (1973), who 
compared the various methods in terms of precision, 
stability, resolution, and other essential parameters. 
Calibration methods, stabilisation, and correction for time 
walk were also discussed. 

All the techniques discussed above give excellent results 
exploiting high clock frequencies of the oscillator and 
complex digital circuitry, resulting in high-cost devices. 
However, in some industrial scenarios where targets are 
usually stationary, it would be beneficial to achieve high 
precision with low-cost and low-frequency oscillators. 

1.1 Paper contribution 

This paper proposes three measurement methods for pulsed 
laser radars to achieve higher resolutions with low oscillator 
frequencies at the cost of an increased measurement time. 
The spatial error and the extra number of measurements 
needed to achieve a desired resolution are carefully 
analysed and evaluated by a set of simulation experiments. 
The operation and performance of the proposed method is 
based on an off-chip re-configurable ring oscillator capable 
of generating multiple frequencies. 

1.2 Paper organisation 

The rest of this paper is organised as follows: Section 2 
formally states the problem addressed in the paper.  
Section 3 proposes two techniques that can be used to 
reduce the error exploiting a reconfigurable ring oscillator. 
Section 4 presents an improved technique that allows 
reducing the number of measures with a more precise 
control of the resolution. Section 5 illustrates the algorithm 
for efficiently implementing the improved method.  
Section 6 presents some experimental results aimed at 
evaluating the proposed methods under different operating 
conditions. Finally, Section 7 states our conclusions. 
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2 Problem statement 

Counter-based laser rangefinders compute the distance to a 
target by estimating the ToF of a light pulse to hit the target 
and come back. For a target located at distance d from the 
rangefinder, the ToF Tr is given by 

2 .r
dT
c

=  (1) 

where c is the speed of light 8( 3 10 m/s).c ⋅  Such a time is 
measured by counting the number N of periods of a 
reference clock elapsed from a start signal (synchronously 
generated with the light pulse) to a stop signal (produced 
when the reflected pulse is received by the optical sensor). 
If Te is the ToF estimate measured by this method, the 
distance estimate de is computed by reversing equation (1), 
that is, as 

.
2

e
e

cTd =  (2) 

Figure 2 If N is the counter value at the stop time tr, the ToF Tr 
is always included in the interval [NT0, (N + 1)T0)  
(see online version for colours) 

 

Hence, εd = |d – de| represents the spatial error of the 
measure. Such an error is due to the fact that the arrival time 
of the reflected pulse is asynchronous with the edges of the 
clock used in the counter. To better explain the problem, 
consider the case shown in Figure 2, in which the reference 
clock frequency is f0, giving a clock period T0 = 1 / f0. In this 
example, the reflected pulse generating the stop signal 
arrives at time tr, within the third cycle of the clock, so the 
counter is stopped when its counter value is N = 2. In 
general, since the counter counts the number N of integer 
periods elapsed from the start time t0 to the stop time tr, the 
actual ToF interval Tr = tr – t0 is always included in the 
following range: 

0 0

1.r
N NT
f f

+
≤ <  (3) 

Hence, the estimated ToF Te can be computed as the 
average between the two extreme values of the interval: 

0

2 1.
2e
NT

f
+

=  (4) 

Clearly, the time resolution τ of this method is equal to the 
clock period T0, while the timing error of a specific measure 
is given by the difference εt = Tr – Te. Hence, the maximum 

timing error is given by max
tε  = Te – NT0 = (N + 1)T0 – Te = 

T0 / 2. 
Substituting equation (4) into equation (2), the distance 

can be estimated as follows: 

0
(2 1) .

4e
cd N
f

= +  (5) 

Observe that the two limit values of the range for Tr provide 
two corresponding bounds for the actual distance d: a lower 
bound dlb and an upper bound dub: 

02lb
cd N
f

=  (6) 

and 

0
( 1) .

2ub
cd N
f

= +  (7) 

Hence, the spatial resolution σ of this method is given by 

0
,

2ub lb
cσ d d
f

= − =  (8) 

whereas the maximum spatial error max
dε  achievable in a 

distance measurement is given by 
max

max

0
.

2 2 4
ub lb t

d
d d ε c cε

f
−

= = =  (9) 

Equation (8) allows deriving the minimum frequency f0 
needed to achieve a desired spatial resolution σ: 

0 .
2
cf
σ

=  (10) 

From equation (6), we can see that the minimum detectable 
distance dmin is the distance at which the counter counts at 
least one period (N = 1), that is 

min
0

.
2
cd
f

=  (11) 

The maximum distance dmax is determined by the  
maximum number Nmax that can be counted by the TDC, 
which depends on the number n of bits of the counter  
(Nmax = 2n – 1). That is, 

max max
0

.
2
cd N
f

=  (12) 

The major problem of the measuring method described 
above is that spatial resolutions in the order centimetres 
require clock frequencies in the order of GHz. For instance, 
equation (10) tells us that the minimum clock frequency for 
achieving a spatial resolution σ = 1 cm is f0 = 15 GHz. As 
mentioned in Section 1, however, higher frequencies imply 
higher costs and higher energy consumption, which can be 
relevant issues in some specific applications. To overcome 
such a problem, the next section proposes two techniques 
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that can achieve the same resolution with lower clock 
frequencies. 

3 Proposed approach 

The spatial resolution obtained by a measure that uses a low 
clock frequency can be improved by performing additional 
measurements at slightly different frequencies, thus trading 
precision with measurement time. In particular, the 
following two alternative techniques are considered in this 
section: 

• F-inc: This method performs multiple measures by 
slightly increasing the reference clock frequency, until 
the number of counts increases by one. 

• F-dec: This method performs multiple measures by 
slightly decreasing the reference clock frequency, until 
the number of counts decreases by one. 

For all the methods proposed in this paper, it is assumed 
that the target is stationary. 

3.1 The F-inc method 

The idea behind the F-inc method is to perform multiple 
measures at slightly increased frequencies f(k) obtained by 
incrementing the previous one by a constant gap factor G: 

0( ) , 0, 1, 2, ...f k f kG k= + =  (13) 

If N0 is the number of counts obtained in the first 
measurement (for k = 0), the iteration process continues 
until a frequency fm is found (for k = m) such that the 
number of counts becomes N0 + 1 (note that m represents 
the number of steps performed in the iteration): 

0( ) .mf f m f mG= = +  

The iterative procedure is illustrated in Figure 3 for a case in 
which the counter value in the first measurement is N0 = 1 
and becomes 2 after m = 5 iterations. Then, the ToF is 
estimated as the average between (N0 + 1)Tm and  
(N0 + 1)Tm–1, that is 

( )
( )0

21 ,
2

m
e

m m

f GT N
f f G

−
= +

−
 (14) 

whereas the distance is computed according to equation (2), 
as de = Tec / 2. 

The time resolution τ+ that can be obtained with this 
approach is given by the following Lemma. 

Lemma 1: If N0 is the number of counts got in the first 
measurement, the time resolution τ+ achieved with the F-inc 
method, using a frequency gap G, is given by 

( )
( )
0

0 0

1 .N Gτ
f f G

+ +
=

+
 (15) 

 

The time resolution can be computed by assuming the 
worst-case situation in which, at step m – 1, the rising edge 
arrives just after the stop signal, as illustrated in Figure 4, 
where for convenience only the clock rising edges are 
shown. 

Figure 3 Example of iterative measurements with the F-inc 
method (see online version for colours) 

 

Figure 4 Time resolution τ+ achievable by F-inc (see online 
version for colours) 

 

In this situation, in fact, at step m, the rising edge moves to 
the left (at time te) by the largest amount. Hence, it results 
that 

( )0 0 01 1 1
( 1) ( ) ( 1) ( )r e
N N N Gτ t t

f m f m f m f m
+ + + +
= − = − =

− −
 

and from equation (13), we get: 

( )
( )( )

0

0 0

1 .N Gτ
f mG G f mG

+ +
=

+ − +
 

We now observe that τ+ decreases with the value of m, as 
also shown in Figure 5, hence, the largest value for τ+ occurs 
for the minimum value of m, that is, after the first increment 
(m = 1). Thus, the lemma follows.            

Figure 6 reports the aforementioned phenomenon in a 
graphical way showing how the time resolution τ+ varies as 
a function of the reference frequency f0 for different values 
N0 of the counter (in this graph G is equal to 10 MHz). 

The maximum number of steps M required by F-inc can 
be found considering the worst-case situation in which in 
the first measurement at frequency f0 the stop signal arrives 
just after the th

0N  raising front, as depicted in Figure 7. In 
this case, the frequency fM causing the counter increment is 
such that 
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0 0

0

1
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that is 

0
0

0

1
M

Nf f
N
+

=  

and since fM = f0 + MG, it results that 

0

0
.fM

N G
⎡ ⎤= ⎢ ⎥⎢ ⎥

 (16) 

Note that, the value of M depends on the target distance 
(through the counter value N0), thus in the worst case the 
maximum number of steps performed by the F-inc method 
will occur for the minimum counter value (N0 = 1) and is 
given by 

0 .fM
G

⎡ ⎤= ⎢ ⎥⎢ ⎥
 (17) 

Figure 5 The time resolution τ+ decreases as the frequency 
increases (see online version for colours) 

 

Figure 6 Maximum timing error ε+ as a function of the 
frequency for different counter values 

 

3.2 The F-dec method 

The F-dec method is similar to F-inc, with the difference 
that the various measures are performed using decreasing 
frequencies f(k) obtained by decrementing the previous one 
by a constant gap factor G: 

0( ) , 0, 1, 2, ...f k f kG k= − =  (18) 

 

Figure 7 Worst-case scenario determining the maximum  
number of steps for the F-inc method (see online 
version for colours) 

 

If N0 is number of counts obtained in the first measurement 
(for k = 0), the iteration process continues until a frequency 
fm is found (for k = m) such that the number of counts 
becomes N0 – 1 (note that m represents the number of steps 
performed in the iteration): 

0( ) .mf f m f mG= = −  

The time resolution τ– that can be obtained with this 
approach is given by the following lemma. 

Lemma 2: If N0 is the number of counts got in the first 
measurement, the time resolution τ– achieved with the F-dec 
method, using a frequency gap G, is given by 

( )
( )

2
0

0 0 0 0

1 .N Gτ
f f N GN G

− +
=

− −
 (19) 

The largest timing error can be computed by assuming the 
worst-case situation in which that, at step m – 1, the rising 
edge arrives just before the stop signal, as illustrated in 
Figure 8. In this situation, in fact, at step m the rising edge 
moves to the right (at time te) by the largest amount. 

Figure 8 Timing resolution τ– achievable by F-dec (see online 
version for colours) 

 

From the situation depicted in Figure 8, it results that 

0 0 0

( ) ( 1) ( ) ( 1)e r
N N N Gτ t t

f m f m f m f m
− = − = − =

− −
 

and from equation (18), we get: 

( )( )
0

0 0
.N Gτ

f mG f mG G
− =

− − +
 (20) 

We now observe that τ– increases with the value of m, so the 
worst-case error can be derived by assuming the maximum 
value for m. The largest value of m (compatible with the 
value N0 counted on the first measurement) is given by the 
case illustrated in Figure 9, in which the clock rising edge 
located just before the stop signal, at frequency f0, is shifted 
by exactly one period 1 / f0 in m – 1 steps, thus moving from 
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time tp = N0 / f0 to time tr, almost equal to (N0 + 1) / f0. 
Hence, the highest value of m can be found by imposing 
that 

0 0 0

0 0 0

1 1,
( 1)
N N N

f m f f f
+

= + =
−

 

and from equation (18) we get: 

10

0
.

1
fmG G

N
= +

+
 

Substituting this value of mG in equation (20) the lemma 
follows.               

Figure 9 Worst-case situation considered in Lemma 2  
(see online version for colours) 

 

The maximum number of steps M required by F-dec can be 
found considering the worst-case situation in which in the 
first measurement at frequency f0 the stop signal arrives just 
before the (N0 + 1)th raising front, as depicted in Figure 10. 
In this case, the frequency fM causing the counter decrement 
is such that 

0 0

0

1
M

N N
f f

+
=  

that is 

0
0

0 1M
Nf f

N
=

+
 

and since fM = f0 – MG, it results that 

( )
0

0
.

1
fM

N G
⎡ ⎤= ⎢ ⎥+⎢ ⎥

 (21) 

Figure 10 Worst-case scenario determining the maximum 
number of steps for the F-dec method (see online 
version for colours) 

 

3.3 Comparison 

Using the results of Lemma 1 and Lemma 2, the following 
theorem proves that the maximum timing error achieved by 
F-inc is always smaller than that achieved by F-dec. 

Theorem 3: For any reference clock frequency f0 and gap 
value G, the worst-case error achieved by F-inc is always 
smaller than the worst-case error achieved by F-dec. 

Taking the ratio of the resolutions derived in Lemma 1 and 
Lemma 2, we have: 

0
0

0

0

1 .

Nf G
τ N
τ f G

+

−

−
+=
+

 (22) 

Being 0

0
1

1
N

N
<

+
 for any integer count N0, we can write 

0
0

0 00

0 0 0

1 1.

Nf G
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τ f G f G f G

+

−

−
− ++= < < =
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Thus, the theorem follows.            

Since F-inc is better than F-dec, the rest of this section 
illustrates how to determine the frequency gap G for 
achieving a desired spatial resolution σ and how to estimate 
the maximum number of steps. 

It is worth observing that while the time resolution of a 
single-shot measure is only a function of the clock 
frequency (τ = 1 / f0), the time resolution τ+ achieved by the 
F-inc method, expressed by equation (15), depends on both 
N0 (i.e., the target distance) and the gap factor G. In 
particular, if both methods use the same clock frequency f0, 
the F-inc method improves the single-shot measure if 

( )
( )
0

0 0 0

1 1N G
f f G f

+
<

+
 

that is, if 

0

0
.fG

N
<  (23) 

Since N0 depends on the distance, to guarantee a resolution 
improvement for any possible target distance, equation (23) 
must hold for any value of N0, and in particular for the value 
Nmax corresponding to the maximum distance dmax. The 
value Nmax can be derived from equation (12) and is given 
by 

0
max max

2 .fN d
c

=  (24) 

Substituting equation (24) into equation (23) we get 

max
.

2
cG

d
<  (25) 

Equation (25) imposes a condition on the maximum gap 
factor Gmax for guaranteeing a resolution improvement by 
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the F-inc method with respect to the single-shot 
measurement, so we can write 

max
max

.
2

cG
d

=  (26) 

4 Improved method 

This section presents an improved method which allows 
reducing the number of steps and achieving a constant 
timing error ε independent of the step value. 

Let f0 be the reference frequency used in the first 
measure and let N0 be the corresponding value of the clock 
counter. From the example illustrated in Figure 11, it is easy 
to see that in the worst case in which the stop signal arrives 
at time tr, just after N0 clock periods T0, the maximum clock 
frequency fm that has to be generated to achieve an 
increment of the clock counter is such that (N0 + 1)Tm = 
N0T0, that is: 

0
0

0

1 .m
Nf f

N
+

=  (27) 

Figure 11 Increasing the frequency to achieve a constant error 
τ– (see online version for colours) 

 

The idea behind the improved method is to divide the time 
interval [N0T0, (N0 + 1)T0] into an integer number of m equal 
subintervals of size τ equal to the desired time resolution so 
that, at any step k, the (N0 + 1)th clock rising edge at 
frequency fk reduces exactly by τ with respect to the 
previous step. This means that, after k steps from the initial 
measure, the (N0 + 1)th rising edge of the clock at frequency 
fk is located at time 

( ) ( )0 0 01 1 .kN T N T kτ+ = + −  

Hence, the clock period at step k is 

0
0 1k
kτT T

N
= −

+
 (28) 

and the clock frequency at step k is 

0

0
0

.
1

1

k
ff
kτ f

N

=
⎛ ⎞− ⎜ ⎟+⎝ ⎠

 (29) 

Note that for k = 0, equation (29) gives fk = f0, and for k = m 
(being mτ = T0 = 1 / f0) it gives the expression for fm found 
in equation (27). 

If the measuring refining policy starts from the reference 
frequency f0 and generates the subsequent frequencies by 
increasing k one by one, it is clear that the maximum 
number M of measures needed to find the counter increment 
from N0 to N0 + 1 is exactly m (as shown in the example 
illustrated in Figure 11). 

By using a bisection method, however, the maximum 
number of steps can be significantly reduced and becomes 

2log .M m= ⎡ ⎤⎢ ⎥  (30) 

In this case, if the interval T0 is divided in a number of 
subintervals equal to a power of 2, (e.g., m = 2a), then the 
maximum number of measures needed to find the counter 
increment is M = a. 

Considering that the spatial resolution σ is related to the 
time resolution τ by the following relation [see also equation 
(9)[ 

,
2
cσ τ=  

then, the number m of intervals into which T0 has to be 
divided can be expressed as a function of the desired spatial 
resolution σ: 

0

0
.

2
T cm
τ f σ

⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
 (31) 

Substituting equation (31) into equation (30), it results that 
the maximum number of steps needed to perform the 
measurement with a resolution σ is 

2
0

log .
2

cM
f σ

⎡ ⎤⎡ ⎤= ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

 (32) 

To appreciate the advantage of the bisection method, 
suppose that a spatial resolution σ = 10 cm is required for a 
given application. According to equation (10), the clock 
frequency required to achieve this resolution with a  
single-shot measure is 

8

0 1

3 10 1.5 GHz.
2 2 10
cf
σ −

⋅
= = =

⋅
 

Applying the F-inc method, the same resolution can be 
achieved with a reference clock frequency f0 = 100 MHz, 
and a maximum gap factor G = 1.5 MHz, computed by 
equation (26), but up to 67 measurements may be needed, as 
stated by equation (17). Using the bisection method, 
however, equation (32) tells us that a spacial resolution of  
σ = 10 cm can be achieved with same frequency with a 
maximum number of measures equal to M = ⎡log2 15⎤ = 4. 

It is worth mentioning that while the resolution in the  
F-inc and F-dec methods depends upon the target distance 
(through N0 and G), the improved bisection-based method is 
independent of the target distance. In this method, the 
resolution is an input parameter specified by the user that 
affects the number of measuring steps (M), as clear from 
equation (32). 
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The algorithm for implementing the bisection method is 
presented in the next section. 

5 Algorithm 

This section describes the algorithm for carrying out the 
measures according to the bisection method. Since now the 
frequency does not monotonically increase with the step 
index k, let s0, s1, …, sM be the sequence of M steps 
performed by the algorithm, and let f(s0), f(s1), …, f(sM) be 
the corresponding frequencies selected at each step. At step 
s0, the first measure is always performed at the reference 
frequency f(s0) = f0, storing the number of clock counts in 
the variable N0. At step s1, the measure is always performed 
at a frequency f(s1) = fk such that k = m / 2, so dividing the 
search interval in two equal parts: 
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2 1

ff s
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=
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If with the frequency f(s1) the clock counter is still N0, then 
the next frequency f(s2) has to be increased at the value  
k = m / 2 + m / 4, otherwise it has to be decreased at the 
value k = m / 2 – m / 4. 

In general, if b denotes the size of the next time 
increment (measured in τ units), such a value must be 
divided by two at each step, while the index k of the 
frequency to be used at the next step can be computed as  
k = k + b, if the clock counter N of the current measure is 
found to be N0, and as k = k – b, otherwise. By defining an 
auxiliary variable s that takes the value 1, if N is equal to N0, 
and –1 otherwise, the next step can be computed as k = k + s 
∗ b. 

Note that after the last measure f(sM), two cases can 
occur, as illustrated in Figure 12. In the first case, denoted 
as case (a), the stop signal arrives at time tr, just before the 
(N0 + 1)th raising front of the clock at frequency f(sM); 
hence, tr is within the interval [(N0 + 1)Tk – τ, (N0 + 1)Tk], so 
that the estimated ToF can be computed as 

0 1 .
2e

k

N τT
f
+

= −  

In the second case, denoted as case (b), the stop signal 
arrives at time tr, just after the (N0 + 1)th raising front of the 
clock at frequency f(sM); hence, tr is located within the 
interval [(N0 + 1)Tk, (N0 + 1)Tk + τ], so that the estimated 
ToF can be computed as 
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N τT
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= +  

Now, noting that in case (a) s = –1 and in case (b) s = 1, the 
estimated ToF can be computed in both cases as 

0 1 .
2e

k

N τT s
f
+

= +  (33) 

Figure 12 After the last measurement, the stop signal is found 
(a) before the (N0 + 1)th front if N = N0, and (b) after 
if N = N0 + 1 (see online version for colours) 

 
(a) 

 
(b) 

The algorithm that implements the sequence of measures 
using the bisection method is shown in Figure 13. 

Figure 13 Pseudocode of the algorithm exploiting the bisection 
method 

 

The algorithm takes as input the reference clock frequency 
f0 and the desired spatial resolution σ and returns the 
estimated distance to the target. The algorithm keeps track 
of the search interval through the variable b, which encodes 
the interval size in number of units (one unit is equal to the 
time resolution τ). The frequency fk is computed as a 
function of the index k according to equation (29), where k 
varies from 0 to m. Then, a sign flag s is used to 
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discriminate between case (a) (s = –1) and case (b) (s = 1). 
At the beginning, b is initialised to the value of m given by 
equation (31) (corresponding to the full interval T0 = mτ), k 
is initialised to 0 (that is f0), and s to 1. Note that within the 
while loop the interval is divided by 2 at each step, so the 
loop ends when b ≤ 1, performing at most ⎡log2m⎤ 
iterations. Then the algorithm estimates the ToF according 
to equation (33) and finally computes the distance d 
according to equation (2). 

6 Experimental results 

This section reports a set of experiments aimed at evaluating 
the performance of the proposed measurement methods. All 
the results shown in the graphs are obtained by simulation 
using the following procedure: 

1 For a given target distance d, the stop delay interval Tr 
is computed by equation (1) as Tr = 2d / c. 

2 For a given reference clock frequency f0, the counter 
value is then computed as N0 = ⎣Trf0⎦. 

3 Depending on the specific tested method (F-inc or 
bisection), a sequence of measuring steps is performed 
at different clock frequencies and, for each frequency f, 
the counter value is computed as N = ⎣Trf⎦, until the 
number of counts increases by one with respect to N0. 
The number m of measuring steps and the final 
frequency fm are stored in two corresponding variables. 

4 The estimated ToF Te is computed by equation (14) for 
the F-inc method and by equation (33) for the bisection 
method. 

5 Finally, the target distance is estimated by equation 
(14) as de = Tec / 2. 

To have a reference to compare with, Figure 14 shows the 
spatial error achievable with a single-shot measure as a 
function of the clock frequency, for a target located at 20 m. 
Note that the actual error can potentially varies from 0 (in 
the best case in which the target is at a distance such that the 
ToF is multiple of T0) to the maximum timing error εmax 
given by equation (9). Note that in a single-shot measure, 
the maximum error εmax is not affected by the target 
distance, but only depends on the clock frequency. 

A second experiment was carried out to evaluate how 
the spatial error εd of the F-inc method varies as a function 
of the gap factor G. This test was performed for three 
different clock frequencies (50 MHz, 100 MHz, and  
200 MHz) and the maximum target distance was set at  
dmax = 20 m. The results are reported in Figure 15. Note 
that, under this setting, the maximum gap factor that 
guarantees a resolution improvement of the F-inc  
method with respect to a single-shot measure is equal to 
Gmax = 7.5 MHz, according to equation (25). 

 

 

Since the error in the F-inc method also depends on the 
target distance, another test was performed to measure the 
spatial error εd = |d – de| as a function of the distance, for 
different gap factors (1 MHz, 3 MHz, 5 MHz, and 7 MHz), 
fixing the clock frequency at 100 MHz. The result of this 
test is reported in Figure 16. 

Figure 14 Spatial error achievable with a single measure as a 
function of the clock frequency 

 

Figure 15 Spatial error of the F-inc method as a function of the 
frequency gap G, for different reference clock 
frequencies (see online version for colours) 

 

Figure 16 Spatial error of the F-inc method as a function of the 
target distance, for different gap values 

 

A third experiment was performed to see how the gap factor 
and the number of steps are affected by the clock frequency 
in the F-inc method, for different resolutions. In particular, 
Figure 17 shows how the gap factor G should be set at a 
given clock frequency to achieve a desired resolution σ, 
whereas Figure 18 shows the corresponding number of steps 
required by F-inc for specific (f0, σ) values. 
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A fourth experiment was performed to monitor the 
number of steps required by the F-inc and the bisection 
method as a function of the clock frequency. Figure 19 plots 
the results obtained by setting a resolution σ = 1 cm. Note 
that the F-inc method becomes impractical for clock 
frequencies lower than 750 MHz, requiring too many 
measuring steps, whereas the bisection method is still very 
effective at frequency of 50 MHz, requiring only nine steps. 

Figure 17 Gap factor as a function of f0 to achieve a desired 
resolution σ under F-inc 

 

Figure 18 Number of steps required by F-inc as a function of f0 
for different resolutions 

 

Considering the effectiveness of the improved algorithm, 
Figure 20 shows the number of steps achieved by the 
bisection method on a larger scale factor for different 
resolutions. 

Figure 19 Number of steps achieved by the F-inc and bisection 
methods as a function of the clock frequency 

 

Figure 20 Number of steps achieved by the bisection method as 
a function of the clock frequency. 

 

7 Conclusions 

This paper presented three distance measurement  
methods for counter-based laser rangefinders that allow 
achieving high-resolution measurements by using relatively 
low-frequency reference clocks. In all the three approaches, 
the resolution is improved at the cost of an increased 
measurement time by iteratively performing a sequence of 
coarse measurements at slightly difference frequencies, 
where each frequency is selected as a function of the 
previous measure. In the first two methods (denoted as  
F-inc and F-dec), the reference frequency is monotonically 
increased or decreased by a constant gap factor, until the 
number of counts increases or decreases by one. 

Although these two approaches are simpler to 
implement, they exhibit the following problems: 

• The spatial error is not constant, but varies with the 
progress of measures; in particular, it decreases under 
F-inc and increases under F-dec. 

• For a given spatial resolution σ, the number of 
measures is not constant, but varies from 1 up to a 
maximum number M, given by equation (17), 
depending on the specific target distance. 

• To achieve spatial resolutions in the order of 
centimetres with a clock frequency no higher than  
100 MHz, the number of measures becomes too high 
(greater than 100), since M is a hyperbolic function of 
σ. 

To overcome these problems, the third method proposed in 
this work exploits a binary search procedure to quickly 
estimate the distance to the target in a reasonably low 
number of steps. In this approach, the clock frequency is not 
varied monotonically with the steps, but it is properly 
selected based on the previous measure. As a result, the 
number of steps required to achieve a desired spatial 
resolution σ does not depend on the target distance and is 
equal to the value provided by equation (32). 

Finally, it should be mentioned that while a single-shot 
measurement takes a fraction of a microsecond (e.g., 
approximately 0.1 μs for a target at a distance of 15 m), the 
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measuring time required by the proposed bisection method 
is still in the range of microseconds, considering that the 
same resolution is achieved by fewer steps, which is quite 
below the human perception sensitivity. 

In conclusion, the proposed methods, in particular the 
one based on bisection, enables the development of laser 
rangefinders using low-frequency components, thus 
reducing the cost without sacrificing the spatial resolution. 
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