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I. INTRODUCTION

So far, all reservation servers have been defined and implemented using an implicit deadline, meaning that the server budget
can be consumed anywhere within the server period (see [1], Chapters 5 and 6). However, recent results on semi-partitioned
scheduling in multicore systems [2], [3] describe situations in which the server budget has to be consumed within a deadline
smaller than the reservation period. Using semi-partitioned scheduling some reservations are statically allocated to processors,
whereas others are splitted among multiple processors, thus involving a migration of the workload. When a reservation is
partitioned between two cores, its budget Qi is divided in two portions, Q

′

i and Q
′′

i , such that Qi = Q
′

i + Q
′′

i . An efficient
method for splitting the budget is the C=D splitting scheme [4], according to which the budget of the second reservation
is scheduled with relative deadline D

′′

i = Q
′′

i , whereas the first one is scheduled with deadline D
′

i = Ti − D
′′

i . To apply
such a splitting scheme when scheduling reservations, the corresponding servers must be designed to work under constrained
deadlines.
This paper focuses on resource reservation in deadline-based systems and formulates the open problem of extending the
Hard Constant Bandwidth Server [5] (H-CBS) to work with a deadline less than or equal to its period, in such a way to
guarantee a desired reservation bandwidth within a bounded service delay. The H-CBS is based on earliest-deadline first
(EDF) scheduling and is one of the most used algorithm for implementing resource reservation in deadline-based operating
systems, also adopted in the Linux kernel to implement the SCHED DEADLINE scheduling class [6]. It extends the Constant
Bandwidth Server (CBS) [7] by introducing the concept of hard-reservation, according to which, once the budget is depleted,
the server is suspended until the next replenishment time. In this manner, the deadline-aging problem [8] is avoided and the
server execution becomes more regular. One of the main advantages of the H-CBS with respect to other reservation algorithms
is to provide a bounded maximum service delay ∆i = 2(Ti−Qi), which is originated when the worst-case scenario illustrated
in Figure 1 occurs. The maximum service delay ∆i and the bandwidth αi constitute an alternative interface for tuning the
reservation parameters (Qi, Ti). However, the algorithm was designed to work with an implicit-deadline Di equal to its period
Ti.
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Figure 1: H-CBS: Worst Case Delay
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Fig. 1. Maximum service delay considering the H-CBS server, which assumes D = T . The worst-case scenario includes two consecutive instances of the
server: in the first one, the server provides all its budget at the beginning of the instance, while in the second one the server provides all its budget as later
as possible such that the server schedulability is not violated. If workload running upon the server (e.g., a task) arrives after the first instance is completed,
then it experiences the maximum service delay of ∆ time units.

The H-CBS provides a specific scheduling rule to guarantee the maximum service delay ∆i = 2(Ti−Qi), which deals with
the scenario in which the server is idle and new pending workload to be executed arrives. When at time t a job arrives (i.e.,
the server starts having pending workload) and the H-CBS is idle, a replenishment time is computed as tr = di − qi

αi
, where

qi is the server budget that is available at time t. Then, if t < tr the server is suspended until time tr, where the budget is
replenished and the absolute deadline is postponed to time tr + Ti; otherwise, the budget is immediately replenished and the
absolute deadline is postponed to t+ Ti. The deadline assignment performed by such a rule exploits the notorious property of
EDF scheduling that allows guaranteeing the server schedulability by only reasoning in terms of bandwidths.

Assuming constrained deadlines, this H-CBS rule cannot be used anymore: indeed, the replenishment time tr (and the
corresponding deadline postponement to tr +Ti) strictly relies on the bandwidth of the server, which—as commonly known—
is not enough to ensure the schedulability under EDF in the presence of constrained deadlines. Consequently, the maximum
service delay of the worst-case scenario illustrated in Figure 1 (which would be ∆i = Ti +Di − 2Qi) cannot be guaranteed
by the current H-CBS scheduling rules.

A naive solution for extending the H-CBS in the presence of constrained deadlines is to discard the budget when the server
becomes idle and set the replenishment time as tr = kTi with k ∈ N≥0. However, in this way the maximum service delay is
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much worse than Ti +Di − 2Qi. In fact, consider the scenario shown in Figure 2. The server begins its execution in the first
period with a pending workload of ε units of time, with ε arbitrary small. After executing ε units of budget, the server becomes
idle and discards the budget. Then, immediately after, a new task arrives, but the server has just discarded its budget—so it
must wait for the next period. Finally, in the worst-case the server might be scheduled at the end of the following period, thus
resulting in a total delay ∆i = Ti + (Di −Qi). Therefore, the following questions arise:

1) How we can obtain a new algorithm H-CBS-CD (H-CBS with Constrained Deadline)?
2) How to modify the replenishment rules for obtaining a better maximum-service delay?
3) Is it possible to achieve a maximum service delay equal to ∆i = Di + Ti − 2Qi?
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Fig. 2. Maximum service delay considering a naive solution for implementing H-CBS with D < T .

Other issues arise when considering resource sharing among tasks scheduled by different reservations. In this case, additional
server rules are desirable to avoid budget exhaustions within critical sections, e.g., as done by the BROE [9] server (and in the
corresponding version for multiprocessor platforms, M-BROE [10]). BROE extends the H-CBS and employs new scheduling
rules that perform deadline postponements based on the server bandwidth: for the same reasons discussed above, such rules
cannot be used in the presence of constrained deadlines. Then, another question arises: 4) How to guarantee a constrained-
deadline bounded-delay partition in the presence of shared resources?

Finally, the last issue to consider relies on how to perform admission control for new servers. Indeed, the reservation
mechanism is often used in open environments, in which software components (implemented by servers) may join the system
while the rest of the components continue to operate. Consequently, admission control has to be performed online. Considering
implicit-deadline reservations, the admission can easily be done by checking

∑
ri
Qi

Ti
≤ 1 and then waiting for a safe time at

which the new server can be admitted. Conversely, considering constrained deadlines, the schedulability test becomes more
complex and will possibly be based on the processor-demand criterion (PDC) [11], which has exponential complexity in the
worst-case. Then, it results to be unsuitable for being used online. A solution to this problem consists in approximating the
PDC, for instance using the fully polynomial-time approximation scheme (FPTAS) proposed by Fisher et al. [12]. However,
which admission control test is the most suitable for admitting a new reservation has still to be decided; also, it may be the case
that a new test must be designed to simplify the on-line scheduling rules related to deadline postponements. Hence, another
question arises: 5) Which admission control test should be used for admitting reservations?
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