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Abstract—Several task models have been introduced in the literature to describe the intrinsic parallelism of real-time activities,

including fork/join, synchronous parallel, DAG-based, etc. Although schedulability tests and resource augmentation bounds have been

derived for these task models in the context of multicore systems, they are still too pessimistic to describe the execution flow of parallel

tasks characterized by multiple (and nested) conditional statements, where it is hard to decide which execution path to select for

modeling the worst-case scenario. To overcome this problem, this paper proposes a task model that integrates control flow information

by considering conditional parallel tasks (cp-tasks) represented by DAGs with both precedence and conditional edges. For this task

model, a set of meaningful parameters are identified and computed by efficient algorithms and a response-time analysis is presented

for different scheduling policies. Experimental results are finally reported to evaluate the efficiency of the proposed schedulability tests

and their performance with respect to classic tests based on both conditional and non-conditional existing approaches.

Index Terms—Parallel scheduling, DAG tasks, response-time analysis, multiprocessor systems, real-time systems
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1 INTRODUCTION

THE availability of multi-/many-core platforms in the
embedded market [1], [2], [3], caused an increasing

interest for applications with both high-performance and
real-time requirements. Following the same trend, several
classic schedulability results have been extended to comply
with such new platforms, providing new models and tests
to guarantee the timing requirements of parallel task sys-
tems. Examples of the task models proposed to capture the
parallel structure of an application include the fork/join
model [4], the synchronous parallel task model [5], and the
DAG-based task model [6]. Each of these models divides a
task into smaller computational units, called sub-tasks,
which can run simultaneously on different cores.

As noted by Fonseca et al. [7], the problem introduced by
conditional statements is particularly significant in the sched-
ulability analysis of parallel tasks running on a multicore sys-
tem, although explicitly modeling branching structures has
been proven useful also for single-core systems to tighten the
response time of the tasks [8], [9], [10]. The problem is exacer-
bated by the presence ofmultiple conditional statements char-
acterized by brancheswith very different length. For example,
different image processing, object detection/tracking and

feature extraction algorithms are characterized by conditional
brancheswith variable sizes. As an example, hierarchical clus-
tering [11] and cascade classifiers [12] are techniques where
clusters of pixels are conditionally split/merged depending
on image features. An efficient implementation of such techni-
ques on a parallel architecture would need to conditionally
fork a variable number of parallel sub-tasks depending on
runtime information. As a result, the response-time of such a
task, as well as its interference on the other tasks, may vary
significantly from instance to instance. Therefore, identifying
the worst-case scenario that affects system schedulability the
most is a challenging issue.

An example of parallel task T0 specified according to the
OpenMP standard is illustrated in Fig. 1. The task has a con-
ditional statement at the beginning of its execution.
Depending on the conditional clause, the task can take the
upper branch, creating a sequential sub-task t1 of 10 time
units, or the lower branch, forking three sub-tasks t2; t3; t4
of 6 time units each. Note that the branch leading to the
worst-case response-time depends on the number of cores
and the interference from other tasks. For example, with
three or more cores and no interfering tasks, the largest
response-time is given by the upper branch, for every work-
conserving scheduler1 (i.e., 10 time units instead of 6). With
fewer cores, the largest response-time is given by the lower
branch (i.e., 12 time units with two cores, and 18 time units
with one core). If interfering tasks are present, the situation
is even more challenging, because the conclusions derived
above may be reversed! For example, adding a sequential
task of 6 time-units, the worst-case response-time with three
cores is given by the lower branch (12 units instead of 10).

Similarly, it is not easy to predict which branch imposes a
larger interference on the other tasks: depending on the
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1. A scheduler is work-conserving if it never idles a core whenever
there is pending workload to execute.
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characteristics of the other tasks, a higher interferencemay be
produced by a set of parallel sub-tasks or by a longer sequen-
tial sub-task. Since applications typically consists of several
nested conditional statements, the problem of mapping par-
allel applications to a task model that does not explicitly con-
sider conditional statements is very difficult to solve.

1.1 Contributions and Paper Organization

This paper extends the parallel directed acyclic graph (DAG)
model by integrating conditional constructs to provide a
tighter analysis to parallel task systems. In the proposed con-
ditional parallel task (cp-task) model, each task is represented
by a DAG containing both parallel and conditional nodes. To
capture the structure of parallel applications, a formal defini-
tion of cp-task is provided by specifying the possible connec-
tions between the various (conditional and non-conditional)
sections of the graph. For the cp-taskmodel, efficient ways to
compute an upper-bound on the response-time of each cp-
task are derived using different global scheduling algo-
rithms. The effectiveness of the proposed schedulability anal-
ysis is assessed by extensive experiments. The paper also
shows that the proposed response-time analysis can be effi-
ciently applied to non-conditional task models (such as the
DAG task model [6]). For these latter systems, experimental
results show that a significantly higher number of schedu-
lable task-sets is detected at a considerably smaller time com-
plexity, with respect to existing approaches.

The remainder of this paper is organized as follows.
Section 2 reviews the related work. Sections 3 introduces the
proposed task model and the notation used throughout the
paper. Section 4 characterizes the critical interference among
tasks, while in Section 5 we present our response-time analy-
sis and describe how to compute certain task parameters of
interest. Section 6 presents a realistic case study, and then
reports our experimental results. The conclusions are drawn
in Section 7.

2 RELATED WORK

Several parallel task models have been proposed in the real-
time literature, although most of them are limited to non-
conditional execution modes. One of the first proposals, the
fork-join task model, was introduced by Lakshmanan, Kato,
and Rajkumar [4], [13]. In this model, a task is represented as
an alternating sequence of sequential and parallel segments,
and every parallel segment has the same degree of parallel-
ism (which is constrained to be less than or equal to the num-
ber of available processors). A natural extension of this
approach is the synchronous parallelmodel [5], [14], [15], [16],
[17], allowing consecutive parallel segments and an arbitrary
degree of parallelism of every segment. Synchronization is
still enforced at the boundary of each segment, in the sense

that a sub-task in the new segment may start only after all
the sub-tasks in the previous segment have completed. A
more flexiblemodel of concurrency is theDAGmodel, where
a task is represented by a directed acyclic graph in which
nodes are sequential sub-tasks and arcs represent prece-
dence constraints between sub-tasks [6], [18], [19], [20], [21],
[22], [23], [24].

The first attempts at enriching a parallel task model with
control-flow information were proposed in the context of uni-
processor systems to provide amore accurate characterization
of the worst-case behavior of a task [8], [9], [10]. In a multicore
setting, Fonseca et al. [7] proposed the multi-DAG model,
which represents a parallel task as a collection of DAGs, each
representing a different execution flow. The authors proposed
a method to combine such flows into a single synchronous
parallel task that preserves the execution requirements and
the precedence constraints of all the execution flows that can
possibly occur at runtime, thus reducing the schedulability
problem to a simpler problem for synchronous parallel tasks.
A disadvantage of this approach is that it is not scalable with
respect to the number of sub-tasks, since the number of differ-
ent flows through a DAG can be exponential in the number of
nodes. Moreover, it adds pessimism in the task transforma-
tion process and requires server-based synchronizationmech-
anisms thatmay be difficult to implement.

The accounting of control flows is common in the field of
static program analysis. When detailed control flow infor-
mation is available, accurate approaches exist that explicitly
detect and discard infeasible execution paths, based on the
boolean properties tested inside the conditionals. However,
infeasible path detection is a difficult problem that in gen-
eral requires high-complexity machinery, such as the solu-
tion of (NP-hard) Satisfiability Modulo Theory instances
[25]. Our work, instead, focuses on reasonably fast (at the
very least, pseudopolynomial-time) algorithms for schedul-
ability analysis of conditional parallel tasks.

The same conditional parallel taskmodel proposed in this
paper was considered by Baruah [26]. However, the authors
focused on global Earliest Deadline First (G-EDF) schedul-
ing, proposing an efficient algorithm that transforms any
conditional DAG task into a non-conditional DAG task that
is “equivalent”, in the sense that it preserves the quantities
used by the existing tests for DAG tasks without conditional
statements [6], [18]. An important difference with our
approach is that our analysis method can be applied to any
work-conserving scheduler.

Most recently, Baruah [26] extended the federated sched-
uling paradigm to systems of conditional parallel tasks.

3 SYSTEM MODEL AND DEFINITIONS

This paper considers a set T ¼ ft1; . . . ; tng of n sporadic
conditional parallel tasks (cp-task) that execute upon a plat-
form consisting of m identical processors. Each cp-task tk
releases a potentially infinite sequence of jobs. Each job of tk
is separated from the next by at least Tk time-units and has
a constrained relative deadline Dk � Tk (Dk; Tk 2 N). More-
over, each cp-task tk is represented as a directed acyclic
graph Gk ¼ ðVk; EkÞ, where Vk ¼ fvk;1; . . . ; vk;nkg is a set of

nodes (or vertices) and Ek � Vk � Vk is a set of directed arcs
(or edges), as shown in Fig. 2. Each node vk;j 2 Vk represents

Fig. 1. A parallel program with conditional execution.
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a sequential chunk of execution (or “sub-task”) and is char-
acterized by a worst-case execution time Ck;j 2 N. Preemp-
tion/migration overheads and cross-core interference
(caused by contention for shared hardware components,
such as shared caches, memory buses, etc.) are considered
to be negligible. In addition, we assume that cp-tasks do not
engage in any synchronization. Arcs represent dependen-
cies between sub-tasks, that is, if ðvk;1; vk;2Þ 2 Ek, then vk;1
must complete before vk;2 can start executing. A node with
no incoming arcs is referred to as a source, while a node
with no outgoing arcs is referred to as a sink. Without loss of
generality, each cp-task is assumed to have exactly one

source vsourcek and one sink node vsinkk . If this is not the case, a
dummy source/sink node with zero WCET can be added to
the DAG, with arcs to/from all the source/sink nodes. The
subscript k in the parameters associated to the task tk is
omitted whenever the reference to the task is clear in the
discussion.

In the cp-task model, nodes can be of two types: a) regular
nodes, represented as rectangles, allow all successor nodes
to be executed concurrently; b) conditional nodes, coming in
pairs and denoted by diamonds and circles, represent the
beginning and the end of a conditional construct, respec-
tively, and require the execution of exactly one node among
the successors of the start node. The structure of allowed
cp-task graphs is formalized in the following recursive
definition.

Definition 3.1. A cp-task graph G with source v0 and sink v00 is
either:

1) (Base case) A (regular) node v, with v ¼ v0 ¼ v00;
2) (Concurrent composition) A single-source, single-

sink DAG obtained from node-disjoint cp-task graphs
G1; . . . ; Gq (with v0 the source of G1, v

00 the sink of Gq,
q � 1) by adding one or more arcs from every sink v00i
(i ¼ 1; . . . ; q � 1) to a source v0j with j > i;

3) (Conditional composition) A single-source, single-
sink DAG obtained from node-disjoint cp-task graphs
G1; . . . ; Gq and from two (conditional) nodes v0; v00 by
adding an arc from v0 to each source v0i and from each
sink v00i to v

00 (i ¼ 1; . . . ; q); in this case, ðv0; v00Þ is called
a conditional pair and eachGi a conditional branch.

Example. Fig. 2 illustrates a sample cp-task consisting of nine
sub-tasks (nodes) V ¼ fv1; . . . ; v9g and twelve precedence
constraints (arcs). The number inside each node represents
its WCET. Two of the nodes, v2 and v6, form a conditional

pair, meaning that only one sub-task between v3 and v4 will
be executed (but never both), depending on a conditional
clause. To see why the graph in Fig. 2 satisfies the definition
of a cp-task graph, one can reason as follows. The two regu-
lar nodes v3 and v4 fit the base case of the definition; each of
them forms a cp-task graph. We conditionally compose
them with the conditional pair ðv2; v6Þ to form a cp-task
graph H on nodes v2; v3; v4; v6 (with source v2 and sink v6).
Each other regular node (v1, v5, v7, v8, v9) is also a cp-task
graph; call Gi the graph corresponding to vi for
i 2 f1; 5; 7; 8; 9g. Finally, we apply concurrent composition
to the sequence G1, G5, H, G7, G8, G9 to obtain the cp-task
graph in Fig. 2. In particular, arcs representing precedence
constraints are added fromG1 toG5 andH, fromG5 andH
toG7 andG8, and fromG7 andG8 toG9.

We also define a chain or path of a cp-task tk as a sequence
of nodes � ¼ ðvk;a; . . . ; vk;bÞ such that ðvk;j; vk;jþ1Þ 2 Ek,
8j 2 ½a; bÞ. The length of a chain of tk, denoted by lenð�Þ, is
the sum of the WCETs of all its nodes, that is,

Pb
j¼a Ck;j. A

longest path of a cp-task is any source-sink path of the task
that achieves the longest length.

Definition 3.2. The length of a cp-task tk, denoted by Lk, is the
length of any longest path of tk.

Note that Lk also represents the minimum worst-case
execution time of cp-task tk, that is, the time required to exe-
cute it when the number of processing units is sufficiently
large (potentially infinite) to allow the task to always exe-
cute with maximum parallelism. A necessary condition for
the feasibility of a cp-task tk is thus Lk � Dk.

In the absence of conditional branches, the classical spo-
radic DAG task model defines the volume of the task as the
worst-case execution time needed to complete it on a dedi-
cated single-core platform [6], [18], [19], [22]. This quantity
can be computed as the sum of the WCETs of all the sub-
tasks, that is

P
vk;j2Vk Ck;j. In the presence of conditional

branches, assuming that all sub-tasks are always executed is
overly pessimistic. Hence, the concept of volume of a cp-
task is generalized by introducing the notion of worst-case
workload. Section 5.3 explains in detail how the worst-case
workload of a task can be computed efficiently.

Definition 3.3. Theworst-case workloadWk of a cp-task tk is
the maximum time needed to execute an instance of tk on a ded-
icated single-core platform, where the maximum is taken among
all possible choices of conditional branches.

The utilization Uk of a cp-task tk is the ratio between its
worst-case workload and its period, that is, Uk ¼Wk=Tk.
For the task-set T , its total utilization is defined as

UT ¼
Pn

i¼1 Ui. A simple necessary condition for feasibility is

UT � m.
In the example of Fig. 2, the length (longest path) is

L ¼ 8, and is given by the chain ðv1; v2; v4; v6; v7; v9Þ. Its
volume is 14 units, while its worst-case workload must take
into account that either v3 or v4 are executed at every task
instance. Since v4 corresponds to the branch with the largest
workload,W ¼ 11.

The notation used throughout the paper is summarized
in Table 1.

Fig. 2. A sample cp-task. Each vertex is labeled with the WCET of the
corresponding sub-task.
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4 CRITICAL INTERFERENCE OF CP-TASKS

This section presents a schedulability analysis for cp-tasks
globally scheduled by any work-conserving scheduler. The
analysis is based on the notion of interference. In the existing
literature for globally scheduled sequential task systems,
the interference on a task tk is defined as the sum of all
intervals in which tk is ready, but cannot execute because
all cores are busy executing other tasks. We modify this def-
inition to adapt it to the parallel nature of cp-tasks, by intro-
ducing the concept of critical interference [16], [17].

Fix a set of cp-tasks T and a work-conserving scheduler.
The first useful notion is that of a critical chain of a task.

Definition 4.1. The critical chain ��k of a cp-task tk is the chain
of nodes of tk that leads to its worst-case response-time Rk (in
case of ties, fix one such chain arbitrarily).

The critical chain of cp-task tk is in principle determined

by taking the sink vertex vsinkk of the worst-case instance of tk
(i.e., the job of tk that has largest response-time in the worst-
case scenario), and recursively pre-pending the last to com-
plete among the predecessor nodes (whether conditional or
not), until the source vertex vk;1 has been included in the
chain. A critical node of task tk is a node that belongs to tk’s
critical chain. Since the response-time of a cp-task is given
by the response-time of the sink vertex of the task, the sink
node is always a critical node. For deriving the worst-case
response-time of a task, it is then sufficient to characterize
the maximum interference suffered by its critical chain.

Definition 4.2. The critical interference Ik on task tk is defined
as the cumulative time during which some critical nodes of the
worst-case instance of tk are ready, but do not execute because
all cores are busy.

Lemma 4.1. Given a set of cp-tasks T scheduled by any work-
conserving algorithm on m identical processors, the worst-case
response-time Rk of each task tk satisfies

Rk � lenð��kÞ þ Ik: (1)

Proof. Let rk be the release time of the worst-case instance
of tk. In the scheduling window ½rk; rk þRk	, the critical
chain requires at most lenð��kÞ time-units to complete. By
Definition 4.2, at any time in this window in which tk
does not suffer critical interference, some node of the criti-
cal chain is executing. Therefore Rk � Ik � lenð��kÞ. tu

The difficulty in using Equation (1) for schedulability anal-
ysis is that the term Ik may not be easy to compute. An estab-
lished solution is to express the total interfering workload as
a function of individual contributions of the interfering tasks,

and then upper-bound such contributions with the worst-
case workload of each interfering task ti. In the following, we
explain how such interfering contributions can be computed,
and how they relate to each other to determine the total inter-
feringworkload.

Definition 4.3. The critical interference Ii;k imposed by task ti
on task tk is defined as the cumulative workload executed by
sub-tasks of ti while a critical node of the worst-case instance of
tk is ready to execute but is not executing.

Lemma 4.2. For any work-conserving algorithm, the following
relation holds:

Ik ¼
1

m

X
ti2T

Ii;k: (2)

Proof. By the work-conserving property of the scheduling
algorithm, whenever a critical node of tk is interfered, allm
cores are busy executing other sub-tasks. The total amount
of workload executed by sub-tasks interfering with the
critical chain of tk is then mIk. Hence,

P
ti2T Ii;k ¼ mIk,

and by reordering the terms, the lemma follows. tu

Note that when i ¼ k, the critical interference Ik;k may
include the interfering contributions of non-critical sub-
tasks of tk on itself, that is, the self-interference of tk.

By combining Equations (1) and (2), the response-time of
a task tk can be bounded as

Rk � lenð��kÞ þ
1

m
Ik;k þ

1

m

X
ti2T ;i 6¼k

Ii;k: (3)

5 RESPONSE-TIME ANALYSIS

In this section we derive an upper-bound on the worst-case
response-time of each cp-task using Equation (3). To this
aim we need to bound the interfering contributions Ii;k. In
the sequel, we first consider the inter-task interference
(i 6¼ k) and then the intra-task interference (i ¼ k).

5.1 Inter-Task Interference

We follow the approach adopted in [17], [27], that divides
the contribution to the workload of an interfering task ti in
a window of interest between carry-in, body, and carry-out
jobs. The carry-in job is the first instance of ti that is part of
the window of interest and has release time before and
deadline within the window of interest. The carry-out job is
the last instance of ti executing in the window of interest,
having a deadline after the window of interest. All other
instances of ti are named body jobs.

For sequential task-sets, an upper-bound on the work-
load of an interfering task ti within a window of length L
occurs when the first job of ti starts executing as late as pos-
sible (with a starting time aligned with the beginning of the
window of interest) and later jobs are executed as soon as
possible [27] (see Fig. 3).

For cp-task systems, it is more difficult to determine a
configuration that maximizes the carry-in and carry-out
contributions. In fact:

1) Due to the precedence constraints and different
degree of parallelism of the various execution paths

TABLE 1
Notation

T set of cp-tasks n number of tasks in T
tk kth task of T Dk relative deadline of tk
Tk period of tk Gk DAG associated to tk
Vk node set of Gk Ek arc set of Gk

vk;j jth sub-task of tk Ck;j WCET of vk;j
Lk length of tk’s longest chain Wk worst-case workload of tk
��k critical chain of Gk Uk utilization of tk
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of a cp-task, it may happen that a larger workload is
executed within the window if the interfering task
is shifted left, i.e., by decreasing the carry-in and
increasing the carry-out contributions. This happens
for example when the first part of the carry-in job has
little parallelism, while the carry-out part at the end
of the window contains multiple parallel sub-tasks.

2) A sustainable schedulability analysis [28] must guar-
antee that all tasks meet their deadlines even when
some of them execute less than the worst-case. For
example, one of the sub-tasks of an execution path of
a cp-task may execute for less than its WCET Ci;j.
This may lead to larger interfering contributions
within the window of interest (e.g., a parallel section
of a carry-out job is included in the window due to an
earlier completion of a preceding sequential section).

3) The carry-in and carry-out contribution of a cp-task
may correspond to different conditional paths of the
same task, with different levels of parallelism.

To circumvent the above issues, we consider a scenario in
which each interfering job of task ti executes for its worst-
case workload Wi, i.e., the maximum amount of workload
that can be generated by a single instance of a cp-task. We
defer the computation of Wi to Section 5.3. The next lemma
provides a safe upper-bound on the workload of a task ti
within a window of interest of length L.

Lemma 5.1. An upper-bound on the workload of an interfering
task ti in a window of length L is given by

WiðLÞ ¼def dðLþRi �Wi=mÞ=Tie 
Wi:

Proof. Consider a situation in which all instances of ti exe-
cute for their worst-case workloadWi, evenly distributing
the workload among the m cores, as in Fig. 4. The worst-
case scenario is obtained when the carry-in job is executed
as late as possible, and later jobs execute as soon as they
are released, with their minimum inter-arrival time. Con-
sider a problem window of length L aligned with the start
of the execution of the carry-in job. Shifting left/right the
window by � cannot possibly increase the contributed
workload, nor does it distributing the workload on a
lesser number of cores. Consider the enlarged window of
length LþRi �Wi=m that is aligned with the release of
the carry-in job: an upper-bound on the number of instan-
ces that may execute within such a window is
dðLþRi �Wi=mÞ=Tie; each one contributing for Wi. This
also applies to the (smaller) original window of interest. tu

When using global EDF, another upper-bound on the
interfering contribution of each task is obtained by noting
that the deadline of the interfering jobs cannot be later than
that of the interfered task.

Lemma 5.2. An upper-bound on the interfering workload of a
task ti on a task tk with global EDF is given by

I i;k ¼def dðDk �Di þRiÞ=Tie 
Wi:

Proof. Consider a window ½rk; rk þDk	 of a task tk. The
interfering contribution of a task ti is maximized when
the deadline of its carry-out job is aligned with rk þDk,
and all instances execute as late as possible. Indeed, a
later deadline would decrease ti’s contribution by a full
(carry-out) instance, against a potential increase in the
carry-in contribution that would not be higher; similarly,
an earlier deadline could only decrease the contribution
of the previous instances.

Since the response time of ti is Ri, the last instance of
ti cannot execute between rk þDk � ðDi �RiÞ and
rk þDk. We compute the number of jobs that may exe-
cute in the window ½rk; rk þDk � ðDi �RiÞ	, which is
upper-bounded by dðDk � ðDi �RiÞÞ=Tie. Since each
instance contributes at most Wi to the interfering work-
load, the lemma follows. tu

5.2 Intra-Task Interference

We now consider the remaining terms of Equation (3),
which take into account the contribution of the considered
task to its overall response-time, and we compute an upper-
bound on Zk ¼def lenð��kÞ þ 1

m Ik;k.

Lemma 5.3. For a constrained deadline cp-task system scheduled
with any work-conserving algorithm, the following relation
holds for any task tk:

Zk ¼ lenð��kÞ þ
1

m
Ik;k � Lk þ

1

m
ðWk � LkÞ: (4)

Proof. Since we are in a constrained deadline setting, a job
will never be interfered by other jobs of the same task.
Recalling that Wk is the maximum possible workload
produced by a job of cp-task tk, note that Wk �
Lk � lenð��kÞ. Consider the choice of conditional branches
that yields the response time of tk and let W �

k be the cor-
responding workload of tk; then W �

k �Wk by Definition
3.3. Moreover, Ik;k þ lenð��kÞ �W �

k , since no node in ��k
can contribute to Ik;k and vice versa. Thus, Ik;k �
Wk � lenð��kÞ, that is, the portion of Wk that may interfere
with the critical chain ��k is at most the nonnegative
quantity Wk � lenð��kÞ. Hence,

Fig. 3. Worst-case scenario to maximize the workload of an interfering
task ti in the sequential case.

Fig. 4. Worst-case scenario to maximize the workload of an interfering
cp-task ti. Shifting the window of interest by � cannot increase the inter-
fering workload.
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lenð��kÞ þ
1

m
Ik;k � lenð��kÞ þ

1

m
ðWk � lenð��kÞÞ: (5)

Since lenð��kÞ � Lk andm � 1, the lemma follows. tu
Since Zk includes only the contribution of task tk, one

may think that the sum ðlenð��kÞ þ 1
m Ik;k) is equal to the

worst-case response-time of tk when it is executed in isola-
tion on the multi-core system (i.e., the makespan of tk).

However, this is not true. For example, consider the case
of a two-core platform with two cp-tasks tk, ti. Task tk has
only one if-then-else statement; assume that when the “if”
part is executed, the task executes one sub-task of length 10,
otherwise, the task executes two parallel sub-tasks of length
6 each. Thus, the makespan of tk is given by the “if” branch,
i.e., 10. If ti consists of a single sub-task of length 6, the
worst-case response time of tk occurs when its “else” branch
is executed, yielding a response time of 12. The share of the

response time due to the term lenð��kÞ þ 1
m Ik;k in Equation (3)

is 6þ ð1=2Þ 
 6 ¼ 9, which is strictly smaller than the make-

span. Note that lenð��kÞ þ 1
m Ik;k does not even represent a

valid lower bound on the makespan. This can be seen by
replacing the “if” branch in the above example with a
shorter subtask of length 8, giving a makespan of 8. For this

reason, one cannot replace the term lenð��kÞ þ 1
m Ik;k in Equa-

tion (4) with the makespan of tk.
The righthand side of Equation (4) has been therefore

introduced to upper-bound the term lenð��kÞ þ 1
m Ik;k. Inter-

estingly, this quantity does also represent a valid upper-
bound on the makespan of tk, i.e., the response time of a cp-
task executing in isolation. We omit the proof that is identi-
cal to the proofs of the given bounds, considering only the
interference due to the task itself.

5.3 Computation of cp-task Parameters

The upper-bounds on the interference given by Lemmata
5.1, 5.2, and 5.3 require the computation of two characteris-
tic parameters for each cp-task tk: the worst-case workload
Wk and the length of the longest chain Lk. The longest path
of a cp-task can be computed in the same way as for classi-
cal DAG task, since any conditional branch defines a set of
possible paths in the graph. For this purpose, conditional
nodes can be considered as if they were regular nodes. The
computation can be implemented in time linear in the size
of the DAG by standard techniques (e.g., [29, Section 4.7]).

The computation of the worst-case workload of a cp-task
is more involved.We hereafter propose an algorithm to com-
puteWk for each task tk in time quadratic in the DAG size; its
pseudocode is shown in Algorithm 1. The algorithm first
computes a topological order of the DAG.2 Then, exploiting
the (reverse) topological order, a simple dynamic program
can compute for each node the accumulated workload corre-
sponding to the portion of the graph already examined. The
algorithm must distinguish the case when the node under
analysis is the head of a conditional pair or not. If this is the
case, then the maximum accumulated workload among the
successors is selected, otherwise the sum of the workload
contributions of all successors is computed.

Algorithm 1 takes as input the graph representation of a
cp-taskG and outputs its worst-case workloadW . In the algo-
rithm, for any set of nodes S, its total WCET is denoted by
CðSÞ. First, at line 2, a topological sorting of the vertices is
computed and stored in the permutation s. Then, the permu-
tation s is scanned in reverse order, that is, from the (unique)
sink to the (unique) source of the DAG. At each iteration of
the for loop at line 4, a node vi is analyzed; a set variable SðviÞ
is used to store the set of nodes achieving theworst-casework-
load of the subgraph including vi and all its descendants in the

DAG. Since the sink node has no successors, SðvsinkÞ is initial-
ized to fvsinkg at line 3. Then, the function SUCCðviÞ computes
the set of successors of vi. If that set is not empty, function
ISBEGINCONDðviÞ is invoked to determine whether vi is the
head node of a conditional pair. If so, the node v� achieving
the largest value of CðSðvÞÞ, among v 2 SUCCðviÞ, is computed
(line 7). The set Sðv�Þ therefore achieves the maximum cumu-
lative worst-case workload among the successors of vi, and is
then used to create SðviÞ together with vi. Instead, whenever
vi is not the head of a conditional pair, all its successors are
executed at runtime. Therefore, the workload contributions of
all its successors must be merged into SðviÞ (line 10) together
with vi. The procedure returns the worst-case workload accu-
mulated by the source vertex, that isCðSðvsourceÞÞ.

Algorithm 1.Worst-Case Workload Computation

1: procedureWCW(G)
2: s  TOPOLOGICALORDER(G)
3: SðvsinkÞ  fvsinkg
4: for vi 2 s from sink to source do
5: if SUCCðviÞ 6¼ ; then
6: if ISBEGINCONDðviÞ then
7: v�  argmaxv2succðviÞCðSðvÞÞ
8: SðviÞ  fvig [ Sðv�Þ
9: else
10: SðviÞ  fvig [

S
v2succðviÞSðvÞ

11: end if
12: end if
13: end for
14: return CðSðvsourceÞÞ
15: end procedure

The complexity of the algorithm is quadratic in the size
of the input DAG. Indeed, there are OðjEjÞ set operations
performed throughout the algorithm, and some operations
on a set S (namely, the ones at line 7) also require comput-
ing CðSÞ, which has cost OðjV jÞ. So the time complexity is
OðjV jjEjÞ. To implement the set operations, set membership
arrays are sufficient.

Onemay be tempted to simplify the procedure by avoiding
the use of set operations, keeping track only of the cumulative
worst-case workload at each node, and allowing a linear
complexity in the DAG size. However, such an approach
would lead to an overly pessimistic result. Consider a simple
graph with a source node forking multiple parallel branches
which then converge on a common sink. The cumulative
worst-case workload of each parallel path includes the contri-
bution of the sink. If we simply sum such contributions to
derive the cumulative worst-case workload of the source, the
contribution of the sink would be counted multiple times. Set
operations are therefore needed to avoid accounting multiple
times each node’s contribution.

2. A topological order is such that if there is an arc from u to v in the
DAG, then u appears before v in the topological order. A topological
order can be easily computed in time linear in the size of the DAG (see
any basic algorithm textbook, such as [29, Section 3.3.2]).
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We now present refinements of Algorithm 1 in special
sub-cases of interest.

5.3.1 Non-Conditional DAG Tasks

The basic sporadic DAG task model does not explicitly
account for conditional branches. Therefore, all vertices of a
cp-task contribute to the worst-case workload, which is then
equal to the volume of the DAG task: Wk ¼

P
vk;j2Vk Ck;j: In

this particular case, the time complexity to derive the worst-
case workload of a task (quadratic in the general case),
becomesOðjV jÞ, i.e., linear in the number of vertices.

5.3.2 Series-Parallel Conditional DAG Tasks

Some programming languages yield series-parallel cp-tasks,
that is, cp-tasks that can be obtained from a single edge by
series composition and/or parallel composition. For exam-
ple, the cp-task in Fig. 5 is series-parallel, while the cp-tasks
in Figs. 2 and 6 are not. Such a structure can be detected in
linear time [30]. In series-parallel graphs, for every head si
of a conditional or parallel branch there is a corresponding
tail ti. For example, in Fig. 5, the tail corresponding to paral-
lel branch head v2 is v9. Algorithm 1 can be specialized to
series-parallel graphs. For each vertex u, the algorithm will
simply keep track of the worst-case workload of the sub-
graph reachable from u, as follows. For each head vertex si
of a parallel branch, the contribution from all successors
should be added to si’s WCET, subtracting however the
worst-case workload of the corresponding tail ti a number
of times equal to the out-degree of si minus 1; for each head
vertex si of a conditional branch, only the maximum among
the successors’ worst-case workloads is added to si’s
WCET. Finally, for all non-head vertices add the worst-case
workload of their unique successor to their WCET. The
complexity of this algorithm reduces then to OðjEjÞ, i.e., it
becomes linear in the size of the graph.

5.4 Schedulability Condition

Lemmata 5.1 and 5.3 and the bounds previously computed
allow proving the following theorem [27].

Theorem 5.1. Given a cp-task set globally scheduled on m cores,

an upper-bound Rub
k on the response-time of a task tk can be

derived by the fixed-point iteration of the following expression,

starting with Rub
k ¼ Lk:

Rub
k  Lk þ

1

m

�
Wk � Lk

�
þ 1

m

X
8i6¼k
XALG

i ;

where, with global FP:

XALG
i ¼ XFP

i ¼
WiðRub

k Þ; 8i < k
0; otherwise

�
;

with global EDF:

XALG
i ¼ XEDF

i ¼ min
�
WiðRub

k Þ; I i;k
�
;

and XALG
i ¼ WiðRub

k Þ for any work-conserving scheduler.

The schedulability of a cp-task system can then be simply
checked using Theorem 5.1 to compute an upper-bound on
the response-time of each task. In the FP case, the bounds
are updated in decreasing priority order, starting from the
highest priority task. In this case, it is sufficient to apply
Theorem 5.1 only once for each task. Instead, in the EDF or
general work-conserving cases, multiple rounds may be
necessary. All bounds are initially set to Rub

k ¼ Lk; 8tk 2 T .
Then, Theorem 5.1 is used to compute a response-time
bound for each task tk. The procedure continues until either
(i) one of the response-time bounds exceeds the correspond-
ing task deadline (returning a negative schedulability
result), or (ii) a fixed-point is reached (returning a schedu-
lable condition).

SinceWi is a step function of Rub
k , each iteration increases

Rub
k by at least 1=m, but never beyondDk. Therefore, the test

converges within a pseudopolynomial number of steps.

5.5 Improved Upper-Bounds on Intra-Task
Interference

The upper bound given in Lemma 5.3 might be pessimistic.
As an example, consider the cp-task tk in Fig. 5, which exe-
cutes on a platform composed of m ¼ 2 processors. This cp-
task has a longest path length of 7 time-units (given by the
upper branch), and a worst-case workload Wk ¼ 8 time-
units (given by the lower branch). Whenm ¼ 2, Equation (4)
gives a bound on Zk of 7:5. However, if the upper branch is
taken after the completion of v1, only the longest path of tk
would be executed, yielding a value of Zk ¼ 7 time-units.
Instead, if the lower branch is taken, only the corresponding
portion of the graph would be executed, with an upper-
bound of Zk � 4þ 4=2 ¼ 6 time-units. Hence, in both cases,
the upper-bound computed by (4) would be pessimistic.

This is mainly due to the fact that Equation (4) considers
the worst-case situation where, simultaneously, i) the critical
path of Gk is executed; and ii) the total worst-case workload
of tk is experienced. However, given the internal structure
of the cp-task of Fig. 5, this situation can never happen.

The example intuitively suggests that the bound in Equa-
tion (4) can be further improved by jointly computing the
worst-case workload and the longest chain length for each
portion of the cp-task, so that both values refer to the same
conditional branch. Specifically, for a given chain � of tk, let

W�
k be the maximum workload attainable by those instances of tk

in which all nodes in � are executed.
Then, arguing similarly as in Lemma 5.3, we get:

Fig. 5. Example of cp-task that shows the pessimism of the upper-bound
given in Equation (4).

MELANI ETAL.: SCHEDULABILITYANALYSIS OF CONDITIONAL PARALLELTASKGRAPHS IN MULTICORE SYSTEMS 345

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on April 13,2020 at 18:17:54 UTC from IEEE Xplore.  Restrictions apply. 



Lemma 5.4.

Zk � lenð��kÞ þ
1

m
ðW��

k
k � lenð��kÞÞ

� max
�

lenð�Þ þ 1

m
ðW�

k � lenð�ÞÞ
� �

;

where � ranges over all source-sink paths of tk.

Algorithm 2. Zk Bound Computation

1: procedure ZBOUND(G;m)
2: s  TOPOLOGICALORDER(G)
3: SðvsinkÞ  fvsinkg
4: T ðvsinkÞ  fvsinkg
5: fðvsinkÞ  Csink

6: for vi 2 s from sink to source do
7: if SUCCðviÞ 6¼ ; then
8: if ISBEGINCONDðviÞ then
9: v�  argmaxv2succðviÞCðSðvÞÞ
10: SðviÞ  fvig [ Sðv�Þ
11: u�  argmaxu2succðviÞfðuÞ
12: T ðviÞ  fvig [ T ðu�Þ
13: fðviÞ  Ci þ fðu�Þ
14: else
15: SðviÞ  fvig [

S
v2succðviÞSðvÞ

16: u�  argmaxu2succðviÞ
�
fðuÞ

17: þ
P

w2succðviÞ;w6¼u CðSðwÞ n T ðuÞÞ=m
�

18: T ðviÞ  fvig [ T ðu�Þ
19: fðviÞ  Ci þ fðu�Þ
20: þ

P
w2succðviÞ;w6¼u� CðSðwÞ n T ðu

�ÞÞ=m
21: end if
22: end if
23: end for
24: return fðvsourceÞ
25: end procedure

Algorithm 2 takes as input a given task graph G and m
and outputs an upper-bound on the task’s Zk value by com-
puting jointly the worst-case workload and the contribu-
tions of different subgraphs of the task. As for Algorithm 1,
a topological sorting of the nodes is required (line 2). Three
variables for each node vi are used by the algorithm to store
intermediate results: SðviÞ is a set representing the nodes
that determine the largest partial workload from vi till the
end of the DAG; fðviÞ stores the bound on the partial Zk

value from node vi to the end of the DAG, including the full
contribution of nodes belonging to the partial longest chain
(stored in set T ðviÞ) and the workload contribution over m
cores due to other nodes of the same conditional instance.
The computation of the values SðviÞ (lines 3, 10, 15) is
exactly as in Algorithm 1.

In the sequel, we focus on the computation of fðviÞ and
T ðviÞ. Since the sink node has no successors, we initialize

T ðvsinkÞ to fvsinkg and fðvsinkÞ to Csink. The algorithm’s main
loop iterates over the nodes of G in reverse topological
order (line 6). If the node under analysis has some succes-
sor, different actions are taken depending on whether vi is
the head of a conditional pair or not. In the former case, we
compute the successor u� that maximizes the intermediate
upper-bound on Zk, and set fðviÞ and T ðviÞ accordingly. If,
instead, a parallel branch is departing from the current

node vi, the workload by all the successors will be trans-
ferred to vi. The goal is to determine the successor u that
yields the largest combined value of its partial Zk bound
(fðuÞ) plus the total self-interference from other nodes,
which is bounded byX

w2succðviÞ;w6¼u
CðSðwÞ n T ðuÞÞ=m:

Note that the set T ðuÞ is subtracted from the set to consider
for the self-interfering contribution, because such nodes are
already fully accounted for in the term fðuÞ.

The complexity of Algorithm 2 is OðjV jjEjDÞ, where D
denotes the maximum out-degree of a node. In fact, simi-
larly to the analysis of Algorithm 1, the complexity of the
algorithm is OðjV jjEjÞ, plus the cost of executing the instruc-
tions at lines 16-17. The cost of performing such an instruc-

tion once is OðjV jdðviÞ2Þ, where dðviÞ is the out-degree of
node vi; since dðviÞ � D, it follows that the total cost of the
instructions at lines 16-17 is

O jV j
X
i

dðviÞ2
 !

¼ O jV jD
X
i

dðviÞ
 !

¼ OðjV jjEjDÞ:

This cost dominates, in the worst case, the cost of other
operations; hence, the complexity of Algorithm 2 is
OðjV jjEjDÞ.

5.5.1 A Non-Redundant Upper-Bound

The previously introduced upper-bound is still not accu-
rate, because it may lead to account multiple times the inter-
fering contribution of some vertices. In Fig. 6 we report an
example to intuitively show the two sources of pessimism
that affect Algorithm 2. In this example, we assume that the
cp-task tk in Fig. 6 executes onm ¼ 2 processors.

When Algorithm 2 examines vertex v2, it designates v5 as
the vertex u� that maximizes its partial bound on Zk plus
the intra-task interference from the other successors. In par-
ticular, the instruction at lines 19-20 yields

fðv2Þ ¼ C2 þ fðv5Þ þ
1

m

	
CðSðv4Þ n T ðv5ÞÞ

þ CðSðv6Þ n T ðv5ÞÞ


¼ 2þ 6þ ð1þ 2Þ=2 ¼ 9:5:

(6)

When vertex v1 is examined, the algorithm selects v2 as
the vertex u�, and the instruction at lines 19-20 now yields

Fig. 6. Example of cp-task that shows the two sources of pessimism in
the upper-bound of Algorithm 2.
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fðv1Þ ¼ C1 þ fðv2Þ þ
1

m

	
CðSðv3Þ n T ðv2Þ

þ CðSðv10Þ n T ðv2Þ


¼ 1þ 9:5þ ð5þ 1Þ=2 ¼ 13:5;

(7)

which also represents the final output of the algorithm.
Note, however, that the contribution of vertices v6 and v9
has been accounted twice: first, as intra-task interference on
v2 (i.e., inside set Sðv6Þ n T ðv5Þ in Equation (6)), and then as
intra-task interference on v1 (i.e., inside set Sðv3Þ n T ðv2Þ) in
Equation (7). Analogously, also the contribution of v10 is
accounted twice by Algorithm 2: first, among the successors
of v7, and then, among the successors of v1. We identify two
sources of pessimism in Algorithm 2.

First Source of Pessimism. When examining vertex u, verti-
ces reachable from successors of u (other than u�) that have
already been considered when examining u� may be
counted multiple times (as v6 and v9 in the example above).

This problem can be overcome by replacing the summa-
tion at lines 17 and 20 of Algorithm 2 with the expressionX

w2succðviÞ;w6¼u
CðSðwÞ n SðuÞÞ=m:

The new expression differs from the one given in Algorithm
2 because it subtracts SðuÞ (instead of T ðuÞ) from the set to
consider for the self-interfering contribution, since such ver-
tices have been already fully accounted for in the term fðuÞ,
either as part of the partial longest chain or as intra-task
interference on u. Since the set SðuÞ contains vertices from
both sets, the new formulation allows discarding all vertices
that have already been accounted when examining u�.
Indeed, applying this improvement to the above example,
the contribution from vertices in Sðv3Þ n Sðv2Þ will be com-
puted (instead of Sðv3Þ n T ðv2Þ) and added to fðv1Þ; since
Sðv2Þ also contains v6 and v9, their contribution will not be
counted multiple times, leading to a tighter bound on Zk

given by

fðv1Þ ¼ C1 þ fðv2Þ þ
1

m
ðCðSðv3Þ n Sðv2ÞÞ

þ CðSðv10Þ n Sðv2ÞÞ ¼ 1þ 9:5þ ð3þ 1Þ=2 ¼ 12:5:

Second Source of Pessimism. When examining vertex u, verti-
ces reachable from successors of u (other than u�) that have
been previously examined may be accounted multiple times
(as vertex v10 in the example above).

This second issue can be prevented by using set opera-
tions instead of the sum operand at lines 17 and 20 of Algo-
rithm 2, which leads to the expression

1

m

 C

[
w2succðviÞ;w6¼u

SðwÞ n SðuÞ
	 


¼ 1

m

 C SðviÞ n SðuÞ n fvigð Þ:

Applying this refined expression to the example above,
the contribution of v10 is finally accounted only once. It can
be easily verified that the final bound on Zk is now 12.

The following lemma proves that with the improvements
to Algorithm 2 discussed above, the bound on Zk that we
obtain is non-redundant, in the sense that it does not account
the contribution of any vertex more than once.

Lemma 5.5. Algorithm 2 with the improvements discussed above
yields a non-redundant upper-bound on Zk.

Proof. The only steps in the updated algorithm where the
contribution of a vertex may be added more than once
are line 13 and lines 19-20. At line 13, only the contribu-
tions of a vertex vi and of some of its descendants (those
in Sðu�Þ � SðviÞ n fvig) are being added, but vi =2 Sðu�Þ, so
the two sets are disjoint. At lines 19-20, a vertex vi, and
some of its descendants in Sðu�Þ (line 19) and in
SðviÞ n Sðu�Þ n fvig (the updated line 20) are being consid-
ered. Again, these sets are disjoint and no double count-
ing can occur. tu

With a reasoning similar to the one in Section 5.5 one
obtains that the complexity of the updated Algorithm 2 is

O jV j
X
i

dðviÞjV j
 !

¼ O jV j2
X
i

dðviÞ
 !

¼ OðjV j2jEjÞ:

6 EXPERIMENTAL CHARACTERIZATION

In order to evaluate the effectiveness of the proposed
approach, we faced the problem of generating a large num-
ber of conditional parallel task sets that are representative
of realistic workloads. To do that, we (i) selected three real
parallel programs with sufficiently different topologies,
implemented in OpenMP; (ii) extracted and characterized
their cp-DAG structures; and (iii) developed a (non-trivial)
graph generation tool that may reproduce the structures of
the considered programs. The parallel programs that have
been selected are:

� Wavefront, a matrix processing algorithm in which
the matrix is decomposed into smaller blocks and
traversed through its diagonals. The program takes
as input the block size bs;

� Cholesky, a factorization algorithm used for efficient
numerical solution of systems of linear equations or
Monte Carlo simulation techniques. The program
takes as input the number of blocks nb per dimen-
sion, and performs the factorization on block sub-
matrices;

� European Space Agency (ESA), an infrared pre-proc-
essing application developed by the ESA and used
by H2RG sensors to measure the red-shift of
galaxies.

To determine the cp-task structures corresponding to the
considered OpenMP programs, we adopted a tool, pre-
sented in [31], that takes as input an OpenMP program and
extracts the corresponding DAG structure. The considered
OpenMP benchmarks have been executed on a Intel(R)
Core(TM) i7-4600U processor, with four cores and two
hardware threads per core, and a 6 MB L3 cache, and then
processed by the tool in [31] to extract the corresponding
cp-DAGs. For the first two benchmarks (Wavefront and
Cholesky), we consider a restricted input set, namely
bs 2 f1; 2; 4g and nb 2 f1; 2; 4g, respectively. Different com-
putation is performed by the two programs depending on
the input value, hence their corresponding cp-DAGs have a
conditional head node and three branches with significantly
unbalanced workload (see Fig. 7). Conversely, ESA is a

MELANI ETAL.: SCHEDULABILITYANALYSIS OF CONDITIONAL PARALLELTASKGRAPHS IN MULTICORE SYSTEMS 347

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on April 13,2020 at 18:17:54 UTC from IEEE Xplore.  Restrictions apply. 



non-conditional (i.e., classic) DAG with a very high level of
parallelism and a large degree of connectivity.

Finally, we implemented a cp-task generation tool that
could reproduce the different structures of the selected use
cases. We refer to [32] as a baseline for our random cp-task
generation. In that work, multiple nested levels of condi-
tional branches are recursively generated by expanding
non-terminal vertices (called blocks) either to terminal verti-
ces or to conditional subgraphs, until reaching a maximum
recursion depth. The derivation rules given in [32] need to
be extended by considering that non-terminal vertices can
be expanded to either terminal vertices, parallel subgraphs
or conditional subgraphs. We specify the probabilities that
control such three events as pterm, ppar, and pcond, respec-
tively, requiring that pterm þ ppar þ pcond ¼ 1.

Additionally, the maximum number of branches of par-
allel and conditional subgraphs are indicated as npar and
ncond, respectively. Hence, whenever a parallel subgraph is
generated, the number of its branches is uniformly selected
in the interval ½2; npar	. Analogously, whenever a non-termi-

nal vertex is expanded to a conditional subgraph, the num-
ber of branches is uniformly selected in ½2; ncond	.

Unfortunately, this methodology only allows generating
series-parallel graphs. Therefore, since in this work we deal
with a more general class of task graphs (i.e., cp-DAGs that
respect the structural restrictions imposed by conditional
nodes, as described in Section 3), we place additional edges
between pairs of nodes to obtain cp-DAG tasks. In our
methodology, an edge is added between two vertices with a
certain probability padd, provided that any of such edges
respects the structural restrictions dictated by our cp-task
model (see Definition 3.1).

Each cp-task tk is generated as follows:

� the WCET Ck;j of each vertex vk;j is randomly
selected as a positive integer in the interval ½1; 100	;

� then, Lk andWk are computed;
� the period Tk is uniformly selected as an integer

in the interval ½Lk;Wk=b	, where b � 1 is a parameter
that controls the minimum cp-task utilization. In this
way, the utilization of each cp-task is uniformly dis-
tributed in the interval ½b;Wk=Lk	, where its right
endpoint, corresponding to the maximum possible
utilization, is given by the average degree of parallel-
ism of the cp-task;

� finally, the relative deadline Dk is uniformly selected
as an integer in the interval ½Lk; Tk	.

Whenever a specific utilization is targeted, we repeatedly
add tasks until the desired cumulative utilization is exceeded.
Then, the period of the last task is increased to match the
desired total system utilization. In all our experiments, we set
themaximum recursion depth to 3 for each cp-task.

The synthetic cp-task generator described above is able to
generate workloads that closely match the considered real
graph structures. In particular, Fig. 8 illustrates a randomly
generated graph that resembles the structure of Wavefront
and Cholesky (with a conditional head node and three
branches with highly unbalanced workload). The graph has
been obtained by setting ncond ¼ 3, npar ¼ 6, pcond ¼ 0:4,
ppar ¼ 0:4, pterm ¼ 0:2, padd ¼ 0:1. Analogously, Fig. 9 shows
a strongly connected and highly parallel DAG resembling
the ESA benchmark, obtained by setting npar ¼ 10, pcond ¼ 0,
ppar ¼ 0:8, pterm ¼ 0:2, padd ¼ 0:1.

6.1 Experimental Results for cp-tasks

We show the experimental comparison of our response-time
analysis against the only two works in the literature that tar-
get the global scheduling of DAG tasks with conditional
branches, i.e., [7] and [26]. The first work proposes a transfor-
mation of conditional DAG tasks scheduled with global FP
into synchronous parallel tasks. Existing schedulability tests
can then be applied on the transformed task-set. For this
purpose, we adopted the test for synchronous parallel tasks
proposed by Maia et al. [17], which, to the best of our knowl-
edge, outperforms the others. This schedulability test will be
referred to as COND-SP. The second work by Baruah [26]
proposes a method to transform any conditional DAG task
into a non-conditional DAG task on which the existing tests
in [18] and [21] can be applied. Since the test in [21] analyti-
cally dominates the one in [18], we will only use the former
in our comparison. Finally, we will denote as RTA-XXX-a
(resp., RTA-XXX-b) our response-time analysis for FP
(XXX = FP) or EDF (XXX = EDF) when the intra-task interfer-
ence is bounded as described in Algorithm 2, with (resp.,
without) the improvements discussed in Section 5.5.1. All
the algorithms compared in our experiments have been
implemented as MATLAB code. Since a considerable effort
was required to design a sufficiently general setting for
evaluating the performance of graph-based task systems,
we created a public repository [33] where our code can be

Fig. 7. Graph structure of the Cholesky benchmark.

Fig. 9. Randomly generated cp-task with a high level of parallelism and a
large degree of connectivity.

Fig. 8. Randomly generated cp-task having three conditional branches
with unbalanced workload.
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freely downloaded to test the schedulability performance of
conditional/parallel task systems.

In the first experiment, we considered an application
composed of the three representative programs, setting
deadlines and periods to produce a non-trivial scheduling
scenario. Table 2 describes for each program its critical path
length Lk, worst-case workload Wk, relative deadline Dk,
period Tk and static priority level pk. Time values are given
in microseconds.

Our objective is to determine what is the minimum num-
ber of processors required to successfully schedule the con-
sidered application. Under global FP scheduling, the task-
set described above can be successfully scheduled on a plat-
form consisting of m ¼ 6 processors, being R1 ¼ 1;904:5 �
D1, R2 ¼ 16;626 � D2 and R3 ¼ 13;286 � D3. Conversely,
when using COND-SP, m ¼ 11 processors are required to
schedule the given application. Hence, our test is able to
almost halve the required computational resources. Also,
notice that the task-set in Table 2 would not be deemed
schedulable by RTA-FP on m ¼ 6 processors if a Deadline
Monotonic priority ordering was considered (m ¼ 7 pro-
cessors would be necessary in that case). If, instead, global
EDF scheduling is assumed, our RTA-EDF approach
requires m ¼ 8 processors to deem the task-set schedulable,
which is the same result obtained when using the approach
by Baruah.

To give a larger perspective of the relative performance
of the considered algorithms, we hereafter show the number
of schedulable task-sets detected by each algorithm among
the tasks randomly generated with our tool. For each experi-
ment, 1;000 task-sets are newly generated for each value on
the x-axis.

We first consider the FP case, with tasks priorities assigned
according to a Deadline Monotonic (DM) ordering, setting
pcond ¼ 0:4, ppar ¼ 0:4, pterm ¼ 0:2, padd ¼ 0:1, ncond ¼ 2,
npar ¼ 6, b ¼ 0:1.

In the first set of experiments, we varied the total system
utilization UT in the range ½0;m	. The number of schedu-
lable task-sets obtained when m ¼ 4 is reported in Fig. 10.
The trend observed in the figure, which is representative of
the general behavior, shows that RTA-FP clearly outper-
forms COND-SP for any value of UT .

In the second set of experiments, we varied the number
of processors. The results for UT ¼ 2 are reported in Fig. 11.
For low values of m, RTA-FP significantly outperforms
COND-SP, while for a large number of processors both tests
are able to successfully schedule nearly all task-sets.

In the third set of experiments, the number of tasks n is
varied in the range ½1; 20	. Since n has now a fixed value in
each experiment, individual cp-task utilizations have been
computed using UUnifast [34]. Fig. 12 illustrates the results
for m ¼ 4 and UT ¼ 2. While the performance of the two
tests is comparable when n is small, RTA-FP exhibits a

TABLE 2
Case Study Description

Benchmark Lk Wk Dk Tk pk

Wavefront 1,635 3,252 2,000 2,600 High
ESA 5,784 48,075 17,600 22,000 Medium
Cholesky 1,664 3,812 17,000 25,000 Low

Fig. 10. RTA-FP as a function of UT (m ¼ 4, constrained deadlines).

Fig. 11. RTA-FP as a function ofm (UT ¼ 2, constrained deadlines).

Fig. 12. RTA-FP as a function of n (m ¼ 4, UT ¼ 2, constr. deadlines).
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substantial improvement over COND-SP when n � 4. Fur-
thermore, RTA-FP achieves full schedulability for large val-
ues of n. This conforms to the intuition that scheduling a
large number of “light” tasks is easier than scheduling
fewer “heavy” tasks. Instead, COND-SP achieves its maxi-
mum schedulability performance for n ¼ 5 and then
degrades for higher values of n. This stems from the pessi-
mism introduced by the transformation technique in [7],
which increases when the number of tasks is higher.

Another drawback of COND-SP concerns its complexity,
since it requires enumerating all the conditional flows of
each cp-task, which are exponentially many in the nesting
level of conditional statements. Instead, our approach relies
on efficient algorithms that explicitly deal with conditional
branches in psuedo-polynomial time. The main conse-
quence is that the running time of COND-SP is often quite
prohibitive, while RTA-FP runs very fast (i.e., in the order
of milliseconds).

Other experiments have been performed by varying the
connectivity degree of the tasks, i.e., by changing the proba-
bility padd, while keeping UT , n and m constant. However,

the results do not show any particular trend, as the schedul-
ability ratio remains almost constant for all possible values
of padd, hence the corresponding plots are not reported. In
other experiments, we have also varied the composition of
the cp-tasks, by acting on pcond and ppar, while keeping their
sum constant. Again, no interesting trend has been identi-
fied. Such results can be explained considering that the com-
putation of the interference produced by each cp-task
highly depends on its worst-case workload, and its compu-
tation (see Algorithm 1) is not very much influenced by the
degree of parallelism of the cp-task. Furthermore, the notion
of worst-case workload represents an effective way of
abstracting from the different conditional flows. This
explains why the composition of tasks in terms of condi-
tional/parallel branches does not significantly affect the
schedulability performance.

We now proceed to the global EDF case. In Fig. 13, we
report the number of schedulable task-sets with m ¼ 4
when UT 2 ½0; 4	. At all utilization levels, our approach is
able to successfully schedule more task-sets. The same trend
can be observed when varying the number of cores. Fig. 14
illustrates representative results when UT ¼ 2 and
m 2 ½2; 30	. Our approach performs significantly better for
any value of m: in particular, while RTA-EDF is able to
schedule nearly all task-sets for a large value of m, the
approach by Baruah et al. cannot admit a large share of the
generated task-sets even when the number of cores signifi-
cantly increases.

Finally, Fig. 15 shows the comparison between the two
approaches when varying the number of tasks (n 2 ½1; 20	),
with UT ¼ 2 and m ¼ 8. While RTA-EDF admits almost all
task-sets when n � 7, the approach by Baruah et al. achieves
full schedulability only for a very large value of n.

6.2 Experimental Results for Classic DAG Tasks

The following experiments restrict our task model to the
case where conditional statements are not modeled, i.e.,
classic DAG tasks are considered. This particular setting
allowed us to evaluate the improvement of our response-
time analysis for global EDF over existing schedulability
tests targeting systems of sporadic DAG tasks.

Fig. 13. RTA-EDF as a function of UT (m ¼ 8, constrained deadlines).

Fig. 14. RTA-EDF as a function ofm (UT ¼ 2, constrained deadlines).

Fig. 15. RTA-EDF as a function of n (m ¼ 8, UT ¼ 2, constr. deadlines).
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The random task generator described above can be sim-
ply adapted to generate classical DAG tasks by setting
pcond ¼ 0 and requiring that pterm þ ppar ¼ 1. Specifically, we
set: ppar ¼ 0:8, pterm ¼ 0:2, padd ¼ 0:1, npar ¼ 6, b ¼ 0:1.

We compared our RTA-EDF test against three schedul-
ability tests for systems of sporadic DAG tasks scheduled
according to global EDF:

� the test by Baruah [21], which analytically dominates
the one in [18];

� the test by Li et al. [19], based on capacity augmenta-
tion bound;

� the test by Qamhieh et al. [20] that takes into account
the internal structure of the DAG.

Since the test in [19] assumes implicit deadlines, we
report all the results under that setting for consistency,
although similar results have been obtained also in the gen-
eral case of constrained deadlines. We do not plot the
results of the test in [20], because its performance was very
poor in all observed configurations. This stems from the fact
that the analysis in [20] is mainly focused with improving

the minimum processor speed that guarantees schedulabil-
ity under global EDF, rather than ensuring a good schedul-
ability performance.

Fig. 16 illustrates the number of schedulable task-sets in
the case of m ¼ 8 and varying utilization UT 2 ½0; 8	. While
the performance of RTA-EDF drops around UT ¼ 5, the
breakdown utilization of the other approaches is signifi-
cantly lower.

Fig. 17 illustrates the performance of RTA-EDF when
UT ¼ 2 andm is varied in ½2; 30	. As evident from the figure,
RTA-EDF substantially outperforms the other tests, as it
requires a significantly lower number of cores (around 5) to
schedule most task-sets, while the test in [21] typically
requires twice that number, and it cannot admit any task-
set when m < 5. The behavior of the test in [19] is even
worse, since a large share of the generated task-sets are not
deemed schedulable even if a very large number of cores is
available. This result indeed reflects the analytical formula-
tion of the test given in [19].

Fig. 18 reports the results obtained when varying the
number of tasks (n 2 ½1; 20	), with m ¼ 8 and UT ¼ 2. As
before, our approach substantially outperforms the others
for any value of n. The test in [21] shows a slowly degrading
trend for high values of n. Instead, the one in [19] is favorably
impacted by increasing n, since by keeping the total utiliza-
tion constant the individual critical path lengths are reduced
in average, which is beneficial for the outcome of the test.

This class of experiments clearly shows that the effective-
ness of our schedulability analysis goes beyond conditional
task structures, as it is able to significantly tighten the sched-
ulability of non-conditional DAG task systems as well.

6.3 Evaluation of RTA-FP versus RTA-EDF

We now compare the performance of our response-time
analysis for global FP (with priorities assigned by DM) and
global EDF as a function of the system utilization UT . In the
following experiments, we consider m ¼ 8 and restrict to
the case of implicit deadlines. Figs. 19 and 20 report the
results for the case of cp-tasks and classic DAG tasks, where
the parameters for the task generation have been set as in
Sections 6.1 and 6.2, respectively. In both cases, RTA-FP is

Fig. 16. RTA-EDF as a function of UT (m ¼ 8, implicit deadlines).

Fig. 17. RTA-EDF as a function ofm (UT ¼ 2, implicit deadlines).

Fig. 18. RTA-EDF as a function of n (m ¼ 8, UT ¼ 2, implicit deadlines).
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able to guarantee �75 percent of the total system utilization,
being able to detect a significant amount of schedulable
task-sets until UT ¼ 6, while the performance of RTA-EDF
drops at a smaller utilization level (around UT ¼ 5), which
corresponds to �63 percent of the total system utilization.

As a salient trait, in both cases the performance of the
schedulability test for global FP is significantly superior to
the corresponding test for EDF, resembling the behavior
observed in the case of multiprocessor response-time analy-
sis for sequential task systems [27]. This is mainly due to the
fact that in the case of FP the interference from lower-prior-
ity tasks can be neglected, which does not hold when EDF is
used. Therefore, the schedulability performance achieved
by our RTA-FP test is able to largely compensate the disad-
vantage of FP versus EDF in terms of absolute scheduling
performance.

As a final remark, we observe that the performance of our
response-time analysis in the conditional case (Fig. 19) is
very similar to the case when no conditional vertices are
assumed (Fig. 20). This fact leads to the conclusion that the
concept of worst-case workload is ameaningful characteriza-
tion of conditional-parallel real-time workload, and, more in
general, that the presented analysis is able to effectively inte-
grate conditional statementswith parallel execution flows.

7 CONCLUSIONS

This paper considered a new task model, the cp-task model,
that generalizes the classic sporadic DAG task model by
integrating conditional branches. Such an additional infor-
mation is exploited by the schedulability analysis to derive
a tighter estimation of the interfering contributions, by dis-
criminating their level of parallelism depending on the con-
ditional path undertaken. The topological structure of a cp-
task graph has been characterized in terms of two recursive
composition rules. Then, a schedulability analysis has been
derived to compute a safe upper-bound on the response-
time of each task in pseudo-polynomial time. Besides its
reduced complexity, the proposed analysis has the advan-
tage of requiring only two parameters to characterize the
complex structure of the conditional graph of each task: the

worst-case workload and the length of the longest path.
Algorithms have also been proposed to derive these param-
eters from the DAG structure in polynomial time.

Schedulability experiments carried out with randomly
generated cp-task workloads clearly show that the proposed
approach does not only improve over previously proposed
solutions for conditional DAG tasks, but can also be used to
significantly tighten the schedulability analysis of classic
(non-conditional) sporadic DAG task systems.
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