
Exact Response Time Analysis for Fixed Priority
Memory-Processor Co-Scheduling
Alessandra Melani, Marko Bertogna, Robert I. Davis, Vincenzo Bonifaci,

Alberto Marchetti-Spaccamela, and Giorgio Buttazzo

Abstract—Recent technological advances have led to an increasing gap between memory and processor performance, since memory

bandwidth is progressing at a much slower pace than processor bandwidth. Pre-fetching techniques are traditionally used to bridge this

gap and achieve high processor utilization while tolerating high memory latencies. Following this trend, new computational models

have been proposed to split task execution in two consecutive phases: a memory phase in which the required instructions and data are

pre-fetched to local memory (M-phase), and an execution phase in which the task is executed with no memory contention (C-phase).

Decoupling memory and execution phases not only simplifies the timing analysis, but also allows a more efficient (and predictable)

pipelining of memory and execution phases through proper co-scheduling algorithms. This paper takes a further step towards the

design of smart co-scheduling algorithms for sporadic real-time tasks complying with the memory-computation (M/C) model, by

proposing a theoretical framework aimed at tightly characterizing the schedulability improvement obtainable with the adopted M/C task

model on single-core systems. In particular, a critical instant is identified for M/C tasks scheduled with fixed priority and an exact

response time analysis with pseudo-polynomial complexity is provided. Then, we investigate the problem of priority assignment for M/C

tasks, showing that a necessary condition to achieve optimality is to allow different priorities for the two phases. Our experiments show

that the proposed techniques provide a significant schedulability improvement with respect to classic execution models, placing an

important building block towards the design of more efficient partitioned multi-core systems.

Index Terms—Co-scheduling, response time analysis, schedulability analysis, real-time systems

Ç

1 INTRODUCTION

ONE of themajor obstacles to improve the performance of
current computing systems is the growing divergence

between processor speed and memory speed, as the rela-
tively slow access to memory and communication resources
poses a serious limitation on the exploitation of processing
power [1]. To feed the CPU with tasks ready to execute,
memory and communication bottlenecks must be overcome
by guaranteeing a proper provisioning of new data and
instructions. Therefore, in addition to the processor, memory
becomes another crucial resource of interest to be scheduled.

The real-time community has already identified the need
for new scheduling algorithms and execution models allow-
ing an efficient exploitation of the computing power and the
derivation of tighter schedulability bounds both on single-
and multi-core platforms. A major effort in this sense is rep-
resented by the PREM scheduling framework [2]. In this

framework, tasks consist of different phases: a memory
phase (M-phase) in which the task pre-fetches the required
instructions and data from memory and/or I/O devices,
and an execution phase (C-phase) in which the task executes
without needing to access shared memory and communica-
tion devices. Depending on the model variants, tasks may
have an additional memory phase to store the computed
data back to memory, and/or they may be composed of
multiple consecutive memory-execution frames.

This paper focuses on a simpler model, referred to as the
M/C task model, where tasks include a memory phase fol-
lowed by an execution phase. The advantage of pre-fetching
execution models is that they decouple memory and execu-
tion phases, so that different phases of different tasks may
overlap in time: during an M-phase, a task may only suffer
interference from other shared memory accesses, whereas
during a C-phase, a task is subject to interference only from
the C-phases of other tasks. Execution models based on pre-
fetching techniques are more amenable to timing analysis
and have at least two fundamental advantages: (i) By group-
ing together all memory accesses, it is possible to better
exploit burst read/write features (either DMA- or cache-
based) for simultaneously loading/storing multiple mem-
ory locations in a back-to-back fashion, i.e., without needing
to pay the full memory latency for each required instruc-
tion/data. This is particularly important for architectures
featuring powerful DMA engines1; (ii) The coarser

� A. Melani and G. Buttazzo are with the TeCIP Institute, Scuola Supe-
riore Sant’Anna, Pisa 56124, Italy.
E-mail: {alessandra.melani, g.buttazzo}@sssup.it.

� M. Bertogna is with the University of Modena and Reggio-Emilia, Modena
41121, Italy. E-mail: marko.bertogna@unimore.it.

� R.I. Davis is with the University of York, York YO10 5DD, United King-
dom, and INRIA-Paris, Paris 75012, France. E-mail: rob.davis@york.ac.uk.

� V. Bonifaci is with the Istituto di Analisi dei Sistemi ed Informatica, CNR,
Rome 00185, Italy. E-mail: vincenzo.bonifaci@iasi.cnr.it.

� A. Marchetti-Spaccamela is with Sapienza University of Rome, Rome
00185, Italy. E-mail: alberto@dis.uniroma1.it.

Manuscript received 25 Apr. 2016; revised 27 Sept. 2016; accepted 28 Sept.
2016. Date of publication 2 Oct. 2016; date of current version 17 Mar. 2017.
Recommended for acceptance by P. Eles.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2016.2614819

1. See, e.g., Texas Instrument Keystone II (http://www.ti.com/
product/66AK2H12), where a 20� speedup can be obtained exploiting
the burst read features of the integrated DMA engines.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 4, APRIL 2017 631

0018-9340� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on April 13,2020 at 18:18:49 UTC from IEEE Xplore. Restrictions apply.

granularity of the memory and execution phases may be
leveraged to devise smart co-scheduling algorithms that are
able to reduce the overall response time by overlapping M/
C phases. Since the two phases act on separate resources
(bus and shared memory versus processing elements), it is
possible to hide memory latencies by properly orchestrating
the access to processing and memory resources. In particu-
lar, this latter possibility will be thoroughly analyzed in this
paper, identifying the possible schedulability improvement
that can be obtained by leveraging the pipelined execution
of memory and execution phases of different tasks. Previous
related works adopting similar execution models showed a
significant improvement with respect to classic (i.e., non
pre-fetching) execution models, although they were based
on heuristic approaches and pessimistic schedulability anal-
yses [2], [3], [4], [5], [6], [7].

This work proposes an exact characterization of the
schedulability of M/C task-sets on a single core, identifying
critical instant scenarios that lead to worst-case response
times under fixed priority preemptive scheduling and pro-
viding a necessary and sufficient schedulability test for the
adopted taskmodel. At a first sight, onemay think that exist-
ing results for classic sporadic task systems (i.e., with tasks
having just one phase) may be easily adapted to the M/C
task model. Indeed, the M/C model trivially reduces to the
classic sporadic task model when one of the two phases is
negligible for all tasks. However, when this is not true, the
simple fact that the memory and execution phases of differ-
ent tasks may run in parallel invalidates most of the well-
known results for classic preemptive task systems. In partic-
ular, it will be shown that (i) preemptive Earliest Deadline
First (EDF) is not an optimal scheduling algorithm for M/C
task systems (its exact speedup factor is 2); and (ii) the syn-
chronous tasks activation with minimum inter-arrival sepa-
ration among consecutive task instances does not represent a
critical instant for M/C task systems, i.e., there may exist
other release configurations that lead to a higher response
time. The last observation is particularly detrimental to the
schedulability analysis, because it prevents using the classic
response time analysis [8] to characterize the schedulability
of M/C task systems. The considerations stated above moti-
vated us to investigate better algorithms and schedulability
tests to fully exploit the potential of pre-fetching execution
models for real-time applications, providing an important
building block for the design of smart co-scheduling techni-
ques. Interestingly, the theoretical results introduced in the
paper can be also applied in the case of distributed transac-
tions with two execution stages, for which only sufficient
schedulability conditions with a tractable complexity have
been derived so far [9], [10], [11], [12], [13].

Contributions of the Paper. This paper establishes the theo-
retical background for addressing the schedulability analy-
sis of M/C task systems. In particular, it provides the
following contributions for a configuration with a single
core and single memory channel: (i) EDF algorithm is
proved to be not optimal for scheduling M/C task systems.
In particular, a theoretical characterization in terms of
speedup factor is provided; (ii) A critical instant is defined
for M/C task systems scheduled with fixed-priority, prov-
ing that no other task release configuration may produce a
larger response time; (iii) An exact response time analysis is

derived for M/C systems scheduled with fixed priority,
leading to a necessary and sufficient schedulability test; (iv)
The paper proves that Deadline Monotonic (DM) is not an
optimal priority assignment (OPA) strategy and that
Ausley’s optimal priority assignment algorithm cannot be
used in conjunction with the exact test proposed in this
paper; (v) Approximate schedulability tests are derived to
enable the applicability of the OPA algorithm; (vi) The exact
test proposed in this paper is generalized to consider differ-
ent priorities for the M- and C-phase of each task, and possi-
ble priority assignment strategies are discussed for this
more general case. Finally, the schedulability improvement
obtainable in a single-core/single-memory setting is charac-
terized by means of extensive evaluations using randomly
generated workloads, identifying the systems that are more
likely to benefit, and to which extent, from pre-fetching exe-
cution models, and the priority assignment strategies that
perform better for the proposed M/C scheduling model.

This work is an extended version of the RTNS 2015
paper on Memory-Processor Co-Scheduling in Fixed Priority
Systems [14]. The main extensions include Theorem 2,
Sections 5 and 6.3.

2 RELATED WORK

The study of the interplay between memory access and
CPU utilization is not novel in the real-time computing lit-
erature [15], [16]. More recently, there has been significant
interest in the research community in addressing shared
resource contention in multicore processors (see e.g., [17]
and references therein). To better characterize the interfer-
ence due to memory contention, new execution models
have been proposed in the literature making use of pre-
fetching techniques, which are widely adopted in the
embedded and high-performance computing domain for
different complementary reasons. Rosen et al. [18] investi-
gated these techniques in the context of worst-case execu-
tion time computation and bus access optimization.
Lu et al. [19], showed that pre-fetching techniques can
improve the cache (or scratchpad) locality reducing the
average execution times. They also allow hiding the mem-
ory latency by executing a pre-fetched task while pre-
fetching the context of another one [20], and, most impor-
tantly, they allow predictably computing, bounding and
mastering the memory interference due to concurrent
accesses to shared memory by multiple tasks/cores, sim-
plifying the computation of worst-case execution times.
This latter issue has been addressed by Pellizzoni et al. [2]
through the definition of the Predictable Execution Model
(PREM). The work was focused on cache-based manage-
ment of PREM-compatible tasks, showing how to enforce
a predictable scheduling of memory and computing
resources. It also showed how to automatically re-factor
the task code at compile time, provided a set of restrictions
is satisfied. Such restrictions are in line with those typically
imposed by state-of-the-art tools for static timing analysis,
and are also applicable to our M/C model, making it suit-
able only for certain types of software. An automatic tool
for code re-factoring is presented by Mancuso et al. [21],
making the adoption of the M/C model transparent to the
programmer. Alternatively, M/C-compliant code may be
written using programming models commonly adopted

632 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 4, APRIL 2017

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on April 13,2020 at 18:18:49 UTC from IEEE Xplore. Restrictions apply.

for heterogeneous computing systems (e.g., OpenCL,2

OpenMP3) leveraging offloading directives that explicitly
distinguish between shared and private data items, and
that allow data/instruction pre-fetching [20]. An orthogo-
nal approach to increase the cache locality and improve
the predictability of memory accesses is using cache lock-
ing [22], [23] or partitioning [24] techniques. Scratchpad
memory allocation has been considered by Deverge and
Puaut [25] for single task scenarios. Whitham and Auds-
ley [26] proposed the Carousel mechanism for dynamic
scratchpad management in a multitasking system sched-
uled with Rate Monotonic (RM). However, both
approaches stall the CPU while loading tasks to scratch-
pad, and, therefore, do not take advantage of the overlap-
ping of M/C-phases.

To allow the simultaneous execution of memory and exe-
cution phases, a dynamic scratchpad management tech-
nique has been proposed by Wasly and Pellizzoni [27]. Bak
et al. [3] used a simulation-based approach to compare dif-
ferent scheduling algorithms for PREM tasks. Yao et al. [4]
proposed a TDMA-based scheduling algorithm for PREM
tasks on a multicore platform. Wasly and Pellizzoni [5] pre-
sented a schedulability analysis for non-preemptable PREM
tasks on single-core and partitioned multicore systems. The
scheduling and schedulability problems for globally sched-
uled PREM tasks were also addressed [6], [7]. All these
works are based on heuristic scheduling approaches and
sufficient schedulability analyses.

To the best of our knowledge, no exact schedulability
test is available for the considered task model. Some simi-
larities may be found with the real-time distributed com-
puting problem, where chains of tasks (also called
pipelines or transactions) are executed on different proc-
essing nodes so that end-to-end deadlines are guaran-
teed [9], [10], [11], [12], [13]. The M/C phases considered
in our paper may be seen as the precedence-constrained
tasks composing a transaction in the distributed comput-
ing setting, each one executing on a different machine.
For this problem, holistic response time analyses have
been proposed for fixed-priority systems [9], [11], [28]
and EDF-based systems [10], [12], [13]. Release jitters and
offsets are introduced to account for the delayed release
of precedence-constrained tasks of a transaction. These
approaches typically imply a high complexity due to the
difficulties in finding a critical instant scenario. For this
reason, most works aim at providing only sufficient
schedulability conditions, while existing exact analyses
have an exponential complexity [11]. Alternative suffi-
cient analyses for real-time distributed systems include
the use of per-stage deadlines [29], real-time calculus [30],
timed automata [31], compositional analysis [32], and
delay composition algebra [33], [34]. The latter approach
seems to provide the best trade-off between schedulabil-
ity performance and complexity, and we will use it as a
reference to evaluate the performance of our analysis.

Finally, the M/C scheduling can be considered a special
case of the flow shop problem that has been studied by the
combinatorial optimization community for its interest in
production scheduling. The problem considers a two-stage
processing facility and a collection of independent jobs,
each comprising two tasks to be processed in order, one per
stage. Differently from our setting, all jobs are initially avail-
able, and the objective is to minimize the makespan. If each
stage consists of a single resource, the problem has a poly-
nomial solution [35]; however, if at least one stage consists
of two or more resources, then the problem becomes
strongly NP-hard [36]. For this reason, several heuristics
have been proposed [37]. Recently, a polynomial-time
approximation scheme (PTAS) has also been proposed [38].
The optimality results derived by Johnson [35] have been
extended by Melani et al. [39] to address the problem of
selecting the optimal operating speed for the two resources.

3 SYSTEM MODEL

We consider a set T of n periodic and sporadic real-time
tasks t1; . . . ; tn, executing on a single-core platform. Each
task ti is defined by a worst-case memory access time Mi

(i.e., the length of its M-phase), a worst-case computation
time Ci (i.e., the length of its C-phase), a relative deadline
Di and a period, or minimum interarrival time, Ti. We
assume constrained deadlines, i.e., Di � Ti; 8i. Each task ti
generates an infinite sequence of jobs, with the first job
arriving at any time and successive job-arrivals separated

by at least Ti time-units. We denote as rji (resp. fj
i) the

release (resp. finishing) time of the jth job of task ti, and as

dji ¼ rji þDi the absolute deadline of that job. Each job
released by ti first pre-fetches data and instructions to the
local memory, taking at most Mi time-units, and then it
can start executing for at most Ci time-units on the proces-
sor. For any job of ti, we refer to as M/C point, the comple-

tion time of its M-phase, and denote it as f
j
i . We say that

the M-phase of a task is ready whenever a job of that task
has been released but it did not yet complete its M-phase,
i.e., before its M/C point. Similarly, we say that a C-phase
of a task is ready whenever a job of that task completed its
M-phase, but it did not yet complete its C-phase, i.e.,
between its M/C point and finishing time. In general, a job
is ready if either its M- or C-phase is ready. No assumption
can be made on the data locality of later jobs, but each new
job will always have to pre-fetch new data from the
memory.

We denote as uM
i ¼Mi=Ti (resp. u

C
i ¼ Ci=Ti) the memory

(resp. computation) utilization of task ti. U
M and UC denote

the total memory and computation utilization, i.e.,

UM ¼
P
8i u

M
i and UC ¼

P
8i u

C
i . The overall utilization of

the M/C task-set T is denoted as UT ¼ UM þ UC .
The Worst Case Response Time Rk of task tk is the worst-

case relative finishing time among all its jobs, i.e.,

Rk ¼ maxj is a job of tkðf
j
k � rjkÞ. We denote with RM

k the worst-

case response time of the M-phase of task tk, i.e., from the
job release until the completion of the M-phase; and with

RC
k the worst-case response time of the C-phase of tk, i.e.,

from the end of the memory phase until the completion of
the C-phase. We also assume that each task has a best-case

2. Khronos Group, The OpenCL 1.1 Specifications, 2010: http://
www.khronos.org/registry/cl/specs/opencl-1.1.pdf

3. OpenMP Application Program Interface v4, 2011: http://www.
openmp.org/mp-documents/OpenMP3.1.pdf

MELANI ET AL.: EXACT RESPONSE TIME ANALYSIS FOR FIXED PRIORITY MEMORY-PROCESSOR CO-SCHEDULING 633

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on April 13,2020 at 18:18:49 UTC from IEEE Xplore. Restrictions apply.

memory-access time and a best-case computation time
equal to zero. We assume a preemptive fixed-priority sched-
uler, where each task has the same priority on the processor
and for accessing the memory. Tasks are indexed in
decreasing priority order, i.e., task t1 being the highest pri-
ority one. An M-phase (resp. C-phase) of a higher-priority
task can preempt an M-phase (resp. C-phase) of a lower-
priority one at no additional cost. Moreover, there is no
interference between M- and C-phases. This can be achieved
if the M-phase is mastered by a DMA device, while the
C-phase is executed by a processing element. Moreover, as
shown in [27], the local memory may be partitioned so that
simultaneously executing M/C phases never access the
same partition. In this way, the M- and C-phases may over-
lap since they access different resources (DMA and shared
memory on one side, processing element on the other side)
and different local memory partitions.

We denote by hpðkÞ the set of tasks with priority higher
than tk, while hepðkÞ indicates the set of tasks with priority
higher than or equal to tk. To simplify the model, write-
back phases following the M- and C-phases are not mod-
eled. We remark that this assumption does not affect the
validity of the model: with some exceptions, the number of
(shared memory) store operations of typical real-time appli-
cations is significantly smaller than the number of read
requests. Task instructions do not need to be written back.
Data structures, images and input signals to process are
also not written back. For applications like image detection,
surveillance, and control systems, the output of the C-phase
is typically restricted to a few actuation operations or detec-
tion signals. Moreover, if tasks are periodic and relative
deadlines are implicit, write-back phases can be combined
with the (read) M-phase of the subsequent job [2], [5].

We now discuss two simplifying assumptions within the
considered system model. First, as with much of the real-
time scheduling literature, preemption overheads are
neglected. This is typically done to enable the derivation of
exact schedulability tests, optimal scheduling algorithms
and a clearer understanding of the scheduling problem.
However, the impact of preemptions should be carefully
analyzed before applying the theoretical results to a practi-
cal use case. In particular, when task footprints are compa-
rable to the size of the local memory, a preempting task
may evict a significant amount of memory blocks that are
useful to a preempted task, leading to a considerable pre-
emption delay [40]. This issue can either be solved by (i)
assuming the local memory is sufficiently large to accom-
modate the footprint of all tasks, (ii) considering a memory
penalty for each task resuming after a preemption, or (iii)
integrating the presented schedulability analysis within the
limited preemption framework [41]. This last approach
seems promising to limit, or even avoid, the preemption
overhead by encapsulating consecutive M/C phases within
a non-preemption region, and is the subject of our ongoing
work. The second simplifying assumption is to consider
that the M-phase is fully preemptable. Most current hard-
ware implementations do not allow a preemptive DMA
behavior; however, preemptable DMA controllers have
been advocated to reduce starvation and priority inversions
effects [15], [42]. Further, some industrial solutions have
enhanced DMA controllers to enable fine-grained control

for easier preemption. For example, the Enhanced DMA
engine TMS320C645x (EDMA3) by Texas Instruments fea-
tures an Intermediate Transfer Chaining mechanism for
breaking up large transfers into multiple smaller transfers.4

This approximated preemption support is achieved with an
efficient pipelined mechanism that is much more effective
than classic cycle-stealing techniques, leading to a signifi-
cantly smaller overhead. The theoretical analysis for the M/
C model presented in this paper, assumes fully preemptive
M- and C-phases. The analysis would need to be enhanced
to account for limited preemption in the M-phase before it
could be used to analyze systems built with today‘s DMA
controllers; again, this is the subject of our ongoing work.

4 SCHEDULABILITY ANALYSIS

Before presenting our analysis for M/C task systems, we
first show that some established results for classic single-
phase systems are not valid for the M/C model. In particu-
lar, while EDF is an optimal algorithm for arbitrary collec-
tions of regular jobs [43], it is provably not optimal for
sporadic M/C jobs, as shown in the following example.

Example 1. Consider a system composed of two tasks: a task
t1 with an M-phase M1 ¼ � ¼ 1, a C-phase C1 ¼ k ¼ 10, a
deadline D1 ¼ kþ 3 ¼ 13, and a minimum inter-arrival
time T1 ¼ þ1; and a second task t2 with an M-phase
M2 ¼ k ¼ 10, a C-phase C2 ¼ � ¼ 1, a deadline
D2 ¼ kþ 2 ¼ 12, and a minimum inter-arrival time
T2 ¼ þ1. Fig. 1a) shows the schedule with EDF: task t1 is
given lower priority than t2, resulting in a response time of
2kþ 1 ¼ 21 for t1, missing its deadline. Instead, if the M-
phase of t1 is given a higher (static) priority than that of t2,
and conversely the C-phase of t2 has higher (static) priority
than that of t1, we show the critical instance leading to the
worst-case response time (see Theorem 4) in Fig. 1b). The
longest possible response times for the M-phases are 1 for
t1 and 11 for t2. Similarly, the longest possible response
times for just the C-phases (from when they are released)
are 1 for t2 and 11 for t1. Therefore, the overall response
time for both tasks cannot exceed 12, so that both tasks
meet their deadlines.

We also derive results using a theoretical method of com-
paring the worst-case performance of different scheduling
algorithms for the M/C scheduling problem based on a
resource augmentation metric referred to as the speedup

Fig. 1. EDF is not optimal for collections of sporadic M/C tasks. In the
figure, striped blocks are M-phases, a large dot marker indicates job
completion, and a cross indicates job completion but deadline missed.

4. http://www.ti.com.cn/cn/lit/ug/spru966c/spru966c.pdf

634 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 4, APRIL 2017

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on April 13,2020 at 18:18:49 UTC from IEEE Xplore. Restrictions apply.

factor [44]. Specifically, we derive bounds on the factor by
which the speed of the system (affecting both M- and
C-phases) needs to be increased to ensure that any task set
that is schedulable under some scheduling algorithm A is
guaranteed to be schedulable under another algorithm B.
When A is an optimal algorithm,5 then this speedup factor
provides a measure of the sub-optimality of algorithm B.
Speedup factors have previously been derived for the clas-
sic sporadic task model, comparing fixed priority and EDF
scheduling under both preemptive and non-preemptive
paradigms [45], [46], [47]. To the best of our knowledge, this
is the first time that such measures have been derived for
the M/C scheduling problem.

In Example 1, if EDF is used, t1 has a response time of
2kþ 1, which shows that EDF is sub-optimal by a speedup fac-

tor of at least 2kþ1
kþ3 , which tends to 2 as k becomes large. In the fol-

lowing, we prove that 2 is the exact speedup factor required
by EDF to successfully schedule any sporadic M/C task-set
that is schedulable by an optimal algorithm. To this aim, we
first recall as a preliminary notion the exact schedulability
test for classic sporadic task systems (where each task ti has
only one single execution phase of worst-case length Ei)
scheduled with EDF [48].

Theorem 1 (from [48]). A set of single-phase tasks is schedu-
lable under EDF if and only if, in every time interval, the total
processor demand requested by the task-set is no greater than the
length of the interval [48]. In other words, a task-set is schedu-
lable under EDF if and only if: 8t � 0

Pn
i¼1 DBFiðtÞ � t,

whereDBFiðtÞ ¼ maxð0; 1þ bt�Di
Ti
cÞEi.

The following theorem establishes the exact speedup fac-
tor of EDF for the M/C scheduling model.

Theorem 2. The exact speedup factor required so that EDF is
guaranteed to be able to schedule any sporadic M/C task-set
that is schedulable according to an optimal algorithm is 2.
Stated otherwise, the sub-optimality of EDF for the M/C sched-
uling problem is 2.

Proof. Consider an arbitrary M/C task-set. Let DBFMðtÞ be
the sum of the demand bound functions for all of the
tasks for a time interval of length t considering only the
M-phase of each task. Similarly, let DBFCðtÞ be the sum
of the demand bound functions for all of the tasks for a
time interval of length t considering only the C-phase of
each task. Recall that the exact schedulability test for spo-
radic tasks with only a computation phase under EDF
requires that 8t � 0 DBFCðtÞ � t. It is sufficient for sched-
ulability under EDF that an M/C task-set is schedulable
under a serializing version of EDF that does not allow
any concurrent access to memory and computation.
Hence, the task-set is schedulable under EDF on a system
of speed S1, where

S1 ¼ max
8t�0

DBFMðtÞ þDBFCðtÞ
t

� �

� max
8t�0

DBFMðtÞ
t

� �
þmax
8t�0

DBFCðtÞ
t

� �
:

Let S2 denote the right-hand side of the above inequality.
Next, we consider an optimal algorithm for the M/C
scheduling problem. Necessary conditions for schedul-
ability under an optimal algorithm are that (i) the task set
is schedulable considering only the M-phase of each
task, ignoring all the C-phases, and (ii) the task set is
schedulable considering only the C-phase of each task,
ignoring all the M-phases. Since EDF is an optimal single
machine scheduling algorithm for sporadic task-sets, it
follows that it is necessary for schedulability under an
optimal algorithm that the system speed is such that EDF
can schedule the M-phases alone, and also that EDF can
schedule the C-phases alone. Hence S3 is a necessary sys-
tem speed required by an optimal algorithm for the M/C
scheduling problem

S3 ¼ max
8t�0

DBFMðtÞ
t

;
DBFCðtÞ

t

� �
: (1)

Since any given task-set is guaranteed to be schedulable
on a system of speed S2 using EDF, and cannot be sched-
ulable with any (optimal) algorithm on a system of speed
lower than S3, it follows that an upper bound on the
speedup factor required by EDF is given by S ¼ S2=S3.

Let LM ¼ max8t�0
DBFM ðtÞ

t

� �
and LC ¼ max8t�0

DBFC ðtÞ
t

� �
.

It follows that

S ¼ LM þ LC

maxðLM;LCÞ
: (2)

It is easy to see that the speedup factor S is maximized
when LM and LC are equal, in which case the upper
bound speedup factor is S ¼ 2. As we already showed in
Example 1 that S ¼ 2 is a lower bound, the exact speedup
factor required by EDF for the M/C problem is 2. tu

Another result that is no longer valid for the M/C model
concerns the concept of critical instant. A critical instant is a
particular release configuration that leads to the largest pos-
sible response time under fixed priority scheduling for a
given task. For regular (independent) task instances, a criti-
cal instant is given by the synchronous release of all tasks,
with jobs re-released as soon as possible, i.e., with consecu-
tive task instances separated by their minimum inter-arrival
time [49]. The following example shows that this is no lon-
ger true for M/C task-sets.

Example 2. Consider a system composed of two periodic or
sporadic tasks: a task t1 with an M-phase M1 ¼ 0, a
C-phase C1 ¼ 2, and a deadlineD1 ¼ 2; and a task t2 with
an M-phase M2 ¼ 2, a C-phase C2 ¼ 1, and a deadline
D2 ¼ 3. Both tasks have an arbitrarily large period. When
both tasks are released synchronously, any work-conserv-
ing scheduler6 will immediately start executing the
C-phase of t1, completing right before its deadline; mean-
while, t2 executes its M-phase, leaving sufficient slack to
complete its computing part before its deadline. When
instead the release of t1 is postponed by one time unit, at

5. The optimal algorithm may be hypothetical or clairvoyant.

6. In the M/Cmodel, a scheduler is work-conserving if it never idles
a resource (core or memory) whenever there is a ready phase (C- or M-
phase, respectively).

MELANI ET AL.: EXACT RESPONSE TIME ANALYSIS FOR FIXED PRIORITY MEMORY-PROCESSOR CO-SCHEDULING 635

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on April 13,2020 at 18:18:49 UTC from IEEE Xplore. Restrictions apply.

least one of the tasks will miss its deadline, independently
of the adopted scheduling algorithm.

The above example can be identically used to show that
the synchronous periodic release scenario is not a critical
instant for sporadic M/C task systems scheduled with
fixed-priority. Since the schedulability analysis of classic
sporadic task systems scheduled with fixed-priority hinges
on the synchronous periodic critical instant, this prevents
the adoption of existing results for the considered setting. In
particular, the response time analysis for sporadic task sets
with constrained deadlines given in the following theorem
is not applicable to the M/C model.

Theorem 3 (from [8]). For classic sporadic task systems with
constrained deadlines scheduled with fixed-priority, the worst-
case response time of a task tk can be computed by finding Rk

from the following iterative relation, starting with Rk ¼ Ek

Rk
X

j2hepðkÞ

Rk

Tj

� �
Ej: (3)

The above theorem may be applied to the considered
M/C task model as a sufficient test, i.e., to compute an
upper-bound on the worst-case response time of an M/C
task, using the sum of the memory and computation phases
as the worst-case execution time: Ej ¼Mj þ Cj; 8tj. How-
ever, this approach is pessimistic since it does not take
advantage of the possible overlapping ofmemory and execu-
tion phases in M/C task systems. An alternative approach is
using the classic response time analysis to find the worst-
case response time of the M-phase (i.e., using Ej ¼Mj; 8tj),
and use this value as a release offset for the corresponding
C-phase. This second approach has been adopted in the real-
time literature for distributed task systems [9], [10], [11], [12],
[13], providing offset-based response time analyses leading
to tighter (still, only sufficient) schedulability tests.

In the remainder of this section, we extend the state-of-
the-art by providing a necessary and sufficient schedulabil-
ity test for M/C sporadic task systems with constrained
deadlines scheduled with fixed-priority. For this purpose,
we identify a new critical instant that leads to the worst-
case response time of fixed-priority M/C tasks, and derive
an exact response time analysis for the considered setting.

4.1 Critical Instant

The problem in deriving a critical instant for M/C task sys-
tems is due to the precedence constraint between the
M- and the C-phases. When trying to maximize the overall
response time Rk of a task tk (see Equation (4)), there may

be configurations that maximize the response time RM
k of

the M-phase, but that do not maximize the response time

RC
k of the corresponding C-phase, and vice-versa. Also, the

maximum overall response time may theoretically corre-
spond to a configuration that does not maximize either the
memory or the computation response time, making it signif-
icantly more complex to identify a critical instant scenario.
Conversely, if one were able to find a configuration that
maximizes both the memory response time and the compu-
tation response time, this would automatically give a valid
critical instant. Such a configuration would lead to a

response time of RM
k for the M-phase, and of RC

k for the
C-phase. Since the two phases may not overlap, the overall
response time of a task tk may be easily found as

Rk ¼ RM
k þRC

k : (4)

Below, we prove that such a configuration indeed exists.
To do that, we first introduce a nomenclature to distinguish
the different kinds of interfering contributions that each
task may experience. We will denote as Jk the job of task tk
under analysis, dropping the job index to simplify the nota-
tion (i.e., the release time of Jk will be denoted as rk, and its
M/C point as fk), and as ti a generic (higher priority) task
whose jobs interfere with tk. Jobs interfering with Jk may be
divided into memory-interfering, processor-interfering and
dual-interfering, as follows.

Definition 1. A job of task ti is said to be M-interfering (resp.
C-interfering) with Jk if the M-phase (resp. C-phase) of Jk is
ready but it cannot execute while the M-phase (resp. C-phase)
of the job of ti is executing.

Definition 2. A job of task ti is said to be dual-interferingwith
Jk if it is both M- and C-interfering with Jk.

Lemma 1. Each higher priority task ti, 1 � i < k, has at most
one dual-interfering job with Jk.

Proof. The M-phase (resp. C-phase) of job Jk will be inter-
fered only by M-phases (resp. C-phases) of higher priority
jobs. Since there is only one M-phase and one C-phase in
the considered model, Jk cannot be C-interfered before
fk, and it cannot be M-interfered after fk. Also, due to the
constrained deadline model, each higher priority task ti
has at most one job ready at time fk. tu

To clarify the nomenclature, consider the example in
Fig. 2a, where the synchronous release pattern is assumed
for all tasks t1; . . . ; tk in a fixed-priority schedule. With
respect to the considered job Jk, the first two jobs of the
highest priority task t1 are M-interfering jobs, while the lat-
ter two are C-interfering jobs. The first job of t2 is instead a
dual-interfering job, as it interferes with Jk both in memory
and CPU. The above example will be used in the following

Fig. 2. Synchronous release (a) and critical instant configuration (b).

636 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 4, APRIL 2017

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on April 13,2020 at 18:18:49 UTC from IEEE Xplore. Restrictions apply.

to derive a critical instant configuration for M/C task sys-
tems. In particular, we will show that by shifting right all
interfering tasks such that they all have a dual-interfering
job with M/C point aligned with that of the interfered job
Jk, then the response time of Jk is maximized. This result is
formally proved in the following theorem.

Theorem 4 (Critical Instant). The maximum response time of
a job Jk of a task tk in a fixed-priority M/C system is found
when all higher priority tasks ti; i 2 hpðkÞ have:

1) a dual-interfering job completing its M-phase an infi-
nitely small amount of time earlier than the M/C point
of Jk;

2) all jobs released periodically;
3) a null M-phase for all (C-interfering) jobs released after

the M/C point of Jk.

Proof. We will prove that under the considered configura-
tion, summarized in Fig. 2b, the response times of both
the M- and C-phases of the considered job Jk are individ-
ually maximized. We first prove that the response time of
the M-phase of Jk is maximized under the considered
scenario. tu

Lemma 2. The response time of the M-phase of Jk is maximized
under the critical instant of Theorem 4.

Proof. Since there is only one M-phase per job, and it is the
first phase to execute (i.e., it does not have any prece-
dence constraint), the problem is similar to the response
time analysis of classic (single-phase) systems. By anal-
ogy with classic sporadic task systems, the synchronous
periodic release pattern (as in Fig. 2a) maximizes the
response time RM

k of the memory phase of Jk [49]. Under
such a configuration, let J�i be the last M-interfering job
of each higher priority task ti. It will be either an M-
interfering job (e.g., t1), or a dual-interfering job (e.g.,
t2). In either case, the M/C point of J�i cannot be later
than the M/C point of the interfered job Jk, i.e., f

�
i < fk.

Starting from tk�1 and proceeding in reverse priority
order, we now shift right each higher priority task ti
until the M-phase of its job J�i completes an infinitesimal
amount of time earlier than fk (as in Fig. 2b), the
response time of Jk does not change, because, by con-
struction, none of the M-interfering instances exits the

window ½rk; rk þRM
k � from the right. Note also that no

other M-phase may enter the window from the left since

RM
k is already the maximum possible. tu

Note that the above lemma can be identically used to
show that also the response time of the M-phase of each
dual-interfering job J�i is maximized under the considered
scenario. We now prove that also the response time of the
C-phase of Jk is maximized under the considered scenario.

Lemma 3. The response time of the C-phase of Jk is maximized
under the critical instant of Theorem 4.

Proof. In the critical instant configuration, the M-phase of
each dual-interfering job J�i has a maximal response time

equal to RM
i . This means that the C-phase of each such

job becomes ready at the latest possible instant, i.e.,

f�i ¼ r�i þRM
i . Moreover, according to the definition of

critical instant of Theorem 4, later instances are released
as soon as possible, with no M-phase. This means that the
largest possible C-phase workload from ti is imposed to
lower priority C-phases that become ready at f�i . Note
that, in a single-core system scheduled with fixed-prior-
ity, all higher priority C-phase workload will C-interfere
with a lower priority C-phase, according to Definition 1.
Since the M/C points of all jobs J�i are aligned with fk, Jk
will experience the maximum possible C-interference by
each higher priority task ti. This leads to the worst-case

response time RC
k for the C-phase of Jk. tu

Having proved that the response times of both the
M- and C-phases of Jk are individually maximized, the the-
orem follows.

Note that assuming that the interfering jobs released after
fk may have a null M-phase is not an over-constraining
assumption, but it is needed to comply with the notion of
“sustainability”, as defined by Burns and Baruah [50]. A
scheduling algorithm or a schedulability test is defined to
be sustainable if any task system determined to be schedu-
lable remains so when it behaves “better” than its worst-
case specification; for example, when some of the tasks exe-
cutes for less than its worst-case execution time. Therefore,
the schedulability of the M/C task system has to be ensured
also when the M-phase of some of the tasks takes less than
Mi, or it is completely skipped, as in the critical instant con-
figuration of Theorem 4.

4.2 Exact Response Time Analysis

Based on the identified critical instant, the following theo-
rem allows computing the exact worst-case response time
of each M/C task tk.

Theorem 5. In a fixed-priority system, the worst-case response
time of each constrained deadline M/C task tk can be computed

as Rk ¼ RM
k þRC

k , where R
M
k is first found from the following

iterative relation, starting with RM
k ¼Mk

RM
k

X
i2hepðkÞ

RM
k

Ti

� �
Mi; (5)

and then it is used in the following iterative relation to find

RC
k , starting with R

C
k ¼ Ck

RC
k Ck þ

X
i2hpðkÞ

RC
k þRM

i

Ti

� �
Ci: (6)

Proof. Consider the critical instant configuration of Theo-
rem 4. Since both the M- and C-phase response times of
Jk are individually maximized under the considered con-
figuration, the worst-case response time Rk of tk can be
computed using Equation (4). To compute the worst-case

response time RM
k of the M-phase, we note that it is

exactly the same obtained under the synchronous release
pattern (see the proof of Lemma 2). Therefore, by analogy
with the classic sporadic task model, it can be simply
found by the fixed-point iteration of Equation (5).

The worst-case response time RC
k of the C-phase can

instead be found by analogy with the response time anal-
ysis for classic sporadic tasks with release jitter (i.e., the

MELANI ET AL.: EXACT RESPONSE TIME ANALYSIS FOR FIXED PRIORITY MEMORY-PROCESSOR CO-SCHEDULING 637

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on April 13,2020 at 18:18:49 UTC from IEEE Xplore. Restrictions apply.

maximum deviation of successive task releases from its
period) [51], where the worst-case response time of the
M-phase behaves as a release jitter for the C-phase. Con-
sider the C-interfering workload produced by the higher
priority tasks when (i) the C-phase of the first instance of

each task becomes ready with an offset RM
i , (ii) the M/C

point of all the first instances are aligned, and (iii) later
instances are released as soon as possible, with no
M-phase (see Theorem 4). Under such a configuration,
the C-phase response time of Jk can be found by consid-
ering the C-interfering contributions from each higher
priority task. That is, for each ti; i < k, (i) the dual-inter-
fering job J�i , and (ii) the remaining interfering instances

computed as dR
C
k
�ðTi�RM

i
Þ

Ti
e, each contributing for Ci. By

adding the worst-case execution time Ck of the task
under analysis, we obtain

RC
k Ck þ

X
i2hpðkÞ

1þ RC
k � Ti þRM

i

Ti

� �� �
Ci:

By simplifying the terms, Equation (6) follows. tu

A simple (necessary and sufficient) schedulability test
can be found by checking whether the worst-case response
time Rk computed with Theorem 5 is � Dk, for each task tk
in the system. Whenever the response time of a task exceeds
its deadline, the tests stops, concluding that the task set is
not feasible with fixed priority.

Note that Theorem 5 provides a stronger result than the
existing analysis for distributed scheduling settings [9], [11],
[28], which is able to provide only sufficient schedulability
conditions for transactions with dynamic offsets in a tracta-
ble time. Instead, the critical instant configuration identified
in Section 4.1 is shown to jointly maximize the worst-case
response times of both the M-phase and the C-phase, pro-
viding a necessary and sufficient response time analysis for
checking the schedulability of M/C task systems with
pseudo-polynomial complexity.7

5 THE PRIORITY ASSIGNMENT PROBLEM

In this section, we study the problem of priority assignment
for the M/C scheduling model. First (Section 5.1), we show
that, as opposed to the classical uniprocessor case [52],
Deadline Monotonic is not an optimal priority ordering. In
addition (Section 5.2), we show that the Audsley’s Optimal
Priority Assignment algorithm [53], [54] cannot be used in
conjunction with the exact test proposed in Section 4.2. We
then propose a sufficient test that is compatible with the
OPA algorithm (Section 5.3) and evaluate its performance
against the DM priority assignment, which can be applied
in combination with our exact test. Finally (Section 5.4), we
elaborate on the possibility of assigning different priorities
to the M- and C-phase of each task.

5.1 Deadline Monotonic is Not Optimal

The following counterexample shows that DM is not an
optimal priority assignment for the M/C scheduling model.

Example 3. Consider a system composed of three tasks
with the following parameters: t1 ¼ ðM1; C1; D1 ¼ T1Þ ¼
ð9; 1; 20Þ, t2 ¼ ð1; 9; 24Þ, t3 ¼ ð5; 5; 35Þ. Fig. 3a) shows the
schedule with DM in the critical instant scenario. In this

configuration, RM
1 ¼ 9, RC

1 ¼ 1, R1 ¼ 10 � 20 for task t1,

and RM
2 ¼ 10, RC

2 ¼ 10, R2 ¼ 20 � 24 for task t2. How-

ever, t3 misses its deadline, since RM
3 ¼ 15, RC

3 ¼ 25,
R3 ¼ 40 > 35. Conversely, all tasks become schedulable
in priority order ½t2; t1; t3�, as shown in Fig. 3b). In partic-

ular, we have: RM
2 ¼ 1, RC

2 ¼ 9, R2 ¼ 10 � 24 for task t2;

RM
1 ¼ 10, RC

1 ¼ 10, R1 ¼ 20 � 20 for task t2, and RM
3 ¼ 15,

RC
3 ¼ 16, R3 ¼ 31 � 35 for task t3.

Intuitively, DM fails when swapping the priority order of
two higher priority tasks changes their offset at the critical
instant, such that the interference on a lower-priority task is
increased. In the above example, t3 is not schedulable with
DM, as the execution of its C-phase suffers interference
from two instances of each higher-priority task, leading to a
deadline miss for t3. By swapping the priorities of t1 and t2,
as in Fig. 3b), their offsets in the critical instant configuration
decrease by one instance the interference of t2 on the C-
phase of t3, which now becomes schedulable. This result
suggests how to reason about different priority assignment
algorithms. In the context of uniprocessor fixed-priority
scheduling, the Optimal Priority Assignment algorithm [53],
[54] solved the problem of optimally assigning priorities for
asynchronous task-sets (i.e., which do not necessarily share
a common release time) [55], and for tasks with arbitrary
deadlines (i.e., which may be greater than their periods) [56].
In the next section, we reason about the applicability of OPA
for M/C task-sets.

5.2 Applicability of OPA Algorithm

In [57], the authors showed that three necessary and
sufficient conditions need to be fulfilled to enable the
applicability of OPA in combination with a given sched-
ulability test. If these conditions are verified, OPA

Fig. 3. Counterexample on the sub-optimality of DM.

7. While a deep analysis of partitioned multi-core systems is left as a
future work, note that the test of Theorem 5 can also be adopted for par-
titioned multi-core systems, where each task is statically assigned to a
given core, while all cores share the same main memory. In this case,
the sum of Equation (6) has to be limited to higher priority tasks
assigned to the same core of the considered task tk, while Equation (5)
is still extended to all higher priority tasks.

638 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 4, APRIL 2017

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on April 13,2020 at 18:18:49 UTC from IEEE Xplore. Restrictions apply.

provides optimal priority assignment with respect to the
considered test.

Theorem 6. The exact RTA-MC test (Theorem 5) is OPA-
incompatible.

Proof. It suffices to show that Condition 1 in [57] does not
hold for the RTA-MC test. The response time of the
C-phase of any task tk (Equation (6)) depends on the
response times of the M-phase of higher-priority tasks,
which in turn depend on the relative priority ordering of
the tasks. For instance, the task set of Example 3 is
deemed schedulable by RTA-MC with priority order
½t2; t1; t3�; however, it becomes unschedulable by switch-
ing the order of t1 and t2, because t2 at priority level 2
increases the interference on t3, which is then deemed
unschedulable, thus Condition 1 from [57] does not hold
and so the test is not OPA-compatible. tu

5.3 OPA-Compatible Schedulability Tests

The negative result above means that it is interesting to
investigate the performance of the OPA algorithm in combi-
nation with weaker (i.e., sufficient) schedulability tests. In
this section, we derive a sufficient schedulability test that
can be used in combination with the OPA algorithm. In this
way, we can check whether in our case an optimal priority
assignment is able to make up for a weaker schedulability
test, for example by making comparisons with an exact test
assuming DM priority order.

Theorem 7. For each task tk, an upper-bound on its response

time can be computed by first finding RM
k from the following

iterative relation, starting with RM
k ¼Mk

RM
k

X
i2hepðkÞ

RM
k

Ti

� �
Mi; (7)

and then using it in the following iterative relation

RC
k Ck þ

X
i2hpðkÞ

RC
k þminðRM

k �Mk;Di � CiÞ
Ti

� �
Ci: (8)

Proof. It is enough to show that ðRM
k �MkÞ and ðDi � CiÞ

are both valid upper-bounds on RM
i . Indeed, by Equa-

tion (7) we get

RM
k �Mk ¼

X
j2hpðkÞ

RM
k

Tj

� �
Mj: (9)

As the right-hand side is non-negative and i < k, it fol-
lows that:

RM
k �Mk �

X
j2hepðiÞ

RM
i

Tj

� �
Mj ¼ RM

i : (10)

Di � Ci is a valid upper-bound on RM
i as well because

by Equation (4) and the schedulability of ti it follows that

Ri ¼ RM
i þRC

i � Di, and since Ci � RC
i , we conclude

that RM
i � Di � Ci. tu

In Section 6.3, we will experimentally evaluate the perfor-
mance of the proposed approaches to priority assignment,

along with the exact (Theorem 5) and sufficient (Theorem 7)
schedulability tests.

5.4 Different Priorities for M- and C-Phases

We now add a new degree of freedom to the priority assign-
ment problem by allowing different priorities for the
M- and C-phase of each task (so each task has two priorities
which are used for all of its jobs). In this new setting, we
need to consider different sets of higher-priority tasks for
the two phases. In particular, we define hpMðkÞ (resp.,

hpCðkÞ) as the set of tasks whose M-phase (resp., C-phase)
has priority higher than the M-phase (resp., C-phase) of tk.

Sets hepMðkÞ and hepCðkÞ are re-defined accordingly. As a
preliminary result, we show that the critical instant scenario
and, consequently, the exact schedulability analysis
described in Section 4 still hold when different static priori-
ties are assigned to the two phases. Theorem 8 generalizes
Theorem 4 to encompass this situation.

Theorem 8 (Critical Instant). The maximum response time of
a job Jk of a task tk in a fixed-priority M/C system is found

when all higher priority tasks ti; i 2 hpMðkÞ [hpCðkÞ have:

1) a job8 completing its M-phase an infinitely small
amount of time earlier than the M/C point of Jk;

2) all jobs released periodically;
3) a null M-phase for all (C-interfering) jobs released after

the M/C point of Jk.

Proof. For any task ti in hpMðkÞ [hpCðkÞ, it may be that

either (i) ti 2 hpMðkÞ \ hpCðkÞ; or (ii) ti 2 hpMðkÞ and

ti =2 hpCðkÞ; or (iii) ti =2 hpMðkÞ and ti 2 hpCðkÞ.
In case (i), the result of Theorem 4 straightforwardly

applies. In case (ii), all jobs of ti are M-interfering, but
not C-interfering. The configuration of Theorem 8 maxi-
mizes the M-interfering contribution on Jk by the result
of Lemma 2. Finally, in case (iii), all jobs of ti are C-inter-
fering, but not M-interfering. However, if we let a job of
ti complete its M-phase an infinitely small amount of
time earlier than fk (despite not being M-interfering with
Jk), this will cause the C-phase of such a job to be ready
at the latest possible instant. As subsequent instances are
released as early as possible, the result of Lemma 3 also
holds under the critical instant of Theorem 8, concluding
the proof. tu

Based on the identified critical instant scenario, the fol-
lowing theorem trivially extends the exact schedulability
analysis of Theorem 5 to the case of different priorities for
the two phases of each M/C task tk.

Theorem 9. In a fixed-priority system, the worst-case response
time of each constrained deadline M/C task tk can be computed

as Rk ¼ RM
k þRC

k , where R
M
k is first found from the following

iterative relation, starting with RM
k ¼Mk

RM
k

X
i2hepM ðkÞ

RM
k

Ti

� �
Mi; (11)

8. Contrary to what stated in Theorem 4, this job cannot be referred
to as dual-interfering. This is only true whenever the interfering task
belongs to hpMðkÞ \ hpCðkÞ.

MELANI ET AL.: EXACT RESPONSE TIME ANALYSIS FOR FIXED PRIORITY MEMORY-PROCESSOR CO-SCHEDULING 639

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on April 13,2020 at 18:18:49 UTC from IEEE Xplore. Restrictions apply.

and then it is used in the following iterative relation to find

RC
k , starting with R

C
k ¼ Ck

RC
k Ck þ

X
i2hpC ðkÞ

RC
k þRM

i

Ti

� �
Ci: (12)

We now show that assigning the same priority to the two
phases is not optimal, i.e., there are task-sets that are
unschedulable when the same priority is assigned to both
phases of each task, that become schedulable when different
priorities are assigned to the execution phases of some task.

Example 4. Consider the task-set described in Example 3.
We have shown previously that the task-set is schedu-
lable in priority order ½t2; t1; t3�. Then, if we let
D1 ¼ T1 ¼ 19 (instead of 20), t1 fails to meet its deadline
and renders the task-set unschedulable. However, if we
assign the highest priority to the C-phase of t1, with the
C-phase of task t2 at the second highest priority (leaving
the M-phase of task t2 still at the highest priority) then
the task-set becomes schedulable again. It can be easily
checked that in this case, under the critical instant sce-

nario described by Theorem 8, RM
2 ¼ 1, RC

2 ¼ 10,

R2 ¼ 11 � 24 for task t2; R
M
1 ¼ 10, RC

1 ¼ 1, R1 ¼ 11 � 19

for task t1, and RM
3 ¼ 15, RC

3 ¼ 16, R3 ¼ 31 � 35 for task
t3. Hence, all tasks meet their deadlines.

Effectively, the above example just shows that schedul-
ability can be increased by lifting the assumption of a single
static priority assignment to both phases. However, much
stronger results can be drawn by rethinking Example 1
(used in Section 4 to show the sub-optimality of EDF) in
light of the new results derived in this section. In that exam-
ple (Fig. 1b), the priority of task t1 changes from high to low
when transitioning from its M- to its C-phase, which makes
the task-set become schedulable. Additionally, the configu-
ration in Fig. 1b corresponds to the critical instant scenario
described by Theorem 8, meaning that in such a configura-
tion both tasks experience their exact worst-case response
time. It directly follows that Example 1 can be identically
used to show that:

Corollary 1. No Fixed Task Priority (FTP) scheduling policy
where all jobs of the same task have a single priority used for
both M- and C-phases can be optimal;

Corollary 2. No Fixed Job Priority (FJP) scheduling policy
where every job has a single priority used for both M- and
C-phases can be optimal;

Corollary 3. FTP and FJP scheduling classes have a speedup fac-
tor which is lower bounded by 2;

Corollary 4. Dynamic Priority (DP) scheduling, where each job
can change priority when transitioning from memory to com-
putation phase, is necessary for optimality.

5.5 Two-Phase Priority Assignment

The above results have demonstrated that a higher sched-
ulability performance can be achieved by allowing differ-
ent priorities for the M- and C-phase of each task. It now
remains to address the problem of how to select priorities
for the two phases. The correspondence between the

analysis for M/C tasks and that for classic tasks with jit-
ter [51] identified in Section 4.2 allows us to extend the
result in [58] to the M/C scheduling model. Specifically,
in [58] the authors proved that in the case of jitter, priori-
ties can be optimally assigned according to increasing val-
ues of Di � Ji, where Ji denotes the release jitter of task ti.
This is referred to as Deadline minus Jitter Monotonic
priority assignment. In our case, the release jitter of the
C-phase of task ti is given by the response time of its

M-phase, i.e., RM
i . Since the value of RM

i depends on the
relative priority ordering of the M-phases, to get an overall
optimal priority assignment for both M- and C-phases it
would be required to exhaustively try each combination of
priorities for the M-phases, with priorities for the C-phases
then assigned according to the corresponding values of

Di �RM
i , until schedulability is verified or all combinations

have been tested. To reduce the computational burden of a
brute-force search, we propose to allocate an intermediate
deadline proportional to the work that must be executed
by task ti in each phase. Similar priority assignment heu-
ristics have proven effective in the context of multi-stage
scheduling (e.g., [59]). More formally, we propose to assign
priorities to the two phases as follows: for the M-phases,
assign priorities by increasing values of ðDi 	MiÞ=
ðCi þMiÞ; for the C-phases, assign priorities by increasing

values of Di �RM
i . Experimental evaluation in Section 6

will demonstrate the effectiveness of the proposed heuris-
tic strategy in comparison with a brute-force search of all
possible priority orderings.

6 EXPERIMENTAL RESULTS

To provide an experimental characterization of the perfor-
mance improvement that may be obtained by adopting the
M/C task model, we conducted a set of experiments apply-
ing the schedulability test proposed in Section 4 to ran-
domly generated M/C workloads scheduled with fixed-
priority on a single-core/single-memory setting. We then
compared the number of schedulable task-sets detected by
our test against classic approaches. Since the test is exact,
i.e., necessary and sufficient, the results may be used to infer
general properties of M/C sporadic task systems. In partic-
ular, we show that our approach efficiently exploits the
pipelining of memory and execution phases, determining a
significant schedulability improvement with respect to the
classic sequential execution model and existing approaches
for multi-stage systems. We then evaluate the priority
assignment algorithms proposed in Section 5. Specifically,
we quantify the schedulability gap between a sub-optimal
priority assignment in combination with an exact test and
the OPA algorithm in conjunction with a sufficient test. We
also evaluate the performance gain that can be attained
when different priorities may be assigned to the M- and C-
phase of each task. The tests compared have been imple-
mented in MATLAB, and the code is available online [60].

6.1 Task-Set Generation

The generation of each task tk, k 2 f1; . . . ; ng, is performed

as follows: (i) the sum Vk ¼def Mk þ Ck is uniformly selected
in the interval ½10:000; 1; 000; 000�; (ii) the worst-case

640 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 4, APRIL 2017

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on April 13,2020 at 18:18:49 UTC from IEEE Xplore. Restrictions apply.

computation time Ck is computed as b Vk
fmcþ1c, where

fmc ¼
def

Mk=Ck is the memory-to-computation ratio; (iii) the
worst-case memory access time Mk is then computed as

Vk � Ck; (iv) the task utilization uM
k þ uC

k is generated using

UUnifast [61]; (v) the period Tk is then calculated as

dMkþCk

uM
k
þuC

k

e; (vi) the relative deadline Dk is uniformly selected

in the interval ½Mk þ Ck; Tk�. In our experiments, three dif-
ferent schedulability tests based on response time analysis
have been compared: (i) the exact test of Theorem 5, referred
to as RTA-MC; (ii) the test in [33] based on delay composi-
tion (RTA-DC), restricted to the sub-case of fixed-priority
scheduling and two-stage jobs; (iii) the response time analy-
sis for classic sequential task systems given by Theorem 3,
referred to as RTA, taking Ek ¼Mk þ Ck as total execution
time of the task. In the initial experiments, Deadline Mono-
tonic priority ordering is used. Priority assignment is fur-
ther explored in Section 6.3.

6.2 Schedulability Results

In the first set of experiments, we varied the total utiliza-
tion of the task-set UT from 0.1 to 1.5, generating 10,000
task-sets for each value on the x-axis. Fig. 4 shows the
results with n ¼ 8 tasks, and a memory-to-computation
ratio fmc selected with log-uniform distribution in the
interval ½0:1; 10�. As can be seen, RTA-MC outperforms
RTA, especially for high values of UT , confirming that
the pipelining of M- and C-phases is highly beneficial in
terms of schedulability. For utilizations close to 0.9, the
M/C model admits almost 50 percent of the generated
task-sets, while the performance of classic RTA drops
below 10 percent. As a notable aspect, RTA-MC is also
able to schedule task-sets with UT > 1, which is obvi-
ously not possible using the RTA approach. This large
performance gain is one of the main benefits brought by
the use of a pre-fetching execution model on a single-
core platform. The performance of RTA-DC is signifi-
cantly lower than RTA-MC at all utilization levels, and
even lower than RTA, due to the conservative way of
estimating the delay incurred by each execution stage.

We conducted other sets of experiments to observe how
the schedulability performance varies depending on the
value of the memory-to-computation ratio fmc and the num-
ber of tasks in the system. Given the large design space to
explore, we adopted an aggregate performance metric
called weighted schedulability (see [62] for a definition).

Fig. 5 reports in logarithmic scale the results of weighted
schedulability when the observed parameter was the
memory-to-computation ratio fmc, varied in the interval

½10�3; 103�, with n ¼ 8. While the classic RTA test is obvi-
ously not affected by variations in the memory-to-computa-
tion ratio, the M/C test has a peculiar behavior.
Interestingly, when Mk is almost equal to Ck (i.e., fmc is
about 1, or, equivalently, log10ðMk=CkÞ is around 0), the M/
C test admits all the task-sets. When instead the two values
are more unbalanced, the performance symmetrically
degrades, until asymptotically reaching the performance of
the completely sequential RTA. This intuitively means that
when the duration of the two phases is comparable, the test
can take full advantage of the pipelined execution of M-
and C-phases. The RTA-DC test exhibits the same behavior
as RTA-MC, since it can also take advantage of such a pipe-
lined execution, but reaches a significantly lower schedul-
ability performance due to the pessimism in the delay
estimation. Only for values of fmc close to 1, RTA-DC
reaches the performance of the sequential RTA. Although
Fig. 5 refers to the implicit deadline case, we remark that
the same trend is also present in the constrained deadline
case, even if less evident due to the reduced slack available.

In the third set of experiments, we varied the number of
tasks n in the interval ½2; 30�, with fmc selected with log-uni-
form distribution in ½0:1; 10�. Fig. 6 illustrates the results for
the implicit deadline case, while Fig. 7 refers to the con-
strained deadline case (i.e., relative deadlines are uniformly
selected in the interval ½Mk þ Ck; Tk�). Under the constrained
deadline model, the performance of all the tests degrades
when n increases. However, when deadlines are implicit,
RTA-MC seems to take advantage of the smaller granularity
of the tasks (and relative M/C-phases) to obtain a better
pipelining of memory and computation, identifying almost

Fig. 4. Experiments varying UT , with fmc log-uniformly distributed in
½0:1; 10�, and n ¼ 8. Fig. 5. Weighted schedulability as a function of fmc, with n ¼ 8, and

implicit deadlines.

MELANI ET AL.: EXACT RESPONSE TIME ANALYSIS FOR FIXED PRIORITY MEMORY-PROCESSOR CO-SCHEDULING 641

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on April 13,2020 at 18:18:49 UTC from IEEE Xplore. Restrictions apply.

all generated task-sets as schedulable. RTA and RTA-DC
also reach a constant trend, but are able to schedule a much
smaller amount of task-sets (around 80 and 50 percent,
respectively). The experiment in Fig. 8 better clarifies how
the performance of the tests varies depending on the dead-
line model. Here, we vary the factor ad that controls the por-
tion of the interval where the relative deadline can be
selected. More specifically, for each value of ad, the relative
deadline Dk of a task tk is uniformly chosen in
½ðMk þ CkÞ þ dadðTk � ðMk þ CkÞÞe; Tk�. In the extreme case
when ad ¼ 0, the relative deadline is uniformly chosen in
½Mk þ Ck; Tk�; when instead ad ¼ 1, all relative deadlines are
implicit (i.e., Dk ¼ Tk for all tasks). The results show that by
increasing ad all tests perform significantly better due to the
larger slack available. The performance improvement of
RTA-MC is however much better, confirming the trend
observed in Figs. 6 and 7.

6.3 Priority Assignment Results

6.3.1 Same Priority for the Two Phases

We now present the results of our empirical investigation
on the priority assignment policies discussed in Section 5.

We first focus on the case in which the same priority is
assigned to both phases of each task. The priority assign-
ment strategies studied are: (i) Deadline Monotonic in con-
junction with the exact test of Theorem 5 (RTA-DM-
EXACT); (ii) Audsley’s OPA algorithm in conjunction with
the sufficient test of Theorem 7 (RTA-OPA-SUFF); (iii) DM
in conjunction with the sufficient test of Theorem 7 (RTA-
DM-SUFF); (iv) Brute-force (BF) priority assignment, which
exhaustively tries each combination of priorities, in conjunc-
tion with the exact test of Theorem 5 (RTA-BF).

Fig. 9 illustrates the results of a set of experiments where
the number of schedulable task-set has been observed as a
function of the task-set utilization (varied in the interval
UT 2 ½0:1; 1:5� in steps of 0.1). The memory-to-computation
ratio has been varied with log-uniform distribution in the
interval fmc 2 ½0:1; 10�. For each utilization value, 1,000
task-sets have been generated with n ¼ 8. In the figures,
the performance gap between the exact test and the suffi-
cient test is quantified by the distance between RTA-DM-
EXACT and RTA-DM-SUFF. Also, the comparison between
RTA-DM-EXACT and RTA-OPA-SUFF shows that in our
case an optimal priority assignment is not enough to make
up for the weaker schedulability test. Interestingly, this is

Fig. 6. Experiments varying n, with fmc log-uniformly distributed in
½0:1; 10�, and implicit deadlines.

Fig. 7. Experiments varying n, with fmc log-uniformly distributed in
½0:1; 10�, and constrained deadlines.

Fig. 8. Experiments varying ad, with fmc log-uniformly distributed in
½0:1; 10�, and n ¼ 8.

Fig. 9. Evaluation of different priority assignments, n ¼ 8 and fmc log-uni-
formly distributed in ½0:1; 10�.

642 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 4, APRIL 2017

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on April 13,2020 at 18:18:49 UTC from IEEE Xplore. Restrictions apply.

the opposite trend with respect to the global fixed-priority
case in a multicore setting [57], where an appropriate (opti-
mal) choice of priority assignment, although combined
with a sufficient test, yields larger schedulability than an
OPA-incompatible tighter schedulability test combined
with DM. We also evaluated the potential performance of
the exact test with an exhaustive approach to priority
assignment. In particular, the actual schedulability loss
due to a sub-optimal priority assignment is given by the
comparison between RTA-BF and RTA-DM-EXACT. This
gap is extremely small, revealing that, despite being sub-
optimal, DM gives extremely good performance in terms
of admitted task-sets. Specifically, in this set of experiments
only 25 task-sets out of 15,000 are deemed schedulable by
RTA-BF but not by RTA-DM-EXACT. In addition, the com-
parison between RTA-BF and RTA-OPA-SUFF shows
exactly how much schedulability is lost due to a weaker
test but optimal priority assignment.

6.3.2 Different Priorities for the Two Phases

We now extend our evaluation study to the case of different
priorities for the two phases of each task, discussed in
Sections 5.4 and 5.5. To quantify the schedulability improve-
ment obtainable when different priorities are allowed for
the two phases, we measured the number of schedulable
task-sets as a function of UT and examined the following
priority assignment strategies: (i) RTA-BF-dp: brute-force
priority assignment with two degrees of freedom (which
tries each combination of priorities for the first phase and

then applies Di �RM
i to the second phase, as explained in

Section 5.5), in combination with the exact test of Theorem 9;
(ii) RTA-HEUR-dp: heuristic priority assignment proposed
in Section 5.5 in combination with the exact test of Theo-
rem 9; (iii) RTA-BF-sp: brute-force priority assignment
(assuming the same priority for both phases) with the exact
test of Theorem 5; (iv) RTA-DM-EXACT: DM over both
phases with the exact test of Theorem 5.

Fig. 10 reports the results for the case of n ¼ 8, fmc

selected with log-uniform distribution in ½0:1; 10� and UT
varied in the interval ½0:1; 1:5� in steps of 0.1. The compari-
son between RTA-BF-dp and RTA-BF-sp exactly quantifies
the schedulability improvement obtainable when (possibly

different) priorities are optimally assigned to the two phases
of each task. Also, while a negligible schedulability loss is
observed between RTA-DM-EXACT and RTA-BF-sp, a
more significant gap exists between RTA-HEUR-dp and
RTA-BF-dp, mainly due to the sub-optimal priority assign-
ment to the M-phase of each task (see Section 5.5). Specifi-
cally, in this experiment 436 task-sets out of 15,000 are
deemed schedulable by RTA-BF-dp but not by RTA-HEUR-
dp. To complement the results in Fig. 10, we explore how
the performance of the different priority assignment strate-
gies changes with an increasing range of values from which
Mk and Ck can be chosen. In particular, we select the value
of fmc from a log-uniform distribution in the range
½10�x; 10x�. The value of x is varied from 0 to 3 in steps of
0.25 to produce the weighted schedulability graph in
Fig. 11. Observing the distance between the first two curves
(RTA-BF-dp and RTA-HEUR-dp) and the second two
curves (RTA-BF-sp and RTA-DM-EXACT), we conclude
that the improvement allowing different priorities for the
two phases slightly increases with increasing x. Intuitively,
this is because the need for two priorities per task is most
acute when some tasks have a relatively long M-phase and
others have a relatively long C-phase, thus allowing the dis-
parate phases to be overlapped.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we took a further step towards the analytical
characterization of predictable policies to co-schedule both
memory and processing resources, considering sets of spo-
radic M/C tasks executing on a single-core/single-memory
setting. We showed that existing results for classic task
models are not applicable to the considered task model. In
particular, we showed that no fixed task priority or fixed
job priority scheduling algorithm has a speedup factor of
less than 2 compared to an optimal algorithm for the M/C
scheduling problem. Further we proved that the exact
speedup factor for EDF is 2. For fixed priority scheduling,
we showed that the synchronous arrival sequence does not
necessarily result in the longest response times for M/C
tasks, and therefore is not a critical instant. We derived a
critical instant configuration and based on this result we

Fig. 10. Evaluation of different priority assignments, n ¼ 8 and fmc log-
uniformly distributed in ½0:1; 10�. Fig. 11. Evaluation of different priority assignments, n ¼ 8 and fmc log-

uniformly distributed in ½10�x; 10x�.

MELANI ET AL.: EXACT RESPONSE TIME ANALYSIS FOR FIXED PRIORITY MEMORY-PROCESSOR CO-SCHEDULING 643

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on April 13,2020 at 18:18:49 UTC from IEEE Xplore. Restrictions apply.

developed a necessary and sufficient schedulability analysis
that computes the exact worst-case response time of each
task, with a pseudo-polynomial complexity. We also inves-
tigated the problem of priority assignment for the M/C
scheduling model. We discussed the applicability of exist-
ing results and studied the performance of different priority
assignment algorithms, considering both the same and dis-
tinct priorities for the two phases of each task. We also
extended our exact response time analysis to distinct priori-
ties per phase of each task, enabling the derivation of opti-
mality conditions for the M/C scheduling problem. Finally,
we showed by extensive experiments that significant perfor-
mance improvements may be obtained leveraging a pipe-
lined execution of M- and C-phases, efficiently hiding the
memory latency and improving schedulability. These
results show the great potential of pre-fetching execution
models, providing an important building block towards the
design of predictable multi-core systems that are able to effi-
ciently harmonize the provisioning of instruction/data to
computing units, with a limited memory interference. As
future work, we plan to study the impact of pre-fetching
techniques on industrial real-time systems, implementing
efficient co-scheduling algorithms in platforms featuring
multiple cores and memory channels. We expect that fur-
ther significant improvements may be obtained by exploit-
ing burst read/write features to decrease the length of
memory phases of M/C tasks. We also intend to integrate
the M/C model with the limited preemption scheduling
framework, to avoid a task being preempted once its context
has been loaded to local memory. Finally, we aim to tackle
different problems that remain open in this paper, such as
the generalization to multi-phase tasks, and the extension to
partitioned and global multiprocessor scheduling.

ACKNOWLEDGMENTS

This work has been supported by the European Commis-
sion through the HERCULES project (H2020/ICT/2015/
688860), by the Inria International Chair program and by
the ESPRC grant, MCC (EP/K011626/1). EPSRC Research
Data Management: No new primary data was created dur-
ing this study.

REFERENCES

[1] J. Hennessy and D. Patterson, Computer Architecture: A Quantita-
tive Approach. Amsterdam, The Netherlands: Elsevier, 2011.

[2] R. Pellizzoni, E. Betti, S. Bak, J. Criswell, M. Caccamo, and R. Keg-
ley, “A predictable execution model for COTS-based embedded
systems,” in Proc. 17th IEEE Real-Time Embedded Technol. Appl.
Symp., 2011, pp. 269–279.

[3] S. Bak, G. Yao, R. Pellizzoni, and M. Caccamo, “Memory-aware
scheduling of multicore task sets for real-time systems,” in Proc.
18th IEEE Int. Conf. Embedded Real-Time Comput. Syst. Appl., 2012,
pp. 300–309.

[4] G. Yao, R. Pellizzoni, S. Bak, E. Betti, and M. Caccamo, “Memory-
centric scheduling for multicore hard real-time systems,” Real-
Time Syst., vol. 48, no. 6, pp. 681–715, 2012.

[5] S. Wasly and R. Pellizzoni, “Hiding memory latency using fixed
priority scheduling,” in Proc. 18th IEEE Int. Conf. Embedded Real-
Time Comput. Syst. Appl., 2014, pp. 75–86.

[6] A. Alhammad and R. Pellizzoni, “Schedulability analysis of global
memory-predictable scheduling,” in Proc. 14th Int. Conf. Embedded
Softw., 2014, Art. no. 20.

[7] A. Alhammad, S. Wasly, and R. Pellizzoni, “Memory efficient
global scheduling of real-time tasks,” in Proc. 21st IEEE Real-Time
Embedded Technol. Appl. Symp., 2015, pp. 285–296.

[8] M. Joseph and P. Pandya,“Finding response times in a real-time
system,” Comput. J., vol. 29, no. 5, pp. 390–395, 1986.

[9] K. Tindell and J. Clark, “Holistic schedulability analysis for dis-
tributed hard real-time systems,” Microprocessing Microprogram-
ming, vol. 40, no. 2, pp. 117–134, 1994.

[10] M. Spuri, “Holistic analysis for deadline scheduled real-time
distributed systems,” INRIA, Paris, France, Tech. Rep. RR-
2873, 1996.

[11] J. C. Palencia and M. G. Harbour, “Schedulability analysis for
tasks with static and dynamic offsets,” in Proc. 19th IEEE Real-
Time Syst. Symp., 1998, pp. 26–37.

[12] J. C. Palencia and M. Harbour, “Offset-based response time analy-
sis of distributed systems scheduled under EDF,” in Proc. 15th
Euromicro Conf. Real-Time Syst., 2003, pp. 3–12.

[13] R. Pellizzoni and G. Lipari, “Holistic analysis of asynchronous
real-time transactions with earliest deadline scheduling,” J. Com-
put. Syst. Sci., vol. 73, no. 2, pp. 186–206, 2007.

[14] A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela,
and G. Buttazzo, “Memory-processor co-scheduling in fixed prior-
ity systems,” in Proc. 23rd Int. Conf. Real Time Netw. Syst., 2015,
pp. 87–96.

[15] L. Sha, J. P. Lehoczky, and R. Rajkumar, “Solutions for some prac-
tical problems in prioritized preemptive scheduling,” in Proc.
IEEE Real-Time Syst. Symp., 1986, pp. 181–191.

[16] R. Rajkumar, L. Sha, and J. P. Lehoczky, “On countering the
effects of cycle-stealing in a hard real-time environment,” in Proc.
8th IEEE Real-Time Syst. Symp., 1987, pp. 2–11.

[17] S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, and
M. Prieto, “Survey of scheduling techniques for addressing shared
resources in multicore processors,” ACM Comput. Surveys, vol. 45,
no. 1, 2012, Art. no. 4. [Online]. Available: http://doi.acm.org/
10.1145/2379776.2379780

[18] J. Rosen, A. Andrei, P. Eles, and Z. Peng, “Bus access optimization
for predictable implementation of real-time applications on multi-
processor systems-on-chip,” in Proc. 28th IEEE Int. Real-Time Syst.
Symp., 2007, pp. 49–60. [Online]. Available: http://dx.doi.org/
10.1109/RTSS.2007.24

[19] J. Lu, et al., “The performance of runtime data cache prefetching
in a dynamic optimization system,” in Proc. 36th Annu. IEEE/ACM
Int. Symp. Microarchitecture, 2003, pp. 180–190.

[20] A. Marongiu and L. Benini, “An openMP compiler for efficient
use of distributed scratchpad memory in MPSoCs,” IEEE Trans.
Comput., vol. 61, no. 2, pp. 222–236, Feb. 2012.

[21] R. Mancuso, R. Dudko, and M. Caccamo, “Light-PREM: Auto-
mated software refactoring for predictable execution on COTS
embedded system,” in Proc. IEEE 20th Int. Conf. Embedded Real-
Time Comput. Syst. Appl., 2014, pp. 1–10.

[22] I. Puaut and C. Pais, “Scratchpad memories versus locked caches
in hard real-time systems: A quantitative comparison,” in Proc.
Des. Autom. Test Europe Conf. Exhibition, 2007, pp. 1–6.

[23] B. Ward, J. Herman, C. Kenna, and J. Anderson, “Making shared
caches more predictable on multicore platforms,” in Proc. 15th
Euromicro Conf. Real-Time Syst., 2013, pp. 157–167.

[24] S. Altmeyer, R. Douma, W. Lunniss, and R. Davis, “On the effec-
tiveness of cache partitioning in hard real-time systems,” Real-
Time Syst., vol. 52, pp. 1–46, 2016.

[25] J. Deverge and I. Puaut, “WCET-directed dynamic scratchpad
memory allocation of data,” in Proc. 19th Euromicro Conf. Real-
Time Syst., 2007, pp. 179–190.

[26] J. Whitham and N. C. Audsley, “Explicit reservation of local mem-
ory in a predictable, preemptive multitasking real-time system,”
in Proc. IEEE 18th Real Time Embedded Technol. Appl. Symp., 2012,
pp. 3–12.

[27] S. Wasly and R. Pellizzoni, “A dynamic scratchpad memory unit
for predictable real-time embedded systems,” in Proc. 25th Euro-
micro Conf. Real-Time Syst., 2013, pp. 183–192.

[28] J. C. Palencia and M. G. Harbour, “Exploiting precedence rela-
tions in the schedulability analysis of distributed real-time sys-
tems,” in Proc. 20th IEEE Real-Time Syst. Symp., 1999, pp. 328–339.

[29] M. D. Natale and J. A. Stankovic, “Dynamic end-to-end guaran-
tees in distributed real time systems,” in Proc. Real-Time Syst.
Symp., 1994, pp. 216–227.

[30] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus for
scheduling hard real-time systems,” in Proc. IEEE Int. Symp. Cir-
cuits Syst., 2000, pp. 101–104.

[31] J. Krakora, L. Waszniowski, P. Pisa, and Z. Hanzalek, “Timed
automata approach to real time distributed system verification,” in
Proc. IEEE Int. Workshop Factory Commun. Syst., 2004, pp. 407–410.

644 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 4, APRIL 2017

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on April 13,2020 at 18:18:49 UTC from IEEE Xplore. Restrictions apply.

[32] A. Hamann, M. Jersak, K. Richter, and R. Ernst, “A framework
for modular analysis and exploration of heterogeneous embed-
ded systems,” Real-Time Syst. J., vol. 33, no. 1–3, pp. 101–137,
2006.

[33] P. Jayachandran and T. Abdelzaher, “A delay composition theo-
rem for real-time pipelines,” in Proc. 25th Euromicro Conf. Real-
Time Syst., 2007, pp. 29–38.

[34] P. Jayachandran and T. Abdelzaher, “Reduction-based schedul-
ability analysis of distributed systems with cycles in the task
graph,” Real-Time Syst. J., vol. 46, no. 1, pp. 121–151, 2010.

[35] S. Johnson, “Optimal two- and three-stage production schedules
with setup times included,” Naval Res. Logistics, vol. 1, pp. 61–68,
1954.

[36] J. Hoogeveen, J. Lenstra, and B. Veltman, “Preemptive scheduling
in a two-stage multiprocessor shop is NP-hard,” Eur. J. Oper. Res.,
vol. 89, pp. 172–175, 1996.

[37] B. Chen, “Analysis of classes of heuristics for scheduling a two-
stage flow shop with parallel machines at one stage,” J. Oper. Res.
Soc., vol. 46, no. 2, pp. 234–244, 1995.

[38] P. Schuurman and G. J. Woeginger, “A polynomial time approxi-
mation scheme for the two-stage multiprocessor flow shop prob-
lem,” Theoretical Comput. Sci., vol. 237, no. 1/2, pp. 105–122, 2000.
[Online]. Available: http://dx.doi.org/10.1016/S0304–3975(98)
00157-1

[39] A. Melani, R. Mancuso, D. Cullina, M. Caccamo, and L. Thiele,
“Speed optimization for tasks with two resources,” in Proc. Des.
Autom. Test Europe Conf. Exhibition, 2016, pp. 1072–1077.

[40] S. Altmeyer, R. Davis, and C. Maiza, “Improved cache related
pre-emption delay aware response time analysis for fixed priority
pre-emptive systems,” Real-Time Syst., vol. 48, no. 5, pp. 499–526,
2012.

[41] G. Buttazzo, M. Bertogna, and G. Yao, “Limited preemptive
scheduling for real-time systems: A survey,” IEEE Trans. Ind.
Informat., vol. 9, no. 1, pp. 3–15, Feb. 2013.

[42] B. Sprunt, D. Kirk, and L. Sha, “Priority-driven, preemptive I/O
controllers for real-time systems,” in Proc. 15th Annu. Int. Symp.
Comput. Archit., 1988, pp. 152–159.

[43] M. Dertouzos, “Control robotics: The procedural control of physi-
cal processes,” Inf. Process., vol. 74, pp. 807–813, 1974.

[44] B. Kalyanasundaram and K. Pruhs, “Speed is as powerful as
clairvoyance,” J. ACM, vol. 47, no. 4, pp. 617–643, Jul.2000.

[45] R. I. Davis, T. Rothvoß, S. K. Baruah, and A. Burns, “Exact quanti-
fication of the sub-optimality of uniprocessor fixed priority
pre-emptive scheduling,” Real-Time Syst., vol. 43, no. 3, pp. 211–
258, 2009.

[46] R. Davis, A. Burns, S. Baruah, T. Rothvoss, L. George, and
O. Gettings, “Exact comparison of fixed priority and EDF schedul-
ing based on speedup factors for both pre-emptive and non-pre-
emptive paradigms,” Real-Time Syst., vol. 51, no. 5, pp. 566–601,
2015.

[47] R. I. Davis, A. Thekkilakattil, O. Gettings, R. Dobrin, and
S. Punnekkat, “Quantifying the exact sub-optimality of non-
preemptive scheduling,” in Proc. IEEE Real-Time Syst. Symp.,
2015, pp. 96–106.

[48] S. Baruah, A. K. Mok, and L. E. Rosier, “Preemptively scheduling
hard-real-time sporadic tasks on one processor,” in Proc. 11th
Real-Time Syst. Symp., 1990, pp. 182–190.

[49] C. Liu and J. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” J. Assoc. Comput. Machin-
ery, vol. 20, no. 1, pp. 46–61, 1973.

[50] A. Burns and S. K. Baruah, “Sustainability in real-time sched-
uling,” J. Comput. Sci. Eng., vol. 2, no. 1, pp. 74–97, 2008. [Online].
Available: http://jcse.kiise.org/PublishedPaper/year_abstract.
asp?idx=15

[51] N. Audsley, A. Burns, M. Richardson, K. Tindell, andA.Wellings,“
Applying new scheduling theory to static priority pre-emptive
scheduling,” Softw. Eng. J., vol. 8, no. 5, pp. 284–292, 1993.

[52] J. Leung and J. Whitehead, “On the complexity of fixed-priority
scheduling of periodic real-time tasks,” Performance Eval., vol. 2,
no. 4, pp. 237–250, 1982.

[53] N. Audsley, A. Burns, M. Richardson, and A. Wellings, “Hard
real-time scheduling: The deadline-monotonic approach,” in Proc.
IEEE Workshop Real-Time Operating Syst. Softw., 1991, pp. 133–137.

[54] N. Audsley, “On priority assignment in fixed priority sched-
uling,” Inf. Process. Lett., vol. 79, no. 1, pp. 39–44, 2001.

[55] N. Audsley, “Optimal priority assignment and feasibility of static
priority tasks with arbitrary start times,” Dept. Comput. Sci.,
Univ. York, York, U.K., Tech. Rep. YCS 164, Jul. 1991.

[56] K. Tindell, A. Burns, and A. Wellings, “An extendible approach
for analyzing fixed priority hard real-time tasks,” Real-Time Syst.
J., vol. 6, no. 2, pp. 133–151, 1994.

[57] R. Davis and A. Burns, “Improved priority assignment for global
fixed priority pre-emptive scheduling in multiprocessor real-time
systems,” Real-Time Syst., vol. 47, no. 1, pp. 1–40, 2010.

[58] A. Zuhily and A. Burns, “Optimal (D-J) monotonic priority assign-
ment,” Inf. Process. Lett., vol. 103, no. 6, pp. 247–250, 2007.

[59] J. Garcia and M. Harbour, “Optimized priority assignment for
tasks and messages in distributed hard real-time systems,” in
Proc. 3rd Workshop Parallel Distrib. Real-Time Syst., 1995, pp. 124–
132.

[60] A. Melani, “A MATLAB� implementation of schedulability tests
for memory-processor co-scheduling in fixed priority systems,”
2015. [Online]. Available: http://retis.sssup.it/

[61] E. Bini and G. C. Buttazzo, “Measuring the performance of sched-
ulability tests,” Real-Time Syst., vol. 30, no. 1/2, pp. 129–154, 2005.

[62] A. Bastoni, B. Brandenburg, and J. Anderson, “Cache-related pre-
emption and migration delays: Empirical approximation and
impact on schedulability,” in Proc. 6th Int. Workshop Operating
Syst. Platforms Embedded Real-Time Appl., 2010, pp. 33–44.

Alessandra Melani received the BS (Hons.)
degree in computer engineering from the Univer-
sity of Pisa, in 2011, and the double MS (Hons.)
degree in computer science and engineering
from the University of Trento, Scuola Superiore
Sant’Anna, in 2013. She is working toward the
PhD degree with ReTiS Lab, Scuola Superiore
Sant‘Anna, Pisa, Italy. Her research interests
include scheduling algorithms, schedulability
analysis, and optimization of single- and multi-
processor systems.

Marko Bertogna received the PhD (cum laude)
degree in computer engineering from Scuola
Superiore Sant’Anna, Pisa, Italy. He is an associ-
ate professor with the University of Modena, Italy.
He previously was an assistant professor with
Scuola Superiore Sant’Anna, Pisa, Italy. He has
authored more than 60 papers in international
conferences and journals in the field of real-time
and multiprocessor systems, receiving seven
Best Paper Awards and one Best Dissertation
Award. He served in the program committees of
international conferences on real-time systems.

Robert I. Davis received the PhD degree in
computer science from the University of York, in
1995. He is a senior research fellow in the Real-
Time Systems Research Group, University of
York, United Kingdom, and an INRIA Interna-
tional chair with INRIA-Paris, France. Since then
he has founded 3 start-up companies, all of
which have succeeded in transferring real-time
systems research into commercial products. His
research interests include real-time scheduling
and analysis for single processor, multiprocessor

and networked systems, mixed criticality systems, and probabilistic
real-time systems.

Vincenzo Bonifaci received the Laurea degree in
computer engineering from Sapienza University of
Rome, Italy, in 2003, and the PhD degree from
Sapienza University of Rome, Technische Univer-
siteit Eindhoven, The Netherlands, in 2007. He is a
permanent researcher in the Institute for Systems
Analysis and Informatics, Italian National Research
Council. His research interests include graph algo-
rithms, scheduling, and optimization.

MELANI ET AL.: EXACT RESPONSE TIME ANALYSIS FOR FIXED PRIORITY MEMORY-PROCESSOR CO-SCHEDULING 645

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on April 13,2020 at 18:18:49 UTC from IEEE Xplore. Restrictions apply.

Alberto Marchetti-Spaccamela received the
degree in electronic engineering from Sapienza
Universit�a di Roma, in 1977. Since 1991 he is
professor with Sapienza Universit�a di Roma. Pre-
viously he was a visiting scholar with UC Berke-
ley and professor with Universit�a dell’Aquila. His
research interests include scheduling, approxi-
mation and online algorithms, graph and combi-
natorial algorithms, and bioinformatics. He has
authored 5 books and more than 150 papers.

Giorgio Buttazzo received the graduate degree
in electronic engineering from the University of
Pisa, in 1985, the MS degree in computer science
from the University of Pennsylvania, in 1987, and
the PhD degree in computer engineering from
Scuola Superiore Sant’Anna, in 1991. He is full
professor of computer engineering with Scuola
Superiore Sant’Anna, Pisa. He has authored 7
books on real-time systems and more than 200
papers in the field of real-time systems, robotics,
and neural networks.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

646 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 4, APRIL 2017

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on April 13,2020 at 18:18:49 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

