
Exploring the interaction between functional
performance and scheduling abstractions

Paolo Pazzaglia, Alessandro Biondi, Marco Di Natale, Giorgio Buttazzo, Matteo Secchiari
Scuola Superiore Sant’Anna, Pisa, Italy

E-mail: {paolo.pazzaglia, alessandro.biondi, marco.dinatale, giorgio.buttazzo}@sssup.it

Abstract—Several schedulability analysis models and results
are based on the assumption that the functional performance of
the system can be represented (abstracted) by a very simple task
model with release and completion time constraints. The hard
deadline model is probably the best known example. However,
several real applications, such as engine control challenge both
the task activation and execution time model, and also the
deadline abstraction and the hard schedulability assumptions.
Our project on the development of a Simulink based co-
simulation environment aims at a more detailed exploration of
the impact of (possibly late) response time on the performance of
complex control functions. We describe not only our cosimulation
framework, but also additional process steps and challenges that
relate to its use.

I. DESCRIPTION

Many results in real-time modeling, analysis, and schedul-
ing are based on the assumption that a timing task model
can abstract information on the functional performance of the
application or even its correctness by using a very simple set
of attributes and constraints. A typical example is the hard
deadline model as it applies to periodic or sporadic tasks.
However, both the task model and the deadline criticality
assumptions need to be often extended to cope with the
requirements of actual applications.

An example is the multiframe task model [1] that was
developed to cope with the requirements of multimedia en-
coding or decoding tasks, where a simple worst case execution
time assumption was too pessimistic to allow for an accurate
analysis. In addition, these applications usually cope with
temporary overloads by changing the functional behavior in
a way that could be represented as a mode change or by
an imprecise computation model. Other task models try to
cope with conditional executions or other types of inter-job
dependencies. Similarly, the hard deadline assumption was
challenged for most constrol applications. Deadline misses
could be easily tolerated in many cases and jitter plays a
significant role [7].

The analysis of fuel injection applications revealed the
needs for a further extension of the task model. The task
activation times are now associated with a physical process
(the rotation of the engine shaft) with a known dynamic,
and the task execution time is adaptive with respect to the
activation rate. These characteristics have been included in
the Adaptive Variable Rate task model [2]. However, what is
also missing from the current analysis is a refinement of the
deadline assumption. Even if all analysis papers on this model
assume hard deadlines, in reality, fuel injection controls can
miss deadlines without critical consequences. The only effect
is that the fuel injection is performed at an angle and with a
duration as computed in the previous cycle.

To better understand the impact of scheduling decisions on
the performance of engine control applications (and possibly
others), we developed a co-simulation framework in which
a model of the engine and all the components that impact
the internal combustion process is represented together with
a model of the engine controls and their execution in time
under the control of a scheduler. The models are integrated
in Simulink and allow to evaluate how performance and cost
metrics (output power, pollutants and noise) are affected by
scheduling policies and scheduling attributes.

Last year we presented the framework structure [3], and
the subsystems in it, including the engine model and the
extensions to the T-Res framework [4] for simulating the real-
time scheduler and the task execution times, including the
adaptive execution time behavior.

Since then, the framework has been enhanced to cope with
several other details of interest. The engine model has been
improved and the control models have been extended by
allowing for multiple fuel injections in a single cycle. The
multiple injection model provides the first justification for
an adaptive task execution behavior. However, in reality, the
control applications are quite complex and both the task model
and the adaptive behavior are more complex than what we
assumed in our early release.

In our talk, we discuss the most recent model improvements,
but also current efforts for including a more realistic model
of the controls in our cosimulation environment. The source
information for our improved model are the Amalthea model
in the FMTV challenge and an AUTOSAR model of an engine
control application, as discussed in [6].

The first possible outcome of our improved models is the
analysis of more accurate models for the description of the
impact of deadline misses on the application performance. The
m-k model [5] is a first attempt in this direction but has two
fundamental limitations. It is still a binary model, in which
the application is either safe or faulty, but has no indication
of a performance value. the second limitation is that the m-
k model does not account for the pattern in time of possible
deadline misses.

Finally, the simulation framework cannot live in isolation.
We highlight the many ways in which it needs to (or can) be
integrated in the development process. Some of the fundamen-
tal interactions are the following

• The simulation of the task (segment) executions require
WCET estimates. The WCET estimates can in turn be
obtained by analyzing code that could be obtained using
automatic generation techniques from the model itself.
Also, for most recent multicore automotive architectures,

Proc. of the 8th International Workshop on Analysis Tools and Methodologies for Embedded and Real-time Systems 
(WATERS 2017), Dubrovnik, Croatia, June 27, 2017.



the WCET assumptions can not be independent from
assumptions on the task placement and even the allocation
of scratchpad memory.

• The function and task placement in multicore platforms
affects in a significant way the scheduling and the over-
all performance of the application. We discuss possible
options for integrating the placement definition (optimiza-
tion) and its outcome in the simulation model, possibly
in interative loops.

REFERENCES

[1] Baruah S, Chen D, Gorinsky S, Mok A (1999) Generalized multiframe
tasks. Real-Time Syst 17(1):522

[2] . A. Biondi, M. D. Natale, and G. Buttazzo. Response-time analysis
for real-time tasks in engine control applications. In Proceedings of the
6th International Conference on Cyber-Physical Systems (ICCPS 2015),
Seattle, Washington, USA, April 14-16, 2015

[3] Paolo Pazzaglia, Alessandro Biondi, Giorgio Buttazzo and Marco Di
Natale A Simulation Framework to Analyze the Scheduling of AVR
tasks with respect to Engine Performance Proceedings of the WATERS
Workshop, Toulouse, June 2016.

[4] F Cremona, M Morelli, M Di Natale, TRES: A Modular Representation
of Schedulers, Tasks, and Messages to Control Simulations in Simulink
in Proc. of the ACM SAC Conference, 2015, Salamanca, Spain.

[5] Guillem Bernat, Alan Burns, and Albert Liamosi. Weakly hard real-time
systems. Computers, IEEE Transactions on, 50(4):308321, 2001.

[6] A Biondi, M Di Natale, Y Sun, S Botta, Moving from single-core to
multicore: initial findings on a fuel injection case study SAE Technical
Paper, SAE Conference, DEtroit, USA, April 2016

[7] Cervin, A., Henriksson, D., Lincoln, B., Eker, J., Arzen, K.E. How does
control timing affect performance? Analysis and simulation of timing
using Jitterbug and TrueTime, in IEEE control systems 23(3), 1630 (June
2003)

[8] T. Henzinger, B. Horowitz, and C. Kirsch, Giotto: a time-triggered
language for embedded programming, Proceedings of the IEEE, vol. 91,
no. 1, pp. 8499, Jan 2003


