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Selecting the Transition Speeds of Engine Control Tasks

to Optimize the Performance

ALESSANDRO BIONDI, MARCO DI NATALE, GIORGIO C. BUTTAZZO,

and PAOLO PAZZAGLIA, Scuola Superiore Sant’Anna

Engine control applications include functions that need to be executed at specific rotation angles of the

crankshaft. The tasks performing these functions are activated at variable rates and are programmed to be

adaptive with respect to the rotation speed of the engine to avoid overloading the CPU. Simplified control im-

plementations are used at high speeds; for example, reducing the number of fuel injections or the complexity

of the computations. Such different control implementations define execution modes with different execu-

tion times for different ranges of the rotation speed. The selection of the switching speeds for the operating

modes of such tasks is an optimization problem, consisting in determining the optimal transition speeds that

maximize the engine performance while guaranteeing schedulability.

This article presents three methods for tackling such an optimization problem under a set of assumptions

about the performance metrics: two heuristics and a branch and bound method that guarantees finding the

optimal solution within a given speed granularity. In addition, a simple method to compute a performance

upper bound is presented. The approach and the hypothesis are validated using a Simulink model of the

engine and the computational tasks, considering the engine efficiency and the production of pollutants (NO2)

as metrics of interest. Simulation experiments show that the performance of proposed heuristics is quite close

to that of the upper bound and the optimum within a finite granularity.
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1 INTRODUCTION

Engine control is one the most challenging examples of a Cyber-Physical System (CPS), where the
software that controls injection and combustion must be designed to take several physical char-
acteristics of the engine into account. From a timing perspective, engine control software requires
the execution of different types of computations, some cyclically activated at fixed intervals (peri-

odic tasks) ranging from a few milliseconds up to 100ms, and some triggered at predefined rotation
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1:2 A. Biondi et al.

angles of the crankshaft (angular tasks) (Guzzella and Onder 2010). Such angular tasks generate a
dynamic workload strictly dependent on the actual engine speed.

To avoid overloading the processor at high engine speeds, angular tasks are typically imple-
mented as a set of operational modes, each characterized by a different computational demand
and acting on a different speed interval (Buttle 2012). Since angular tasks adapt their functionality
with the speed and are activated at non-constant rate, they are also referred to as adaptive variable

rate (AVR). The schedulability analysis of AVR tasks has received significant attention from the
research community (a detailed review of the literature is available in Section 9).

The implementation of an AVR task requires determining the precise engine speeds at which
mode changes should occur. This problem has been addressed under Earliest Deadline First (EDF)
scheduling by Buttazzo et al. (2014), who proposed a method for identifying the highest switching
speeds that bound the utilization of an AVR task to a desired value.

In reality, the selection of the transition speeds is not driven by schedulability constraints alone,
but has to optimize a set of performance indexes, related to power, fuel consumption, and emissions
(among others). The control implementations are designed to achieve the best possible combina-
tion of all the performance indexes within a given computation complexity and for a given set of
engine speeds. This process requires the tuning of a significant number of configuration parame-
ters and is performed at the test bench, where each implementation is tested for different speeds
recording the performance parameters of interest.

Intuitively, the most sophisticated control implementations have the best performance but
they require a higher computational demand that cannot be afforded (without incurring deadline
misses) when they are executed more frequently (i.e., at high engine speeds). Conversely, simpler
control implementations have lower computational requirements and tend to work better at higher
rotational speeds, where the engine is more stable. The resulting behavior of engine-control tasks
is a mode change among a set of different control implementations, each one executed in a given
interval of engine speeds.

Article contributions. The main contribution of this article is to formulate a design optimization
problem to find the switching speeds that maximize the system performance while guaranteeing
the schedulability of the task set. We assume the knowledge of the performance function associ-
ated to each control implementation (for instance, they can be derived by fitting the test bench
performance data to a family of relatively simple analytical functions). To the best of our knowl-
edge, this is the first work that integrates performance metrics together with real-time constraints
on the computational activities to address the design optimization of engine control systems. This
article presents three methods for tackling such an optimization problem assuming a given per-
formance metric and a set of constraints. Two heuristic approaches are first proposed to reduce
the computational complexity and a performance upper bound is computed. Then, a branch and
bound method is presented to find the optimal solution within a given speed granularity. Simula-
tion results show that the performance achieved by the heuristics is quite close to the performance
upper bound and the optimum with respect to a given granularity. The performance functions con-
sidered in the proposed article have been also validated in a simulation environment that includes
a diesel engine model.

Article structure. The remainder of the article is structured as follows. Section 2 presents the
model and the notation used throughout the article. Section 3 formally states the problem consid-
ered in the article. Section 4 presents a technique to reduce the design space and compute a bound
on the maximum performance of the engine. Section 5 presents the two heuristic approaches.
Section 6 describes the branch and bound algorithm. Section 7 illustrates a set of experimen-
tal results aimed at comparing the proposed approaches. Section 8 reports on the experimental
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validation of the performance model considered in this article. Section 9 discusses the related
work. Finally, Section 10 states our conclusions and future work.

A preliminary version of this article is available in Biondi et al. (2016), which has been extended
by including (i) the validation of the performance model in Section 8; (ii) the pseudo-code (with
the corresponding description) for the branch and bound algorithm presented in Section 6; (iii) the
proof for the performance upper bound discussed in Section 4; and (iv) additional experimental
results in Section 7. Furthermore, the entire article has been polished and, when needed, restruc-
tured. Clarifications of some concepts with a more verbose discussion have also been added.

2 SYSTEM MODEL AND BACKGROUND

This article considers applications consisting of a set n real-time preemptive tasks Γ =
{τ1,τ2, . . . ,τn }. Each task can be a regular periodic task, or an AVR task, activated at specific
crankshaft rotation angles. Whenever needed, an AVR task may also be denoted as τ ∗i . The ro-
tation source triggering the AVR tasks is characterized by the following state variables:

θ the current rotation angle of the crankshaft;
ω the current angular speed of the crankshaft;
α the current angular acceleration of the crankshaft.

The rotation speed ω is assumed to be limited within a range [ωmin , ωmax ] and the acceleration
α is assumed to be limited within a range [α−, α+].

Both periodic and AVR tasks are characterized by a Worst-Case Execution Time (WCET) Ci , an
interarrival time (or period) Ti , and a relative deadline Di . However, while for regular periodic
tasks such parameters are fixed, for angular tasks they depend on the engine rotation speed ω. An
AVR task τ ∗i is characterized by an angular period Θi and an angular phase Φi , so that it is activated
at the following angles: θi = Φi + kΘi , for k = 0, 1, 2, . . . .

This means that the interarrival of an AVR task is inversely proportional to the engine speed ω
and, in steady-state conditions, can be expressed as

Ti (ω) =
Θi

ω
. (1)

An angular task τ ∗i is also characterized by a relative angular deadline Δi expressed as a fraction
δi of the angular period (δi ∈ [0, 1]). In the following, Δi = δi Θi represents the relative angular
deadline. All angular phases Φi are relative to a reference position called Top Dead Center (TDC)
corresponding to the crankshaft angle for which at least one piston is at the highest position in its
cylinder. Without loss of generality, the TDC position is assumed to be at θ = 0.

As explained in the Introduction, an AVR task τ ∗i is typically implemented as a set Mi of Mi

execution modes. Each mode m has a different WCET Cm
i and operates in a predetermined range

of engine speeds (ωm+1
i ,ωm

i ], whereωMi+1
i = ωmin andω1

i = ωmax . Hence, the set of modes of task
τ ∗i can be expressed as

Mi = {(Cm
i ,ω

m
i ),m = 1, 2, . . . ,Mi }.

The vector of the set of switching speeds is denoted as �ωi , while the vector of WCETs is denoted

as �Ci .
We assume that the worst-case execution time of an AVR task τ ∗i can be expressed as a non-

increasing step function Ci (ω) of the instantaneous speed ω at its release, that is,

Ci (ω) ∈
{
C1

i , . . . ,C
Mi

i

}
. (2)

An example of a C (ω) function is illustrated in Figure 1.
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Fig. 1. WCET of an AVR task as a function of the engine speed at the job activation.

For the sake of readability, when a single AVR task is addressed, the task index is omit-
ted. To support the presentation of the following results, it is convenient to define the steady-
state utilization of the jth execution mode as a function of an arbitrary switching speed w ,
that is,

U j (ω) =
C j

Θ
ω . (3)

Moreover,U j = U j (ω j ) denotes the steady-state utilization of the j-th execution mode at its switch-
ing speed ω j .

2.1 Schedulability Analysis of AVR Tasks

In this article, the schedulability analysis of mixed task sets consisting of periodic tasks and AVR
tasks is performed by adopting the technique presented in Biondi et al. (2015).

Considering the speed domain as a continuum, a schedulability test for task sets including AVR
tasks must take into account all possible speed evolutions of the rotation source to cope with
potential worst-case situations resulting in deadline misses. The adaptive behavior of AVR tasks,
which causes mode changes as a function of the engine speed, further complicates the identifica-
tion of worst-case response times. This prevents treating such tasks as classical periodic/sporadic
tasks to apply standard real-time analysis techniques.

For this reason, a novel analysis approach has been proposed in Biondi et al. (2015) to explic-
itly take into account physical constraints (i.e., the rotation of the crankshaft) when dealing with
the mode change issue. Similarly to other standard techniques, such an analysis is based on the
computation of the interference caused by higher-priority tasks, which is then used to compute
the tasks response times. By restricting to a finite set of dominant speeds (Biondi et al. 2014), it is
possible to limit the number of speed evolution patterns that have to be examined for deriving the
worst-case interference. The response time computation is then approached as a search problem
in the speed domain: the notion of dominant speeds is first used to reduce the number of critical
instants (i.e., the situation in which all tasks are released simultaneously) and then the search space
is reduced to dominant speeds only.
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3 PROBLEM DEFINITION

The analysis presented in this article is restricted to a representative class of automotive applica-
tions consisting of a single AVR task and a set of periodic tasks, scheduled by fixed priority on a
single core. Since there is a single AVR task, we drop its index in the definition of its parameters.

The addressed problem is first stated using a general formulation and then restricted to a num-
ber of specific cases under a set of assumptions. The general formulation consists of the definition
of the input parameters, the optimization variables, the set of constraint functions, and the perfor-
mance function to be optimized.

Input Parameters. We consider an AVR task consisting ofQ implementations Λj (j = 1, . . . ,Q)
of the same functionality at different complexity. Note that we distinguish between implementa-
tions and mode, since (after the design process) one or more implementations can be merged into a
single mode, to be executed in a range of speeds (to be determined) and characterized by a known
WCETC j . The implementations are indexed such that their execution times are strictly increasing
with the index j—that is, ∀j = 1, . . . ,Q − 1,C j < C j+1.

Optimization Variables. The objective of the proposed optimization algorithms is to find
the set of switching speeds between modes of the AVR task that maximizes the engine perfor-
mance while guaranteeing the task set schedulability. The switching speeds ω j ∈ [ωmin ,ωmax ],
with j = 1, . . . ,Q − 1, are hence the main variables of the considered optimization problem. The
schedulability condition yields a fixed-priority assignment for the AVR task and the periodic tasks.
Note that, in the presence of AVR tasks, a rate-monotonic priority assignment cannot be enforced,
due to the large variation of interarrival times of an AVR task (Biondi et al. 2015).

Constraints. The main constraint considered in the optimization procedure is the schedulabil-
ity of the task set, that is, the condition under which all the tasks in the system meet their deadlines.
More specifically, the following notion of schedulability is considered in this article: a task set is
said to be schedulable if there exists at least a fixed-priority assignment such that all the tasks meet
their deadlines, otherwise the task set is said to be unschedulable. To verify the schedulability of a
given instance of task system, we rely on the analysis presented in Biondi et al. (2015) (summarized
in Section 2.1).

Performance Metrics. The effectiveness of a design solution is evaluated by assigning each
implementation a performance function fj (ω) of the engine speed ω, which is monotonically in-

creasing with the WCET C j —that is, ∀ω, ˜fj (ω) > fj′ (ω) ⇔ C j > C j′ . The rationale behind such
a restriction is that a more complex control implementation, which has a higher computational
demand (and hence a higher WCET), makes sense only if it improves the performance.

The overall system performance is defined as the integral of the resulting performance function
over the entire speed range. Since each execution mode is active in a particular speed range, the
overall performance is expressed as the sum of the contributions given by each mode j, whose
performance function fj (ω) is integrated in its operating range—hence obtaining

P(ω1, . . . ,ωQ ) =

Q∑
j=1

∫ ω j

ω j+1

fj (ω) dω, (4)

where j spans over all the modes j = 1, . . . ,Q , and, by definition, ω1 = ωmax and ωQ+1 = ωmin .
In this article, two families of performance functions are considered. In the first one, each imple-
mentation brings a contribution to the performance that does not depend on the rotation speed
at which it is applied. Each Λj has an associated performance constant k j and the overall system
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Fig. 2. A set of exponential performance functions

for selected values of k j,1,k j,2.

Fig. 3. The power output curve of an Evinrude E-

TEC-250 engine (from continuouswave.com).

performance is

P(ω1, . . . ,ωQ ) =

Q∑
j=1

k j (ω j − ω j+1). (5)

In the second family, functions represent control implementations in which the performance de-
pends on the implemented control law and the rotation speed at which it is applied. The selected
function (for each mode) is

fj (ω) = k j,1e−
k j,2

ω (6)

and the system performance is computed as

P(ω1, . . . ,ωQ ) =

Q∑
j=1

∫ ω j

ω j+1

k j,1e−
k j,2

ω dω . (7)

The rationale for selecting an exponential function of this type is the following. The most sophis-
ticated control implementation ( j = Q , with possibly multiple injections during the cycle) has the
best performance, which is kept unchanged across the speed range (i.e., fQ (ω) = 1, with kQ,2 = 0),
and is considered as a baseline for the other control implementations. Simplified control imple-
mentations tend to work better at higher rotational speeds, where the engine is more stable, but
become less effective at some cutoff speed, represented by the parameter ki,2. The parameter ki,1

is used as an additional degree of freedom to improve fitting the performance curve to the actual
experimental data. Figure 2 shows the typical shape of our exponential performance functions for
different values of k j,1,k j,2, and Figure 3 shows technical data (from the Web) expressing the en-
gine output power as a function of the engine speed, in support of a possible fit with a family of
exponential functions as in Equation (6).

Formally, the first type of function is a special case of the exponential one where k j,2 = 0 for
all j. However, in our experiments they are handled in a different way, because the optimization
algorithms leverage the constant gradient of the constant functions to avoid recomputing it at
every step, thus speeding up the computation.

Although these two classes of functions are used in the experiments, the proposed method is
not limited to their consideration. The only requirement is that the used function is monotonic
with the mode index (and hence with the mode WCET) for all ω and it is integrable in the speed
domain ω.
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Table 1. Parameters of the Task Set Used

in the Example

Task1 Task2 Task3 Task4

C 1,000 6,500 10,000 10,000

T=D 5,000 20,000 50,000 100,000

Table 2. Computation Times of the AVR Task

in the Example

Λ1 Λ2 Λ3 Λ4 Λ5 Λ6

C j s · 150 s · 278 s · 344 s · 425 s · 576 s · 966

k j 2 3 4 5 7 10

The integral in Equation (7) cannot be computed analytically, and thus is computed numerically
through the exponential integral function Ei (x ), so obtaining

P(ω1, . . . ,ωQ ) =

Q∑
j=1

Yj (ω j ) − Yj (ω j+1), (8)

where

Yj (ω) = k j,1

(
k j,2 · Ei

(
−k j,2

ω

)
+ ω · e

−k j,2

ω

)
. (9)

For notational convenience, we introduce a shortcut p j (�ω) for the partial derivatives of the per-
formance function with respect to the switching speeds, defined as

p j (�ω) =
∂P(�ω)

∂ω j
. (10)

Design Objective. The design goal is to compute the set of switching speeds {ω j , j = 1, . . . ,Q }
and the multidimensional optimization problem can be stated as follows:

Definition 3.1 (Optimization problem).

maxP(ω1, . . . ,ωQ )

ω1 > ω2 > . . . > ωQ

such that the system is schedulable.

3.1 Running Example

To illustrate the outcome of each algorithm presented in the article, we use a running example
(using a configuration from the EU INTERESTED project (INTERESTED)) consisting of four peri-
odic tasks with overall utilizationU = 0.825, and an AVR task with six modes. The periods and the
computation times of the periodic tasks are reported in Table 1, whereas the computation times of
the six modes of the AVR task are reported in Table 2. To better explore the input space, the com-
putation times of the AVR task are expressed as a function of a scaling factor s . In the following,
two subcases are generated, using s = 6.0 and s = 8.0 (all times are expressed in microseconds).

The running example has only the purpose of explaining the typical outcome of the proposed
algorithms and is only considered for the first set of performance functions (constant over the
entire speed range). The experiments in the Experimental section (Section 7) have been conducted
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Fig. 4. Computing the switching speed upper bounds.

also for exponential performance functions. In our running example, the coefficients k j of the
performance functions have been set as k j ∈ {2, 3, 4, 5, 7, 10}.

4 REDUCING THE DESIGN SPACE

By exploring the design space, it has been experimentally observed that the schedulability con-
straint determines a non-convex region in the space of the switching speeds ω j . This result was
not surprising considering that the schedulability region for classical periodic tasks in the space of
interarrival times is known to be non-convex (Bini et al. 2008) and, to the best of our knowledge,
there is no known convex upper or lower bound of good quality for checking the schedulability
of AVR tasks under fixed-priority scheduling.

Although an analytical description of the feasibility region cannot be derived in a closed form,

we provide a numerical method for computing (with an arbitrary accuracy) an upper-bound ω j

(ub )

of the maximum speed at which each control implementation can be executed, thus limiting the
design space. The upper bound is such that no feasible solution for the optimization problem exists

for speeds ω j > w j

(ub )
, with respect to the fixed accuracy.

The proposed algorithm probes the schedulability region in the most favorable condition for
each possible control implementation j; that is, when (i) no more complex control implementations
are active and (ii) the AVR task performs a direct mode change to the simplest control implemen-
tation with WCET C1, for any ω > ω j . An example of such upper bound is shown in Figure 4, in

which the mode configuration for determining ω j

(ub )
is shown as a dashed line. Under this con-

dition, the algorithm computes the maximum speed ω j

(ub )
at which each control implementation

Λj can be executed. The (typically unfeasible) modes configuration for the AVR task, obtained by
considering all the upper bounds on the switching speeds, is shown as a thick line in Figure 4.

The approach is guaranteed to be correct because of the sustainability property of uniprocessor
fixed-priority scheduling (Burns and Baruah 2008), which states that schedulability never improves
when computation times are increased.

The algorithm to compute the switching speed upper bounds is shown in Figure 5. A first step
of pre-processing (omitted in the figure for simplicity) can be used to determine whether there
are modes that can be safely avoided. This is done by finding (i) the implementation Λj with the
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Fig. 5. Procedure for computing the upper-bounds for the switching speeds.

largest C j that can safely be executed in ωmin and discarding those with higher index; and (ii) the

implementation Λj′ with the largest C j′ that is feasible in ωmax and discarding those with lower

index.
For simplicity, in the following, we assume that the only control implementation feasible atωmax

is the first one (j = 1) and that the control implementation with the largest WCETCQ is feasible at
ωmin (that is, the number of modes are equal to the number of available implementationsQ = M).

The first control implementation has maximum speed w1
(ub )
= ωmax , since it is not possible to

exceed the allowed speed range (see line 2 in Figure 5). The maximum speeds are then determined
for each mode j > 1 by a simple binary search (line 5) on the schedulability condition, by seeking a

speed ω j

(ub )
such that modeC j is executed in [ωmin ,ω j

(ub )
] and modeC1 is active in (ω j

(ub )
,ωmax ].

4.1 Performance Upper Bound

The computation of the upper bound on the switching speeds also leads to an upper-bound P(ub )

on the maximum system performance, which is expressed by the following theorem.

Theorem 4.1. Any valid solution for the optimization problem expressed in Definition 3.1 has an

overall performance no greater than

P(ub ) = P
(
w1

(ub ), . . . ,w
Q

(ub )

)
. (11)

Proof. Let �ω(opt ) be the vector of the switching speeds that lead to the optimal solution of

the optimization problem and let P(opt ) = P(w1
(opt )
, . . . ,w

Q

(opt )
) be the maximum performance. By

Equation (4) we get

P(opt ) =

∫ ω
Q

(opt )

ωmin

fQ (ω) dω +

∫ ω
Q−1
(opt )

ω
Q

(opt )

fQ−1 (ω) dω + · · · +
∫ ω1

(opt )

ω2
(opt )

f1 (ω) dω .

Since the condition ∀j, ω j ≤ w j

(ub )
holds for any valid solution, then the condition ∀j, ω j

(opt )
≤

w j

(ub )
also holds, which allows rewriting P(opt ) as

P(opt ) =

∫ ω
Q

(opt )

ωmin
fQ (ω) dω +

∫ ω
Q

(ub )

ω
Q

(opt )

fQ−1 (ω) dω +

∫ ω
Q−1
(opt )

ω
Q

(ub )

fQ−1 (ω) dω +

∫ ω
Q−1
(ub )

ω
Q−1
(opt )

fQ−2 (ω) dω + · · · .

By recalling the assumption on the monotonicity of the performance functions with the mode
index—that is, ∀ω, fj (ω) > fj−1 (ω)—we get

P(opt ) <

∫ ω
Q

(opt )

ωmin
fQ (ω) dω +

∫ ω
Q

(ub )

ω
Q

(opt )

fQ (ω) dω +

∫ ω
Q−1
(opt )

ω
Q

(ub )

fQ−1 (ω) dω +

∫ ω
Q−1
(ub )

ω
Q−1
(opt )

fQ−1 (ω) dω + · · · .
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Table 3. Upper Bounds on the Transition Speeds for

the Considered Example

s ω1
(ub )

ω2
(ub )

ω3
(ub )

ω4
(ub )

ω5
(ub )

ω6
(ub )

P(ub )

s=6 6,500 6,043 4,848 3,676 2,996 1,637 3,504.84
s=8 6,500 4,285 3,629 2,996 1,871 1,214 2,753.8

Now, by composing every pair of contiguous integrals as∫ ω
j

(opt )

ω
j+1
(ub )

fj (ω) dω +

∫ ω
j

(ub )

ω
j

(opt )

fj (ω) dω =

∫ ω
j

(ub )

ω
j+1
(ub )

fj (ω) dω,

for all modes j = 1, . . . ,Q (with ω
Q+1

(ub )
= ωmin ) it is possible to conclude that P(opt ) < P(ub ) . Hence,

the theorem follows. �

Such an upper bound is fundamental to evaluate the “quality” of the algorithms proposed in this
article, as it allows expressing a bound on the distance to the optimal solution. In other words, the
distance of any solution to the upper bound P(ub ) provides a confidence interval which includes
the actual (generally unknown) optimal solution.

4.2 Running Example

The algorithm shown in Figure 5 has been applied to the running example presented in Section 3.1
and the resulting switching speed upper bounds are shown in Table 3.

5 HEURISTIC APPROACHES

The non-convexity of the problem together with the lack of an analytical (closed-form) characteri-
zation of the schedulability constraint prevents the application of standard methods for computing
the optimal solution.

A number of possible heuristic approaches can be devised to solve the problem. However, some
of them are not immediately applicable, as explained below.

5.1 Gradient-Based Search

A first possible approach is to search the space of the switching speeds ω j starting from a known
feasible point and then increasing all the candidate transition speeds according to the gradient
of the performance function ∇P. This is done by selecting a step δ and increasing each speed
ω j by δ × p j (�ω) until the boundary of the feasibility region is encountered. From that point on,
the algorithm may proceed along the schedulability boundary with a local search. A local search
consists in trying to improve as much as possible (using a binary search on the schedulability
condition) all the transition speeds one by one, in order of their performance gradient p j (�ω).

This intuitive (and quite standard) approach does not work in many cases. This is because in
most cases, the gradient of the performance function has higher components for lower transition
speeds and the problem definition requires that ω1 < ω2 < · · · < ωM . By projecting the desired
direction onto this constraint, all the ω j are increased by the same amount until we obtain the
solution that computes the highest possible switching speed ω1 for the first mode. This is often
suboptimal. An example for a search space with only two switching speeds is reported in Figure
6, where the trajectory generated by such a heuristic is illustrated as a solid gray line that reaches
the suboptimal solution �ωso . The gray curved lines in the figure join the set of points with the
same performance value, while the black segmented line illustrates the (non-convex) feasibility
boundary.
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Fig. 6. Illustration for the modified gradient-based search in a bi-dimensional design space. The straight gray

line illustrates the trajectory of a standard gradient-based search, while the dashed black line illustrates the

corrected trajectory. The segmented black line depicts the (non-convex) feasibility region.

Indeed, this policy is similar to two other heuristics: a top-down or bottom-up greedy search. A
bottom-up search (the top-down is similar) consists of finding the largest possible value of ω1 that
is feasible. Onceω1 is determined, the algorithm tries to increaseω2 to the largest possible amount
that still results in a feasible system configuration and so on. Unfortunately, these methods are too
greedy and often result in solutions in which most modes are simply not usable at all, and compute
solutions that are far from optimality.

For example, in our running example, a top-down algorithm would produce ω2 = w2
(ub )

and

prevents the execution of the other control implementations Λj , with j > 2.
To improve results, the gradient-based heuristic can be corrected by a penalty factor associated

to the gradient term for a given ω j when the algorithm approaches its upper bound ω j

(ub )
. An

effective penalty function is

z j (ω) = 1 − e
�
�

ω
j
(ub )

−ω

ω
j
(ub )

�
�

2

. (12)

The trajectory component T j (�ω) for each switching speed w j is expressed by

T j (�ω) = z j (ω j ) +
p j (ω j )

pmax
, (13)

where pmax = maxj p
j (�ω). Please note that the second term in T j (ω) corresponds to the original

gradient direction (defined in Equation (10)) with a normalization step of 1
pmax .

Each switching speedω j is progressively increased with rate δ ×T j (�ω) (for instance, δ = 5 RPM
has been used in our experiments), generating a sequence of speeds �ω (0), �ω (1), . . . , �ω (k ), . . . , in
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Fig. 7. Pseudo-code for the proposed corrected gradient-based search.

Table 4. Results of the Application of the Corrected Gradient Heuristic

to the Running Example

s ω1 ω2 ω3 ω4 ω5 ω6
P

6 6,500 3,817 3,481 3,146 2,959 1,598 3,053.2 87.1% of P(ub )

8 6,500 1,460 1,419 1,366 1,361 1,168 1,934.2 70.2% of P(ub )

which each component progresses as

ω j (0) = ωmin ,

ω j (k + 1) = ω j (k ) + δ ×T j (�ω (k )), ∀j = 2, . . . ,Q ;

ω1 (k ) = ωmax ∀k .

We hold ω1 (k ) = ωmax for the reasons explained in Section 4. The effect of the corrected gradient
trajectory is shown in Figure 6 (dashed line).

From Equation (12), when approaching the upper-bound ω j

(ub )
for a mode j, the penalty term

z j (ω) is lowered (in an exponential manner) and reduces the increase rate for ω j . This correction
attempts at escaping from trivial local minima and improving the obtained solution.

Figure 7 illustrates the pseudo-code for the corrected gradient-based heuristic. The algorithm
initializes the switching speeds at ωmin (except for the first mode). Then, a loop (line 7) updates
the switching speeds according to the gradient trajectoryT j (�ω) until the boundary of the schedu-
lability constraint is reached. Finally, a local search is performed (see line 13) starting from the
mode that has the maximum gradient coefficient, until no further steps can be performed without
violating the schedulability constraint.

5.1.1 Running Example. The application of the corrected gradient heuristic to our running ex-
ample provides the results reported in Table 4.

Clearly, the results in the second case are poor, since the modes after the first are all collapsed
into a very small range and the final performance is far from the upper bound.
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5.2 Utilization and Performance-Driven Backwards Search

An additional insight helps building a better heuristic: lowering a switching speed can give more
freedom to the feasibility range of the others.

In particular, analyzing the experimental results of a more exhaustive branch and bound search
(discussed in the next section), it became clear (as expected) that reducing the switching speed of
the mode with the largest steady-state utilization provides more freedom for the other speeds, that
is, allows one to keep them closer to their upper bound.

At the same time, the reduction of any transition speed ω j causes a corresponding performance
reduction that should be traded off with the utilization gain that favors the system schedulability.
Both considerations are combined in the Utilization and Performance-Driven backwards search.

In this approach, the switching speeds are iteratively lowered, generating a sequence �ω (0),
�ω (1), . . . , �ω (k ), . . . , starting from the upper bound �ω (0) = �ω(ub ) . At each iteration, each ω j is low-

ered by a quantity δ × R j , that is,

ω j (k + 1) = ω j (k ) − δ × R j (�ω (k )), ∀j = 2, . . . ,Q (14)

until a feasible set of speeds is found.
The reduction step R j (�ω) has been conceived for taking into account both the performance

gradient and the steady-state utilization of the jth mode, thus obtaining

R j (�ω) =max (Û j + P̂ j (�ω),Rmin ), (15)

where Rmin represents a minimum step to ensure progression (for instance, we used Rmin = 0.2

RPM in our experiments). The terms Û j and P̂ j (�ω) are normalized indexes that relate to the uti-

lization and performance gradient at the current switching speed ω j (k ). The index Û j is defined
as

Û j =
U j −Umin

Umax −Umin
, (16)

with

Umax = max
j
{U j } and Umin = min

j
{U j }. (17)

Similarly, P̂ j (�ω) is computed as

P̂ j (�ω) =
pmax − p j (�ω)

pmax − pmin
, (18)

where pmax = maxj p
j (�ω) and pmin = minj p

j (�ω).
Note that, to match the objective of this heuristic, the larger the steady-state utilization of a

mode the larger the corresponding index Û j . Analogously, the larger the performance gradient,

the lower the index P̂ j (�ω).
Figure 8 illustrates the pseudo-code for the proposed backwards search. The algorithm lowers

each switching speed ω j until the system becomes schedulable (see line 7), then it proceeds with
a local search, as the gradient-based search of Section 5.1.

5.2.1 Running Example. The application of the backwards search heuristic to our running ex-
ample provides the results reported in Table 5.

The backwards search heuristic is very effective. The running example is not a special case, as
shown in our experimental results (Section 7). The computed values are always very close to the
optimum. Also, compared with the previous heuristic, a set of higher transition speeds for lower
index modes is traded for a lower transition speed for the last mode (which results in a better
performance anyway).
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Fig. 8. Pseudo-code for the proposed utilization and performance-driven backwards search.

Table 5. Results of the Application of the Backwards Search Heuristic

to the Running Example

s ω1 ω2 ω3 ω4 ω5 ω6
P

6 6,500 6,039 4,836 3,672 2,899 1,630 3,480.2 99.3% of P(ub )

8 6,500 4,282 3,194 2,887 1,868 1,050 2,644.0 96.0% of P(ub )

6 BRANCH AND BOUND

In many cases, the optimum can be computed (within a given speed granularity) by performing an
exhaustive search starting from an initial feasible solution and attempting to extend each transition
speed toward its upper bound. The knowledge of performance upper and lower bounds allows
introducing effective pruning rules that stop the algorithm when a solution with sufficient quality
is obtained.

6.1 Definition of the Algorithm

The algorithm makes use of speed upper bounds to compute a performance upper bound Pub that
is, in general, not feasible. Also, one of the heuristics in the previous section (the backwards search
is the best option) allows computing a lower bound on the optimum performance Plb .

The algorithm requires the definition of a speed resolution δ (in our experiments δ = 15 RPM)
and a starting feasible solution with a configuration of transition speeds that hasωQ at the highest
possible value that allows for the execution of the other modes. The starting solution should also be
maximal, meaning that any possible increase of any transition speed would create a non-feasible
solution. Given any solution, a maximal solution can be simply found by a local search. Because
of the monotonicity property of our performance function (on Λi and Ci ), a maximal solution is
always going to have higher performance than any solution for which the transition speeds are
component-wise less than or equal.

The search algorithm is based on the observation that, given a maximal solution, any increase
in a transition speed ω j can be obtained by decreasing at least one of the transition speeds ωk

with k > j. The algorithm works iteratively, attempting to improve on an initial feasible solution

�ωs with ω
Q
s equal to the largest possible value that allows for the execution of the other modes

(the algorithm to compute the initial solution is explained later).
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Fig. 9. The optimization algorithm as a branch and bound search in the domain of the ω.

At each iteration with index j (j goes fromQ to 3), the values in the set {ωQ
s ,ω

Q−1
s , . . . ,ω j+1

s } are
left unchanged from �ωs (the set is empty when j = Q): this is because the algorithm is similar to a
depth-first search in a tree, where the sub-tree corresponding to modes with index < j is explored.

The speed ω j
s is then iteratively reduced bymj × δ , withmj ∈ N+, and for each value ofmj the

algorithm tries all the possible extensions (as integer multiples of δ ) of the speeds {ω j−1
s , . . . ,ω

2
s },

until it reaches the feasibility boundary (i.e., a maximal solution within the δ resolution). As a
result, the algorithm performs a branch and bound search on the tree of speeds with index lower
than j. Figure 9 shows an intermediate step of the algorithm with the corresponding search tree
below the element with index j. Since the index j is progressively lowered until 3, all the possible
speed combinations (with granularity δ ) are tried. The index j (controlling the switching speed
that is selectively reduced) ends in 3 because it is always ω1 = ωmax and reducing ω2 (starting
from the initial maximal solution) is pointless because ω1 cannot be further increased.

Computing the initial solution �ωs . The solution �ωs is computed iteratively. First, the value of

ω
Q
s is computed by searching back from ω

Q

(ub )
(using a binary search) until the largest value that

allows the execution of all other modes with lower index j at transition speeds ω
Q
s + ϵ × (Q − j )

(with ϵ arbitrarily small). When the algorithm moves to the next mode Q − 1, ω
Q−1
s is similarly

computed as the largest speed that allows executing all other modes with index j < Q − 1 with a

transition in ω
Q−1
s + ϵ × (Q − 1 − j ) and so on.

6.2 Pseudo-Code

Figure 10 illustrates the pseudo-code for the proposed branch and bound algorithm. In addition to
the WCETs of the available control implementations, the algorithm takes as input a lower bound on
the overall performance P(lb ) , which can be obtained by executing one of the heuristics presented
in the previous section.

At any point in time, the search algorithm keeps track of the best performance solution P(cur )

found until then, which is initialized to the performance lower bound (line 2 in Figure 10). After
initializing the switching speeds at their upper bound (line 3), the algorithm calls the SEARCH
recursive sub-procedure to search for the optimal solution. The search starts from the switching
speed of the Q-th mode and explores the tree of possible values for the switching speeds of all the
modes (within the given granularity δ ). The search tree has Q levels, one for each mode. Every
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Fig. 10. Pseudo-code for the branch and bound algorithm.

instance of the SEARCH procedure, invoked with index j, is in charge of exploring the sub-tree at
levels < j by starting from the initial solution for the j-th switching speed (which is computed as
discussed above).

The procedure uses of a conditional statement to distinguish between (i) the recursive step and
(ii) the stop condition of the recursive algorithm.

The recursive step consists in opening a set of branches to explore the sub-tree, each corre-
sponding to a reduced value of the j-th switching speed. The switching speed ω j is progressively

reduced by δ : the reduction starts from the initial solution ω j
s and ends when the switching speed

of the (j + 1)-th mode is reached (line 12).
Not all the branches are actually explored. The algorithm performs a pruning on the sub-tree

when the current best performance value cannot be improved by any solution available in the sub-
tree (line 14). The performance of all the solutions available in the current sub-tree are upper bound

by the performance of the set of speeds {ω1,ω2
(ub )
, . . . ,ω j−1

(ub )
,ω j ,ω j+1, . . . ,ωQ } (similarly as stated

by Theorem 4.1), which is constructed by leveraging on the knowledge of the speed upper bounds.
The stop condition holds when the search reaches the second level, i.e., j = 2 (remember thatω1

is fixed and equal to the maximum engine speed). In this case, the procedure has traversed the en-
tire search tree, hence a particular solution exists. If such a solution improves the best performance
that has been found so far (line 19), then it is stored as optimal (line 21).

6.3 Discussion

The execution of the algorithm showed how the optimum performance often results in a config-
uration in which the largest speed decrease is for the mode with highest local utilization. This
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Table 6. Results for the Running Example with s = 8 Applying All the Algorithms Presented in this Article

Algorithm ω1 ω2 ω3 ω4 ω5 ω6
P

Gradient-based
search

6,500 1,460 1,419 1,366 1,361 1,168 1,934.2 70.2% of P(ub )

Backwards search 6,500 4,282 3,194 2,887 1,868 1,050 2,644.0 96.0% of P(ub )

Branch and bound 6,500 4,274 3,556 2,778 1,858 1,044 2,665.9 96.8% P(ub )

Upper bound 6,500 4,285 3,629 2,996 1,871 1,214 P(ub ) = 2753.8

was the motivation for deriving the utilization-driven backwards search heuristics presented in
Section 5.2.

The branch and bound computes solutions of very good quality at the expense of time. A set
of experiments (see Section 7.3) has been performed to evaluate the execution times and how the
branch and bound results compare with respect to the results from the heuristics. However, it
should be noted that the runtime of the branch and bound search is heavily dependent on the per-
formance lower bound Plb that is provided to prune the solution tree at the beginning. This value
is obtained by the backwards search heuristic. Hence, even in those cases in which the problem
can be solved to (almost) optimality by the branch and bound search, a practically usable execution
time can only be achieved thanks to the availability of a very good (and fast) heuristic.

6.4 Running Example

The availability of the branch and bound exhaustive search for the optimum (with finite granular-
ity) allows an evaluation of the quality of the heuristics. Table 6 shows a summary of the results
for the case with s = 8.

The table shows the typical result found in our experiments. Not only is the backwards heuristic
very close to the upper bound, it is also extremely close to the value computed by the branch and
bound search. In reality, the branch and bound result is much closer to the result of the heuristic
than it is to the upper bound.

7 EXPERIMENTAL RESULTS

This section reports a set of experimental results aimed at evaluating and comparing the ap-
proaches presented in this article. All the algorithms have been implemented in the C++ language
and tested over synthetic workload for measuring their effectiveness.

In the experiments, the speed limits of the engine have been set toωmin = 500 RPM andωmax =

6500 RPM, respectively (typical values for a production car). The acceleration range allows the
engine to reach the maximum speed starting from the minimum in 35 revolutions (Davis et al.
2014), resulting in α+ = −α− = 1.62 · 10−4 rev/msec2.

7.1 Workload Generation

In the evaluation, we consider a task set composed of N periodic tasks, with utilization U P , and
an AVR task τ ∗ with Q = 6 possible control implementations.

The periods of the periodic tasks are {5, 10, 20, 50, 80, 100}ms, considered as typical values for
engine control applications (Guzzella and Onder 2010). The execution times of the periodic tasks
are generated by the UUnifast algorithm (Bini and Buttazzo 2005). The WCETs of the possible
control implementations for the AVR task are generated by randomly choosing (with a uniform
distribution and a minimum separation csep ) a set of seed values {c1, c2, . . . , cQ } from the range
[cmin , cmax ]. The actual WCETs are computed using a scale factor s asC j = s · c j . The scale factor is
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Fig. 11. Performance of the two heuristics (Section 5) as a function of s for U P = 0.5. The results are nor-

malized to the performance upper-bound.

a parameter that allows tuning the computational requirements of the AVR task implementations.
When the switching speeds and consequently the interarrival times of the AVR task are unknown,
it is not possible to define the AVR load with a simple utilization metric.

7.2 Performance Functions Generation

The performance functions considered in this work are (i) constant functions, as in Equation (5),
and (ii) exponential functions of the engine speed, as in Equation (7). In the first case, each con-
trol implementation Λj is assigned a performance coefficient k j that is randomly generated with a
uniform distribution in the range [kmin ,kmax ], with a minimum separation of ksep . In the case of
exponential functions, the generation involves two parameters k j,1 and k j,2 for each control imple-
mentation Λj . The performance is normalized with respect to ΛQ (i.e., the implementation with the
largest WCET with constant performance), which has kQ,1 = 1 and kQ,2 = 0. To provide for a uni-
form distribution of the exponential performance functions (see Equation (6)), the coefficients k j,2

are generated with a uniform distribution in a logarithmic scale with range [logk2,min , logk2,max ].
Finally, we set k j,1 = 1, j = 1, . . . ,Q for simplicity.

7.3 Constant Performance Functions

In this experiment, we consider the constant performance functions and evaluated the perfor-
mance of the heuristics with respect to the upper-bound P(ub ) obtained with the method described
in Section 4. We generate 500 task sets with N = 5 periodic tasks and an AVR task with a set of
possible control implementations. For each task set, we tested 30 different sets of performance
coefficients and a variable scale factor s from 1 to 10, trying 150,000 different configurations in
total.

For each value of s the performance of the heuristics and the upper-bound are computed. The
performance values obtained by the heuristics are normalized with respect to the value of the
upper-bound. As a consequence, the obtained values are lower-bounds of the performance values
normalized with respect to the actual optimal performance. The normalized performance values
were then averaged among all the configurations for a given value of s .

The range and separation cmin = 100, cmax = 1, 000, csep = 100 are used for generating the com-
putation time seeds and kmin = 1, kmax = 50, and ksep = 1 are used for the generation of the per-
formance coefficients.

Figure 11 shows the results for the case of utilization U P = 0.5 of the periodic tasks. As shown
by the graph, the backwards heuristic provides an extremely good performance, always greater

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 1, Article 1. Publication date: January 2018.



Selecting the Transition Speeds of Engine Control Tasks 1:19

Fig. 12. Performance of the two heuristics as a

function of s for U P = 0.75. The results are nor-

malized to the performance upper-bound.

Fig. 13. Performance of the backwards heuristic

and the branch and bound algorithm as a func-

tion of s forU P = 0.75. The results are normalized

to the performance upper-bound.

than 99% of the upper-bound, and extremely close to the optimum. Conversely, the gradient-based
heuristic shows a degradation for increasing values of s reaching a value lower than the 90% of the
upper-bound for s = 10. In our experiments, the gradient-based heuristic always performs worse
than the backwards search.

Figure 12 reports the results for the same experiment when the utilization of the periodic tasks
is increased to U P = 0.75. The performance of the backwards search heuristic is slightly worse,
reaching a value of approximately 93% for s = 10, while the gradient-based heuristic shows a con-
sistent degradation for s > 3.

However, as explained at the beginning of this section, the results normalized with respect to
the upper-bound are only lower-bounds of the actual performance, expressed by the ratio with re-
spect to the true optimum performance value (when computable). For this reason, we performed
another set of experiments including the result of the branch and bound algorithm (with δ =15
RPM), to study the performance of the backwards search heuristic with respect to the actual op-
timal performance (or a value most likely close to it). Due to the large runtime of the branch and
bound algorithm, this experiment has been conducted on a small set of configurations with 50 task
sets and 5 sets of performance coefficients. The results are shown in Figure 13. As shown by the
graph, the optimal performance tends to recede from the upper-bound for increasing values of s ,
confirming the effectiveness of the backwards search heuristic which remains around 99% of the
performance value found by the branch and bound algorithm.

Running Times. The maximum observed running time for the backwards search heuristic
is 756s with an average runtime of 5.6s. The maximum observed running time for the gradient-
based heuristic is 999s with an average runtime of 182s. For the branch and bound algorithm with
precision δ =15 RPM we measured a maximum runtime of 16,070s with an average runtime of
about 600s. Such results have been obtained executing the algorithms on a machine equipped
with an Intel i7 processor running at 3.2GHz and 8Gb of RAM.

7.4 Exponential Performance Functions

Another experiment has been conducted with the exponential performance functions described in
Section 3. We focus on the comparison of the two heuristics against the performance upper-bound
P(ub ) .
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Fig. 14. Performance of the two heuristics as a function of s for U P = 0.75. Exponential performance func-

tions under two different configurations are considered. The results are normalized to the performance

upper-bound.

Figure 14 shows the results as a function of the scale factor s for two different values of the
coefficient k2,max of the performance functions (keeping k2,min constant). The utilization of the
periodic tasks isU P = 0.75 and for each value of s we try 500 task sets and 30 sets of performance
coefficients, hence testing 150,000 different configurations.

As shown by the graph, the backwards search heuristic has a performance always greater than
the 99% of the upper-bound for k2,max = 50k2,min . In the same setting, the gradient-based heuris-
tic shows a slight performance degradation, reaching the 95% of the upper-bound for s = 10. In
the case k2,max = 200k2,min , there is a slight degradation also for the backwards heuristic, which
reaches the 96% of the upper-bound for s = 10, while the gradient-based heuristic shows a consis-
tent degradation for s > 4.

The ratio between k2,max and k2,min determines the distribution of the exponential perfor-
mance functions in the speed domain. Intuitively, the higher k2,max/k2,min the more the perfor-
mance functions are far apart. For this reason, we conduct another experiment by varying the ratio
k2,max/k2,min while holding the scale factor s = 7.

For each value of the ratio we test 500 task sets and 50 sets of performance coefficientsk2, j , hence
500,000 configurations. The results are shown in Figure 15 and confirm the trend of Figure 14,
showing a graceful and quite limited degradation of the performance of the backwards heuristic
for increasing values of the ratio k2,max/k2,min . Again, the gradient-based heuristic shows worse
performance, reaching very low values for k2,max/k2,min > 200.

8 VALIDATION OF THE PERFORMANCE MODEL

The performance model presented in Section 3 has been validated using a simulation framework,
which has been developed to model and execute the main components of the considered CPS: the
engine, the control logic, and the task implementation. In the context of this work, the simulation
framework has been used to compute the performance functions under different fuel injection
strategies and verify our fitting hypothesis to the family of exponential functions expressed in
Equation (6). The framework has also been used to explore the dependency of the performance
with respect to different control implementations.
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Fig. 15. Performance of the two heuristics as a function of k2,max

k2,min for U P = 0.75 and s = 7. The results are

normalized to the performance upper-bound.

8.1 Simulation Framework

The system model has been created in the MATLAB Simulink ® environment by integrating three
major subsystems. The engine model and the model of the injection control logic have been devel-
oped as traditional Simulink systems, with blocks encoding the differential equations of the engine
dynamics and the control algorithms (including the tables for determining the injection phase and
duration).

The implementation of the controls as a set of concurrent tasks with variable-rate activation
and an adaptive behavior (and execution time) has been modeled using the T-Res framework
(Cremona et al. 2015), specifically developed for studying the impact of task scheduling on control
performance and purposely extended to add the representation of AVR tasks.

8.2 Engine Modeling

Modeling a diesel engine is a challenging problem due to the multiple complex physical parts to
be considered, obtaining a highly non-linear dynamic system with at least one dynamic feedback
loop for the turbocharger.

The engine model developed for this work is an abstraction of a modern four-cylinder heavy-
duty diesel engine, equipped with a common-rail injection system and a Variable Geometry Tur-
bocharger (VGT). The model includes a set of physical equations describing the engine dynamics,
taken from the specialized literature, some functions defining subsystem models based on experi-
mental data, and static maps (e.g., for the turbocharger model).

The main sources used for modeling the air path are the books by Guzzella and Onder (2010),
Panse (2005), and Criens (2014)). A simplified model of combustion has been created following
the description in Ding (2011) and Ericson et al. (2006) to simulate the behavior of pressure, tem-
perature, emissions of Nitrogen Oxide (NO2) and thermodynamic efficiency. The equations that
describe the turbocharger behavior have been taken from the recent book by Nguyen-Schäfer
(2015).

8.3 Engine Control

In agreement with the current industrial practice, the control of the engine is based on a mix
of static maps and additive control loops to correct possible deviations from the set points. This
strategy is a typical solution for commercial cars, where maps are calibrated on test benches, in
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Fig. 16. Injection strategies used in the simulation: from the top to the bottom, triple injection, double in-

jection, and single injection.

optimal conditions, and additional loops are added to face deviations from the optimal behavior
due to transients, aging, and changes of external conditions.

Our engine control functions include the typical injection profile for diesel engines, consisting
of (i) an optional number of pre-injections, (ii) a central main injection, and (iii) one or two optional
post-injections. Pre-injections are used to heat the combustion chamber and ensure a more uniform
fuel-air mixture for the main injection, while post-injections are typically used to burn the residual
and decrease the amount of pollutants (Criens 2014; Bhatt et al. 2013).

8.4 Control Task Model

The task set in the engine model considers a single AVR task computing all the functions related
to the fuel injection control. The focus of the modeling is to understand how the performance
functions of the system change as the system switches through the different modes implemented
in the AVR task.

For the purpose of this work, the task execution modes are modeled according to three different
injection strategies: triple, double, and single injection. Each strategy corresponds to a mode of the
AVR task (with decreasing WCET).

Figure 16 shows the set of Simulink subsystems representing the control tasks, the scheduler,
and the functions executed by the tasks. The custom blocks for the representation of the scheduler
and the tasks are described in detail in Cremona et al. (2015). The block on the top-left corner of
Figure 16 contains the model of the fixed-priority scheduler. The blocks below it are the control
tasks. Three of them are periodic; the second from the top is the AVR task controlling the fuel
injection. With respect to the periodic task blocks, the AVR task has an additional input defining the
execution mode (and its corresponding WCET). The chains of blocks on the right side of Figure 16
are the subsystems executed by the tasks. The second chain from the top is the sequence of the
control subsystems executed by the AVR task.

The three AVR modes lead to different heat release profiles, thus directly influencing the com-
bustion dynamics. Typically, multiple injections decrease the efficiency of torque generation, but
also decrease the pollutant emissions, by lowering the in-cylinder peak temperature and improving
the fuel combustion with pre-heating and better air-fuel mixing (Criens 2014; Bhatt et al. 2013).
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Fig. 17. Experimental data for the thermodynamic efficiency as a function of the engine speed. The contin-

uous line illustrates a fit to the exponential performance model proposed in this work.

8.5 Experimental Evaluation

The objectives of the simulation are to characterize the performance functions and model their
dependency on the engine speed. The performance functions available with the current model
setting are (i) the thermodynamic efficiency and (ii) the emissions of NO2. The simulation runs have
been defined for a model input with low external torque (no gear subsystem is included) and a
throttle input profile with a sudden acceleration (maximum throttle) of a duration of approximately
2s. The data obtained from the simulation have been studied as a function of the engine speed
(ranging from 500 to 5,500 RPM).

For the three different injection strategies (one to three injections), the simulation results show
that the performance functions can be fitted well with the exponential behavior reported in
Equation (6). The fittings have been made using the Curve Fitting Tool of MATLAB, with the LAR
Trust-Region algorithm.

The experimental data for the thermodynamic efficiency are reported in Figure 17, where also
the fit to our exponential performance model is reported as a continuous line.

As clear from the graph, the fit is very accurate and resulted in a coefficient of determination
(R squared) of 0.998 (1 means a perfect fit) when Equation (6) is configured with k1 = 0.5042 and
k2 = 579.2.

Because of the strong dependency on the temperature, the emissions of NO2 measured with the
simulated framework resulted quite noisy—with particular sensitivity at little variations for values
greater than 1700◦K. However, as shown in the example illustrated in Figure 18, the behavior
appeared clearly correlated with an exponential shape. In fact, the fit to Equation (6) (illustrated
as a continuous line in the figure) resulted in a coefficient of determination equal to 0.94 when
configured with k1 = 2, 619 and k2 = 1.625 · 104.

8.6 Comparing Performance Functions with Different AVR Modalities

With the same setting and approach described in the previous section, we also evaluated the depen-
dency of the performance functions on the mode of the AVR task, which in our case corresponds
to a given injection strategy. For each mode, the performance has been first measured as a function
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Fig. 18. Experimental data for the emissions of NO2 as a function of the engine speed. The continuous line

illustrates a fit to the exponential performance model proposed in this work.

Fig. 19. Fit to the exponential performance model of the NO2 emissions for different injection strategies.

of the engine speed and then fit to the proposed exponential model. Figure 19 reports the results
of this experiment for the NO2 emissions. As can be observed from the graph, the performance
functions match our monotonicity assumption with the complexity of the control implementation
(a control for the triple injection strategy requires more computation than the one with double
injection, and so on).

9 RELATED WORK

A model for describing an AVR task was first proposed by Kim, Lakshmanan, and Rajkumar (Kim
et al. 2012), who also derived a schedulability analysis under very restrictive assumptions, consid-
ering a single AVR task running at the highest priority with a period always smaller than those of
the other tasks. In addition, relative deadlines were assumed to be equal to periods and priorities
were assigned based on the rate-monotonic algorithm. Pollex et al. (2013) derived a sufficient fea-
sibility test for fixed-priority scheduling, but assuming a constant engine speed. Davis et al. (2014)
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used an Integer Linear Programming (ILP) formulation to derive a sufficient schedulability test of
AVR tasks under fixed priorities, also taking acceleration into account, but considering a finite set
of (discretized) initial engine speeds.

The exact characterization of the interference produced by an AVR task under fixed priorities
has been presented by Biondi et al. (2014) as a search approach in the speed domain, where the
concept of dominant speeds is used to reduce the complexity and avoid speed quantization. Such
a method has then been extended to derive an exact response time analysis of fixed priorities AVR
tasks (Biondi et al. 2015).

Other works addressed the analysis of AVR tasks under the EDF scheduling algorithm. Guo and
Baruah (2015) proposed a speedup factor analysis and sufficient schedulability tests for AVR tasks
scheduled with EDF. Biondi et al. (2015) proposed a precise workload characterization generated
by an AVR task that is used to derive a feasibility analysis under EDF scheduling.

10 CONCLUSIONS

The problem of performance-oriented design of transition speeds in a fuel injection system with
adaptive variable rate tasks has been discussed. A set of optimization algorithms has been pre-
sented, assuming a quite general scenario in which the performance of each control implementa-
tion is expressed by an arbitrary function that has the only requirement of being integrable and
monotonically increasing with the complexity of the implemented algorithm.

The experimental results show that the proposed heuristics are quite close to the actual optimal
value and allow the computation of the optimum with finite resolution in many cases.

A set of Simulink models, including the CPS model of the engine, the fuel injection system, the
control functions, and their task implementation (with variable execution times) have been defined
to support the assumptions on which our algorithms are based (fitting the engine performance
functions with exponential curves) and study the dependency of the control performance with
respect to a task implementation. Future work includes an experimental analysis and validation
with actual test bench data and extending the proposed optimization method to schedulability
constraints that allow for temporary overload conditions.
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