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To improve computing performance in real-time applications, modern embedded platforms comprise hard-

ware accelerators that speed up the task’s most compute-intensive parts. A recent trend in the design of

real-time embedded systems is to integrate field-programmable gate arrays (FPGA) that are reconfigured

with different accelerators at runtime, to cope with dynamic workloads that are subject to timing constraints.

One of the major limitations when dealing with partial FPGA reconfiguration in real-time systems is that the

reconfiguration port can only perform one reconfiguration at a time: if a high-priority task issues a reconfig-

uration request while the reconfiguration port is already occupied by a lower-priority task, the high-priority

task has to wait until the current reconfiguration is completed (a phenomenon known as priority inversion),

unless the current reconfiguration is aborted (introducing unbounded delays in low-priority tasks, a phe-

nomenon known as starvation). This article shows how priority inversion and starvation can be solved by

making the reconfiguration process preemptive—that is, allowing it to be interrupted at any time and resumed

at a later time without restarting it from scratch. Such a feature is crucial for the design of runtime reconfig-

urable real-time systems but not yet available in today’s platforms. Furthermore, the trade-off of achieving

a guaranteed bound on the reconfiguration delay for low-priority tasks and the maximum delay induced

for high-priority tasks when preempting an ongoing reconfiguration has been identified and analyzed. Ex-

perimental results on the Xilinx Zynq-7000 platform show that the proposed implementation of preemptive

reconfiguration introduces a low runtime overhead, thus effectively solving priority inversion and starvation.
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1 INTRODUCTION

Real-time systems are ubiquitous in our everyday life, such as in safety-critical domains like auto-
motive, avionics, or the rapidly growing domain of smart/autonomous machines (e.g., robotics or
automated driving). In contrast to general-purpose computing systems, the correctness of a real-
time system depends not only on the results of its computations but also on the time at which
outputs are produced. Delivering a result after a predetermined deadline may lead to malfunctions
that can jeopardize the entire system. Therefore, for many safety-critical systems it is essential to
guarantee that all time-sensitive computations are able to complete their execution within their
deadlines. To improve the performance of real-time systems, modern embedded platforms com-
prise hardware accelerators that speed up the task’s most compute-intensive parts.

A recent trend in the design of real-time embedded systems is to integrate field-programmable
gate arrays (FPGAs) that are reconfigured with different accelerators at runtime, to cope with dy-
namic workloads, like in signal processing or computer vision applications [2, 6, 8, 11, 15]. For
instance, platforms like the Xilinx Zynq or Altera SoC combine general-purpose CPUs with an
FPGA on a single chip to enable the development of application-specific accelerators that can run
on the FPGA in parallel with the software executing on the CPU. Low-latency channels enable
communication between accelerators and software. In addition, the possibility of reconfiguring
specific portions of the FPGA at speeds of 400MB/s enables the adoption of runtime virtualization
techniques to share the FPGA among multiple tasks in different time windows, so extending the
number of functions that can be accelerated. Such a virtualization technique for the FPGA has
been proven to be effective to achieve a significant speedup in real-time applications [2, 12]. Vir-
tualization is generally realized using partial FPGA reconfiguration, where parts of the FPGA are
reconfigured while the remaining configuration remains fully functional.

One of the major limitations when dealing with partial FPGA reconfiguration is that the re-
configuration port can only perform one reconfiguration at a time. This means that when multi-
ple tasks issue simultaneous requests to reconfigure different portions of the FPGA fabric, such
requests must be sequentialized according to a given scheduling algorithm. In current imple-
mentations, the reconfiguration port of the FPGA does not allow preemptions; that is, once a
reconfiguration process is started, it can either be completed or aborted. In other words, if a high-
priority task issues a reconfiguration request while the reconfiguration port is already occupied
by a lower-priority task, the high-priority task has to wait until the current reconfiguration is
completed, unless the current reconfiguration is aborted to be restarted later from the beginning
(see Section 3). Unfortunately, considering the relatively long reconfiguration delays of current
platforms1 (e.g., compared to context switching), both such solutions are not suitable for real-time
applications. In fact, while non-preemptive reconfigurations introduce long delays in high-priority
tasks (a phenomenon known as priority inversion), aborting them may introduce unbounded de-
lays in low-priority tasks (a phenomenon known as starvation). Both problems can be avoided by
making the reconfiguration process preemptive, allowing it to be interrupted at any time and re-

sumed at a later time from the point of interruption. Such a feature is not yet available in today’s
platforms.

This article presents a solution to preempt the partial reconfiguration process of hardware accel-
erators onto an FPGA, preventing both priority inversion and starvation phenomena. We demon-
strate the feasibility of preempting partial reconfiguration, analyze its worst-case latencies, and
verify the findings in an experimental evaluation.

1For example, on the Xilinx Zynq-7010 platform (lower end in terms of reconfigurable resources), a maximum reconfigu-

ration bandwidth of 400MB/s is supported; however, reconfiguring 25% of the total resources still takes more than 2ms.
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In particular, the novel contributions of this work can be summarized as follows:

• To our knowledge, this is the first realization of a preemptive FPGA reconfiguration.2 Our
approach does not require any changes to the bitstreams that are reconfigured.

• Using the proposed preemptive reconfiguration mechanism, the reconfiguration delay is
bounded analytically for low-priority tasks that are subject to preemptions.

• A trade-off analysis is presented to balance the reconfiguration delay experienced by the
low-priority tasks and the maximum delay induced in high-priority tasks when preempting
an ongoing reconfiguration.

2 RELATED WORK

Research on operating systems for reconfigurable hardware has mainly focused on providing the
same abstractions and multitasking capabilities for accelerated functions as are common for soft-
ware tasks, so that they can be scheduled as “hardware tasks.” Accordingly, research on real-time
scheduling using runtime-reconfigurable hardware originally considered software and hardware
tasks to be separate entities [8, 10, 11, 14]. In early work, the reconfiguration delay was assumed
to be negligible [8, 14]. However, reconfiguration delays on current FPGAs are in the range of mil-
liseconds, whereas context switches are in the range of microseconds. Pellizzoni and Caccamo [11]
accounted for reconfiguration delays in their schedulability analysis of both software and hard-
ware tasks. Software tasks can be migrated to hardware to maximize the number of dynamic tasks
that can be admitted in the real-time schedule. Danne and Platzner [8] presented a schedulability
analysis for periodic hardware tasks that considers the possibility of preempting their execution
(but not their reconfiguration). A realization of how the execution of hardware tasks on the FPGA
can be preempted was presented by Happe et al. [10]. Note that storing and restoring the ex-
ecution state of preempted hardware tasks causes frequent reconfigurations, which stresses the
importance of considering the reconfiguration delay.

In embedded systems, FPGAs are typically used to accelerate compute-intensive functions that
are triggered by software tasks [15]. Input and output data are exchanged using instruction set
extensions or the on-chip bus [9]. Recently, Biondi et al. [2] presented a scheduling framework
and a related analysis for periodic real-time tasks that exploit runtime reconfiguration of hardware
accelerators. It was shown that the proposed framework allows admitting more tasks to the system
compared to a full software implementation or a static FPGA allocation. Furthermore, preemption
was identified as a desirable property for the reconfiguration port, especially when the execution
time of the accelerator is short compared to its reconfiguration delay (e.g., in systems that use
instruction set extensions) [5, 9].

Preempting the reconfiguration port requires extensive knowledge about the format and
operations contained in the data sent to it. Existing work in this context (e.g., by Happe et al.
[10]) utilizes the reconfiguration port to read back the state of configured accelerators. Thus,
enabling preemptive execution of configured accelerators, but not preemption for the recon-
figuration process itself. In another work, Benz et al. [1] investigated reverse-engineering of
hardware circuits in the form of configuration data to netlists, using information obtained from
synthesis tools about the structure of the targeted FPGA. The data sent to the reconfiguration
port not only consists of the configuration data itself, but additionally includes operations for
the reconfiguration port that change the state of the whole FPGA (detailed in Section 6). For
preempting reconfigurations, these operations need to be considered.

2The hardware and software to achieve this property will be released as an open-source project upon publication.
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Fig. 1. Multi-tasking systems can experience priority inversion and starvation problems due to a non-
preemptive shared resource. Those problems are solved in this work for reconfigurations by making the
shared reconfiguration port preemptive.

In summary, the existing work on hardware tasks is still not sufficient to provide a complete
abstraction that enables preemptive multitasking for software as well as hardware tasks, and while
preemptive reconfiguration has been assumed for hardware accelerators in real-time task sets [2],
it was so far not realized. In the remainder of this article, the term task always refers to software
tasks that have access to hardware accelerators.

3 MOTIVATIONAL EXAMPLE

When a task issues a reconfiguration request in the described model (which follows the commonly
used model detailed in Biondi et al. [2]), it self-suspends to wait for the reconfiguration to be
completed, allowing the other tasks to execute on the CPU. Consider, for instance, a single-core
system running two tasks, τ1 and τ2, with τ1 having higher priority than τ2. The following three
approaches can be adopted for managing reconfiguration requests:

(a) Configure-to-completion: An active reconfiguration cannot be preempted or aborted once
started, but occupies the reconfiguration port until completed. This case is shown in
Figure 1(a), where τ2 starts executing and takes control over the reconfiguration port.
When τ1 starts executing and requests a reconfiguration, it must wait for τ2 to complete
its reconfiguration—that is, tasks are not executed according to their priority order
(priority inversion).
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(b) Abort: The reconfiguration process cannot be suspended and resumed, but it can be
aborted. Every time a reconfiguration is aborted, it needs to be restarted from the begin-
ning. While this policy avoids priority inversion, it can lead to starvation of τ2, as shown
in Figure 1(b). τ2 starts executing and takes control over the reconfiguration port, but
its reconfiguration is aborted once τ1 requests a reconfiguration. When higher-priority
reconfiguration requests abort τ2’s reconfiguration frequently, then τ2 suffers from
starvation.

(c) Preemptive reconfiguration: The reconfiguration requested by a task can be preempted in
favor of another higher-priority reconfiguration. As shown in Figure 1(c), τ2 starts execut-
ing and takes control over the reconfiguration port, its reconfiguration is preempted once
τ1 requests a reconfiguration. When the higher-priority reconfiguration is completed, the
suspended reconfiguration of τ2 is resumed from the last feasible point (where it is safe to
resume the reconfiguration, details in Section 6). Despite the frequent reconfigurations of
τ1, τ2 will complete its reconfiguration eventually, because (in reasonable environments)
τ1 does not generate reconfiguration requests at a rate that would constantly occupy the
reconfiguration port (details in Section 8).

More realistic scenarios involving multiple tasks and large and more complex hardware acceler-
ators (that require larger reconfiguration time) would lead to a more complex contention of the
reconfiguration port, increasing delays and making the problems of priority inversion and starva-
tion even more severe. To solve those problems, this article presents the realization of preemptive
reconfiguration. Using the proposed approach the reconfiguration delay for lower-priority tasks is
bounded, while higher-priority tasks do not experience priority inversion, thus allowing the devel-
opment of multi-priority and mixed-criticality systems that benefit from runtime reconfiguration.

The following section introduces the required background for realizing preemptive reconfigu-
ration.

4 BACKGROUND FOR PREEMPTIVE RECONFIGURATION

Reconfiguring an FPGA is more complex than a simple transfer of the configuration data from main
memory to the configuration memory of the FPGA. Especially when reconfiguring an FPGA par-
tially, it needs to be ensured that the FPGA remains in a consistent state and the not-reconfigured
parts remain functional all the time. A partial bitstream contains all the information for the area
that should be reconfigured, such as the address in the configuration memory that corresponds
to the area of the FPGA where the design should be placed. The state of the FPGA is controlled
by a finite state machine (FSM) that is part of the reconfiguration port. This FSM executes opera-

tions that are part of the bitstream besides the configuration data. This section briefly summarizes
the information about the reconfiguration port and bitstreams that are openly available for Xilinx
FPGAs [17].

4.1 Xilinx Bitstreams and the Reconfiguration Port

This work focuses on the reconfiguration port of Xilinx FPGAs, called the internal configuration

access port (ICAP). The information contained in the bitstreams for these FPGAs can be divided
into two categories: operations executed by the reconfiguration port FSM and the actual con-
figuration data that is transferred to the FPGA configuration memory. The smallest addressable
segments of the configuration memory are called frames, and all operations act upon one or
more frames. In Xilinx 7 Series FPGAs, each frame consists of 101 32-bit words [17]. The relevant
operations for preemptive reconfiguration that are executed by the reconfiguration port FSM are
summarized in the following.
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Fig. 2. Generic sequence of operations performed in a partial bitstream. White blocks are operations com-
mon to all partial bitstreams; gray blocks are specific operations that depend both on the size and physical
position of the reconfigurable area inside the FPGA and on the used FPGA device. The gray blocks constitute
the actual configuration data, and the largest part of the partial bitstream by far.

Fig. 3. The FPGA bitstream consists of two packet types: Type 1 and Type 2. The Type 1 packet is used for
register reads and writes; the Type 2 packet, which must follow a Type 1 packet, is used to write long blocks.

Figure 2 shows the chronological sequence of the most relevant operations performed by partial
bitstreams (a more detailed description can be found in Section 5). Partial bitstreams start with a
Bus Width Auto-Detection operation that is used to automatically detect the word width that is sent
to the reconfiguration port (1, 2, or 4 bytes are possible values). After that, the Synchronization Word

initializes the reconfiguration port to accept configuration data, followed by the ID Code Check,
which ensures that the bitstream target device matches the FPGA that is being reconfigured. The
Shutdown Operation safely shuts the area that is going to be reconfigured down and the Set Control

Register Operation configures the available reconfiguration features. Write Operations transfer the
actual configuration data, specifying the starting frame address and the amount of words (multiples
of whole frames) to write.

After all configuration data has been loaded into the FPGA configuration memory, a Reset Opera-

tion is performed to initialize the logic inside the reconfigured region. Partial bitstreams end with a
Startup Operation, where the device activates I/Os and the logic belonging to the reconfigured area,
and a Desynchronization Operation that de-synchronizes the reconfiguration port (inverse to the
Synchronization Word). After de-synchronization, the reconfiguration port ignores any following
data on its inputs until the next synchronization.

Two additional operations are used in partial bitstreams:

• No-operation: Decoded by the state machine without producing any actions. Since each op-
eration is executed by the reconfiguration port FSM, each operation has a defined latency.
This operation is used, when required, to introduce clock-cycles delays to wait for the com-
pletion of the running operation.

• Null operation: This is a write operation that writes zeros to a specific FPGA register. Some
operation as the Shutdown Operation and the Startup Operation need to be activated after
being issued to the reconfiguration port FSM. The activation is done by a Null operation.

Each operation can be sent to the reconfiguration port in packets of two possible formats: “Type 1”
or “Type 2.” Type 1 packets are used when small amount of data words (to be read or written) are
required by the operation. Type 2 packets are used to write long segments of data into the FPGA
configuration memory. The address within the configuration memory needs to be supplied by a
preceding Type 1 packet [17].

As Figure 3 shows, both packet types have a Word Count field that contains the exact number
of data words following the actual operation. It instructs the reconfiguration port FSM to directly
write that amount of words to the configuration registers or memory instead of decoding them.
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Two FPGA-internal registers are central for the purpose of preemptive reconfiguration:

• Frame Address Register (FAR). This register contains the address of the next frame in
configuration memory to be written.

• Frame Data Input Register (FDRI). This register contains the number of data frames that have
to be written to the FPGA configuration memory, starting from the frame address specified
by the FAR.

These registers are the reconfiguration state that needs to be restored when a reconfiguration
is resumed.

The information summarized in this section has been gathered from openly available Xilinx
documentation [17], whereas the information in the following section was gathered by manually
decoding partial and full bitstreams.

5 DECODING PARTIAL RECONFIGURATION

As mentioned in Section 4, there is no openly documented structure of partial bitstreams provided
by Xilinx. Such a structure is required for preemptive partial reconfiguration to determine points in
the bitstream at which reconfiguration can safely be preempted and resumed. Therefore, a general
structure for partial bitstreams is defined in the following, based on information gathered from
decoding numerous bitstreams. There are two types of bitstreams that have been utilized to obtain
the required information: standard bitstreams and debug bitstreams. Standard bitstreams configure
multiple frames after a single write to the FAR and the FDRI, which increment automatically at the
end of each frame. Debug bitstreams configure each frame individually, writing the FAR and the
FDRI after each frame, and thus providing information about FPGA-specific configuration memory
addressing.

With information gathered by decoding both bitstream types, it was possible to group opera-
tions in partial bitstreams into sequences that fulfill specific purposes. Each operation sequence
can optionally contain configuration data organized in data chunks. We further group sequences
in the bitstream into sections (consisting of one or more sequences). Configuration data within a
sequence of operations contains the description of the hardware that will be reconfigured inside
the pre-defined reconfigurable area, called the reconfigurable slot, inside the FPGA. The resulting
general structure of sections for partial bitstreams in for Xilinx FPGAs is shown in Figure 4.

A partial bitstream can be structured into three main sections: Common Header, Reconfigurable
Slot Data Section, and Common Trailer.

Common Header. This first section is common to all partial bitstreams targeting the same FPGA
and it is the only device-specific section. Its main function is to synchronize the reconfiguration
port and prepare the device to receive the bitstream. It consists of the following four sequences:
Synchronization Header, Write Initialization followed by its data chunk (which contains the data
used to initialize special configurable blocks inside the FPGA), Shutdown, and Set Control Register.
These sequences are made of operations that initialize the reconfiguration port to receive data
(Synchronization Word), set its bus width (Bus Width Auto-Detection), and perform the ID code
check (ID Code Check). Furthermore, during the Write Initialization sequence, an FPGA-specific
number of frames is sent to the configuration memory to configure particular resources called
CFG_CLB used to define which part of the FPGA itself will be reset or reconfigured [13]. This
section ends with a Shutdown sequence, which safely disables the area that is going to be recon-
figured, and a Set Control Register sequence, which configures the FPGA device [17].

Reconfigurable Slot Data Section. This section of the bitstream depends on the slot that is recon-
figured. It contains the slot’s configuration data, which describe the user-logic that will be written
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Fig. 4. Structure of a partial bitstream. The left-hand side shows a partial bitstream where three main sec-
tions are identified: Common Header, Reconfigurable Slot Data Section, and Common Trailer. Darker sec-
tions are common to all partial bitstreams, whereas the Configuration Data section depends on the area that
is reconfigured. The right-hand side shows the structure of the Reconfigurable Slot Data Section.

to the FPGA configuration memory. Configuration data is divided into an even number of data
chunks consisting of numerous frames to be written into the configuration memory.

Common Trailer. The last section is common to all partial bitstreams targeting the same
FPGA. The function of this section is to reset the programmed logic and to de-synchronize the
reconfiguration port. Four main sequences can be identified: Reset, Clear Control Register, Startup,
and De-Synchronization Trailer. These sequences consist of operations used to initialize and acti-
vate the reconfigured logic and safely de-synchronize the reconfiguration port.

As explained in Section 4, partial bitstreams contain information for the area to be reconfigured
and operations that control the reconfiguration FSM. Therefore, to enable preemptable reconfig-
uration, the knowledge of partial bitstream structures is essential, because a reconfiguration can
be aborted at any time but can only be resumed from specific points in the bitstream. Section 6
explains where in the bitstream reconfigurations can be safely resumed.

6 FINDING VALID RESUMPTION POINTS

A main challenge in realizing a preemptive reconfiguration is to obtain valid resumption points,
each consisting of a resumption offset in the bitstream and its associated FAR and FDRI (see
Section 4.1) from which a preempted reconfiguration can safely be resumed. This section
describes different types of resumption points and how they are obtained from a partial bitstream.

As detailed in the previous section, configuration data are transferred into the FPGA configura-
tion memory by data chunks that consist of numerous frames. A frame is the smallest transferable
amount of configuration data. It is possible to preempt, but not start or resume, a reconfiguration
in the middle of a frame. Furthermore, it would be unsafe to resume a reconfiguration in the mid-
dle of an operation sequence that instructs the reconfiguration port FSM to write FPGA-internal
configuration registers, since the registers that had been written before the preemption could have
been changed by the preempting configuration.
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Fig. 5. Position of Simple resumption points and Per-Frame resumption points inside a partial bitstream. A
Per-Frame resumption point is fixed at the end of each frame within a data chunk. The resumption point
related to the last frame is a Simple resumption point.

Depending on the offset where a reconfiguration is preempted, different procedures are neces-
sary to resume it afterward. Therefore, we define three types of resumption points that require
different sequences of operations to resume a preempted reconfiguration:

(i) Trivial resumption point: Beginning of a bitstream.
(ii) Simple resumption point: The resumption offset points to the end of a data chunk in the

bitstream. In this case, reconfiguration can be resumed at the offset after sending the
Synchronization Header sequence that is part of the Common Header (see Section 5).

(iii) Per-Frame resumption point: The resumption offset points to the end of a frame within a
data chunk. Resuming a reconfiguration from Per-Frame resumption points requires de-
termining the correct FAR and FDRI values as well as sending the correct Synchronization
Header and Write Initialization sequences based on these values.

Figure 5 shows the placement of different resumption points within the partial bitstream. Simple
resumption points require less information to be obtained from the bitstream and to be stored
at runtime, but result in considerably higher worst-case reconfiguration delay bounds than Per-
Frame resumption points (as detailed in Section 8). Per-Frame resumption points enable the re-
sumption of reconfigurations at every frame (the smallest entity of configuration data that Xilinx
FPGAs can process), and thus it is not possible to improve their position by bitstream manipu-
lation. In the following, we will detail how all types of resumption points can be found within a
bitstream.

6.1 Simple Resumption Points

This type of resumption point can be found inside a partial bitstream by searching for FDRI op-
erations that are part of Write Initialization sequences as shown in Figure 6. When skipping the
following configuration data chunk using the word count of the operation (see Section 4.1), the
resulting offset points to a Simple resumption point.

When a reconfiguration is preempted, it needs to be resumed at the previous resumption point.
Therefore, the amount of data between two resumption points directly contributes to the additional
delay for the preempted reconfiguration. To guarantee a minimum progress for the preempted
lower-priority task (in Section 8.2), this overhead should be as low as possible. Simple resumption
points impair the performance of the system, because a great amount of progress can be lost for the
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Fig. 6. Flow-chart diagram to find Simple resumption points inside partial bitstreams.

Fig. 7. Flow-chart diagram that shows how to find Per-Frame resumption points inside the Slot Data Section
of a partial bitstream. The FAR increment in this section is 0x01.

lower-priority tasks. The distance between Simple resumption points depends on the size of the
area that is reconfigured: in a minimum-size slot on a Zynq-7z010 device (800 LUTs), the average
distance between Simple resumption points is 6,640 words (ca. 25% of the bitstream) and the biggest
is 11,744 words (about 44% of the bitstream, i.e., the worst case that needs to be considered in the
analysis in Section 8.2). Therefore, a more fine-granular distribution of resumption points in the
bitstream is beneficial.

6.2 Per-Frame Resumption Points Within the Slot Data Section

The Slot Data Section is by far the biggest section of a partial bitstream (multiple tens of thou-
sands of words). Therefore, we focus on finding Per-Frame resumption points in that section first
(without considering the data chunk within the Common Header). In standard bitstreams, the FAR
is initialized in the Write Initialization sequence and then incremented automatically by the re-
configuration port FSM after each frame, while writing the data chunk. Searching for Per-Frame
resumption points requires knowing the FAR value increment after each frame, to determine the
FAR value (FPGA-internal configuration memory address) that corresponds to a certain resump-
tion point (offset within the bitstream). This information can be taken from debug bitstreams:
inside the Slot Data Section (but not in the data chunk within the Common Header), a FAR value
increment of 0x01 (frame increment) is applied after each frame.

Figure 7 shows how to find Per-Frame resumption points. The first step is to find the beginning
of each data chunk (FDRI-write operation inside the Write Initialization sequence) and its starting
FAR value. Then, a resumption point can be found at every frame of configuration data, associating
its offset with the calculated FAR value and an FDRI value. The correct FAR value for Per-Frame
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Fig. 8. Detailed structure of Data Chunk #0. The FAR increment is 0x80 (column increment), and each sub-
chunk has its starting and ending FAR value. Highlighted in red the discontinuity of the FAR value between
two different sub-chunks.

resumption points within the Slot Data section is calculated by adding a frame increment for each
frame to the FAR starting value. The FDRI value is fixed to the number of words in a frame (101).

Using Per-Frame resumption points in addition to Simple resumption points can reduce the dis-
tance between resumption points drastically. However, the worst-case distance between resump-
tion points (that needs to be considered for real-time analyses in Section 8.2) is now determined
by Data Chunk #0 within the Common Header. This data chunk requires additional steps to deter-
mine the FAR increments, as detailed in the following. As mentioned in Section 5, the size of Data
Chunk #0 is device dependent and grows proportionally with the size of the FPGA.

6.3 Per-Frame Resumption Points Within the Common Header

Searching for Per-Frame resumption points inside Data Chunk #0 within the Common Header
requires the knowledge of its internal device-dependent structure. In contrast to all other data
chunks, Data Chunk #0 is divided into smaller sub-chunks and each sub-chunk has starting and
ending FAR values that are not observable in a standard bitstream. The number of sub-chunks and
their starting and ending FAR values depend on the targeted FPGA only, but not on the resources
and dimensions of the reconfigurable slot that should be configured.

The structure, FAR values, and FAR increments of Data Chunk #0 can be obtained by analyzing
a debug bitstream for the targeted device. As discussed in Section 5, the debug bitstream loads each
frame individually, writing the FAR and the FDRI value after each frame. Therefore, the internal
partitioning of Data Chunk #0 into several sub-chunks can be inferred by inspecting the FAR
values in the debug bitstream: a discontinuity in FAR values identifies the beginning of a new
sub-chunk. Within the same sub-chunk, FAR values are contiguous. The first FAR write identifies
the beginning of the first sub-chunk and every FAR discontinuity provides the ending value of the
current sub-chunk and the starting value of the next sub-chunk. Figure 8 shows the structure of
Data Chunk #0 for a partial bitstream targeting the Xilinx Zynq-7010 FPGA.

The process for finding Per-Frame resumption points in Data Chunk #0 is similar to finding
Per-Frame resumption points in the Slot Data section (see Section 6.2 and Figure 7). However, the
FAR increment after each frame is a column increment (0x80) and not a single-frame increment
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(0x01). The information about the end of each sub-chunk and the correct FAR values are read from
the debug bitstream.

By introducing Per-Frame resumption points in Data Chunk #0, the maximum gap between
two resumption points can be reduced to a single frame (101 words), and hence at most the
configuration progress of a single frame is lost when a reconfiguration is preempted.

7 PREEMPTIVE RECONFIGURATION

In the following, the software interface, the custom reconfiguration controller, and the way they
interact to realize preemptive reconfiguration under real-time constraints by utilizing resumption
points (as detailed in the previous section) are described.

7.1 Software Interface for Preemptive Reconfiguration

Each task that wants to reconfigure a reconfigurable slot sends a request to the reconfiguration
driver, which provides a unified software interface for runtime reconfiguration for all tasks. Then,
the driver handles the reconfiguration request by sending commands to the reconfiguration con-

troller that translates these commands into signals for the reconfiguration port, and it initiates the
transfer of configuration data from main memory (or controller-internal SRAM) to the reconfigu-
ration port. The purpose of the reconfiguration controller is to alleviate the CPU from managing
the reconfiguration port and keeping track of ongoing reconfiguration requests. A reconfiguration
request to the driver specifies the requesting task’s priority, ID, and bitstream’s memory address.
The task priority is used by the driver to determine whether the request has priority over a run-
ning reconfiguration (if any). The driver compares the task priority with the priority of the current
reconfiguration (stored in a hardware register of the reconfiguration controller) to decide whether
to preempt or not. If the requesting task has the same priority as the current reconfiguration, then
the driver sends the reconfiguration request only if the requested slot is currently unoccupied. In
case the requested slot is busy, the driver returns an error to the user task, which can decide to
proceed in software or ask again for hardware acceleration. The task ID from the reconfiguration
request is used to resume the respective task when the reconfiguration has finished. As soon as a
task sends a reconfiguration request, it self-suspends. Additional information can be provided to
execute the reconfiguration request. For example, the reconfiguration controller can be configured
to send an interrupt to the CPU in case of a reconfiguration error.

Tasks are unaware of reconfiguration requests from other tasks. The driver translates reconfig-
uration requests into commands to the reconfiguration controller, while possibly preempting and
resuming reconfigurations such that the reconfiguration request with the highest priority is being
processed at each point in time. This leads to the following cases that the driver has to handle:

(i) No ongoing reconfiguration: In case no reconfiguration is currently being performed, the
driver translates the reconfiguration request into commands that are sent to the reconfig-
uration controller and then waits for a new request.

(ii) Ongoing reconfiguration: In case there is a reconfiguration currently being performed, the
driver compares the priority of the running reconfiguration request and the new recon-
figuration request to determine whether to abort the current reconfiguration to start pro-
cessing the new request, or to enqueue the new request after the running reconfiguration
request. When a task of higher priority requests a reconfiguration while a task of lower
priority currently occupies the reconfiguration port, the lower-priority reconfiguration is
preempted. To preempt a reconfiguration, the driver aborts the current reconfiguration
and determines how far the lower-priority reconfiguration has proceeded (as an offset
in the bitstream). After that, the resumption point for the lower-priority reconfiguration
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Fig. 9. Detailed block diagram of the custom reconfiguration controller.

request that is closest to the determined offset (and that was already passed during re-
configuration) is searched in a list of all resumption points for the respective bitstream.
Then, the higher-priority request is enqueued. Afterward, depending on the resumption
point, the correct synchronization (see Section 6) and the lower-priority reconfiguration
are enqueued to proceed from the resumption point. Once the higher-priority reconfigura-
tion has finished, the reconfiguration controller automatically resumes the lower-priority
reconfiguration (assuming no other higher-priority task requests a reconfiguration), as
we will detail in the following section.

7.2 Preemptive Reconfiguration Controller

The reconfiguration driver handles the tasks’ reconfiguration requests by translating them into
commands that are sent to the custom reconfiguration controller over the system bus (ARM AMBA
AXI on the Xilinx Zynq devices). The reconfiguration controller processes commands internally
using an FSM, based on the command-based reconfiguration queue (CoRQ) [7] that guarantees a
fixed latency for each command (but main memory transfers), and was extended by commands
that enable the reconfiguration preemption. The goal of the designed reconfiguration controller is
to provide a high-level interface to perform preemptive reconfigurations for tasks with different
priorities.

Figure 9 shows an overview of the reconfiguration controller. It communicates to the system
using AXI interfaces: one master interface is used by the controller to fetch bitstream data from
main memory and one slave interface is used to connect the controller to an AXI bus from which
the controller can accept commands (e.g., sent by the ARM CPU on Zynq devices). In particular,
the AXI slave interface allows to control the input demux to write into a single queue, while the
internal logic controls the output mux to let the FSM process commands from the highest priority,
non-empty queue. It integrates the ICAP as the reconfiguration port on Xilinx devices.

In addition to the FSM, the reconfiguration controller provides a configurable number of FIFO
queues. For each task priority supported by the system, two queues are instantiated: (i) a com-

mand queue that accepts any FSM commands from tasks of the respective priority and (ii) a re-

sume queue that only stores FSM commands to resume reconfigurations from resumption points
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Table 1. Reconfiguration Controller Commands

Command Immediate/Queueable Latency
configureBitstreamExt Qu —
configureBitstreamInt Qu 9 + �B/4�
setBaseAddress Qu 3
abortReconfiguration Im 7
setFAR Qu 3
setFDRI Qu 3
sendSyncronization Qu 470
resumeFSM Im 3

B, size of bitstream [byte].

(see Section 6). The priority of the queues is strictly ordered: first by the task priorities, and within
a single task priority the resume queue has a higher priority than the command queue (i.e., there
are two queue priorities for each task priority). In other words, preempted reconfigurations have
a higher priority than the following reconfiguration requests from tasks of the same task priority.
The reconfiguration controller is able to manage up to 8 priority levels (parameterized at design
time), with each queue storing up 128 commands.

The FSM is the core of the reconfiguration controller and it fetches, decodes, and executes com-
mands from the highest-priority non-empty queue (either command or resume queue). Based on
the commands from the queue, the FSM controls the FPGA reconfiguration port. Commands are
either executed immediately or enqueued into one of the internal FIFO queues (denoted as im-

mediate or queueable commands). Immediate commands are used to control the FSM itself (e.g.,
pause/resume processing enqueued commands) and abort a running reconfiguration. Queueable
commands relieve the CPU from managing reconfigurations—for instance, they configure bit-
streams (from internal or external memory) and notify the CPU once reconfiguration have fin-
ished. The commands that are utilized for preemptive reconfiguration are listed in the following
and Table 1 shows their latencies (in clock cycles).

• setBaseAddress: Commands can have, at most, 27-bit for data, but some of them require
32-bit addresses, such as, configureBitstream, setFAR, and setFDRI (detailed below).
setBaseAddress is used to set an offset that is combined with the address bits supplied
by other commands to obtain 32-bit addresses.

• configureBitstreamInt/configureBitstreamExt: Starts transfer of the bitstream to the
reconfiguration port from the memory address specified by 20 bits inside the command
combined with 12 bits set prior via the setBaseAddress command. It is possible to decide
the storage source of the bitstream: it can be fetched from the controller-internal memory,
which guarantees a fixed bandwidth, or from the main memory.

• abortReconfiguration: This command will abort the ongoing reconfiguration, stopping
the data transfer and resetting the reconfiguration port. A flag allows to choose whether
processing of further commands should be paused afterward or not.

• setFAR: Updates an operation sequence with a new FAR value that reflects a previously se-
lected resumption point. The sequence to update is stored in the reconfiguration controller
and sent to the reconfiguration port to resume a preempted reconfiguration (Synchroniza-
tion Header and a Write Initialization sequence, see Section 5). This command must be
preceded by setBaseAddress.
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• setFDRI: Similar to setFAR, this command updates the operation sequence that is sent to
the reconfiguration port to resume a preempted reconfiguration with a new FDRI value.
This command must be preceded by setBaseAddress.

• sendSyncronization: This command sends the operation sequence to resume a preempted
reconfiguration. A flag is used to determine whether the whole sequence should be sent (for
resuming Per-Frame resumption points, see Section 6) or the Synchronization Header only
(for resuming Simple resumption points). Before issuing this command, FAR and FDRI must
have been set using setFAR and setFDRI.

• resumeFSM: If the FSM was paused (e.g., by abortReconfiguration), this command re-
sumes it.

The reconfiguration controller records the state of an ongoing reconfiguration. Bitstream Address

and Word Counter are registers that are used to store the base address of the currently reconfigured
bitstream and determine the offset of the currently transferred bitstream word. These two values
are used during preemption to determine the resumption point. In particular, the bitstream base
address is used as a bitstream ID, to target the right set of resumption points, whereas the Word
Counter value is used as an offset and compared with all pre-calculated resumption offsets to find
the closest accomplished resumption point (details are provided in Section 7.3).

As explained in Section 4, resuming a reconfiguration means to resume the transfer of configu-
ration data to the configuration memory of the FPGA, it does not mean any modifications on the
bitstream. Therefore, each time a reconfiguration should be resumed from a specific resumption
point, the reconfiguration port needs to be synchronized first using the Synchronization Header
(and possibly the Write Initialization). The reconfiguration controller includes a Sync-Write ROM, a
memory that contains the Synchronization Header and Write Initialization sequences. Two words
inside the Write Initialization sequence are programmable: the FAR and FDRI values that define
a specific resumption point (set using setFAR and setFDRI). Depending on the type of resump-
tion point, only the Synchronization Header (Simple resumption points) or both Synchronization
Header and Write Initialization sequences (Per-Frame resumption points) are sent to the reconfig-
uration interface.

7.3 Hardware/Software Integration

To trigger a reconfiguration, the reconfiguration driver enqueues a setBaseAddress and a
configureBitstream command into the command queue that is determined by the task prior-
ity. As soon as one of the queues signals that it is non-empty, the reconfiguration controller FSM
starts fetching and executing its commands.

To preempt an ongoing reconfiguration, the reconfiguration driver sends an (immediate)
abortReconfiguration command and reads the state of the aborted reconfiguration to find the
correct resumption point. In particular, Word Counter and Bitstream Address values are read from
the hardware controller. Since the application could have multiple reconfigurable slots and partial
bitstreams, a method to address the respective set of resumption points and the specific resump-
tion point of the preempted reconfiguration is required. Figure 10 shows the data structure used
to select the correct resumption point. The address from which the bitstream was fetched in the
preempted reconfiguration (pointing to main memory or controller-internal memory) is used as
an identification method to target the set of resumption points related to the preempted reconfig-
uration. Moreover, the Word Counter value is used as an offset and compared with all resumption
offsets within each resumption point, to find the nearest and already passed one. Finally, resum-
ing a reconfiguration requires different commands, depending on the type of resumption point
(Figure 11):

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 2, Article 10. Pub. date: July 2018.



10:16 E. Rossi et al.

Fig. 10. Data structure for two bitstreams with three resumption points each. The Bitstream Information

Array is indexed using the Bitstream Address value read from the hardware, whereas the Word Counter
value is used to identify the correct resumption point within the Resumption Point Array. The Synch Type

field specifies the type of resumption point.

Fig. 11. Command sequence to resume a reconfiguration from Trivial, Simple, and Per-Frame resumption
points.

• Trivial resumption points: In this case, the reconfiguration driver enqueues a
setBaseAddress and a configureBitstream command. There is no need for the
reconfiguration controller to send a Synchronization Header sequence, as the reconfigura-
tion simply resumes from the beginning of the bitstream.

• Simple resumption points: The reconfiguration driver enqueues a sendSyncronization
command specifying to send a Synchronization Header sequence only, as this type of
resumption points already contain a Write Initialization sequence. Then, a setBaseAddress
and a configureBitstream command are enqueued to resume the reconfiguration.

• Per-Frame resumption points: In addition to the Synchronization Header sequence, this
type of resumption point needs a Write Initialization sequence. The reconfiguration
driver enqueues a setFAR and a setFDRI command (both have to be preceded by a
setBaseAddress) to set the FAR and FDRI value taken from the selected resumption
point. Then a sendSyncronization command (that specifies to send both Synchronization
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Header and Write Initialization sequence), a setBaseAddress and a configureBitstream
command are enqueued.

This section completes the description of how preemptive reconfiguration was realized. In the
following section, we analyze this property for real-time constraints.

8 WORST-CASE LATENCY ANALYSIS OF PREEMPTIVE RECONFIGURATION

The realization of preemptive reconfiguration is based on CoRQ [7], a reconfiguration controller
that guarantees worst-case latency bounds on the commands it processes, even on the reconfig-
uration itself when a memory bandwidth is guaranteed (e.g., when using FPGA-internal SRAM).
Commands that have been implemented for preempting and resuming reconfigurations have guar-
anteed latencies, as listed in Table 1.

This allows us to apply response time analysis techniques that are standard to determine the
finish time of real-time tasks [3] to determine the finish time of preemptive reconfigurations un-
der real-time constraints. The focus of this section is to determine worst-case bounds on the la-
tency overhead that a higher-priority task experiences, when preempting a lower-priority task
(WCEThp ). Furthermore, we determine an upper bound on the reconfiguration delay for lower-
priority reconfiguration requests for a given worst-case interval of reconfiguration preemptions
(rdelaylp ), and discuss under which circumstances preemption enables us to guarantee a minimum
progress for these reconfigurations.

8.1 Overhead for Preempting an Ongoing Reconfiguration

When a higher-priority task sends a reconfiguration request to the reconfiguration driver, the dri-
ver needs to preempt the ongoing reconfiguration (if any, as detailed in Section 7.3). Preemption
entails operations performed by the driver itself (in software), as well as commands that are sent
to the reconfiguration controller. The first command that is sent to the reconfiguration controller
aborts the ongoing reconfiguration (while keeping information about its progress) and suspends
processing of further commands (enqueued commands are kept in the queues). This way, opera-
tions performed by the driver and commands sent to the reconfiguration controller to perform the
preemption are executed in sequence and therefore analyzed separately.

After abortReconfiguration, the driver determines the queue containing the commands that
were being processed before the abort (the highest-priority non-empty queue) and then reads
the last state of the aborted reconfiguration. Based on this state, the correct resumption point
for the preempted reconfiguration is determined using binary search on the table of resumption
points available for the respective bitstream. The corresponding commands to resume from this
resumption point are then enqueued into the resume queue for the lower-priority task in the re-
configuration controller (see Section 7.3). Afterward, the configureBitstream command for the
higher-priority task is enqueued into its standard queue. We know that it was empty before, oth-
erwise it would not be possible that we are preempting the reconfiguration of a lower-priority
task. Therefore, the reconfiguration request of the higher-priority task is immediately processed,
when the driver finally resumes processing of commands by the reconfiguration controller FSM
using resumeFSM. We implemented the reconfiguration driver as a bare metal binary (without task
handling, a full-featured implementation based on FreeRTOS is evaluated in Section 9) to get an
estimate on the worst-case execution time (WCET) of the driver’s operations when preempting an
ongoing reconfiguration. The WCET estimate is obtained using the commercial WCET analyzer
AbsInt aiT,3 based on an ARM Cortex R5F real-time CPU running at 600MHz that is available in

3https://www.absint.com/.
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Fig. 12. WCET for preempting a reconfiguration (WCEThp (Nrsp)), depending on the number of resumption
points (Nrsp) available in the bitstream that is preempted. For example, a bitstream size of 338KiB has been
reported for several image filter accelerators (each) on the Zynq-7010 in Biondi et al. [2], resulting in Nrsp ≈
430 with Per-Frame resumption points at every second frame.

the recent Xilinx Zynq UltraScale+ generation. While the presented approach is not tied to a spe-
cific CPU, it is not possible to apply WCET analyzers to the ARM Cortex A9 that is available on
the Xilinx Zynq-7000, because of its out-of-order pipeline. Equation (1) shows the obtained result
for the operations that the driver performs in software in WCET cycles (of the CPU):

WCEThp_driver (Nrsp) = 18229 + �log2 (Nrsp) + 1� · 233. (1)

Due to the binary search of the resumption point, the WCET depends on Nrsp (the number of
resumption points that were determined statically), resulting in a “parametric” WCET bound [16].

In the following, we analyze the worst-case latency of the commands processed by the re-
configuration controller to perform the preemption (as sent by the reconfiguration driver).
These are: abortReconfiguration (suspending processing further commands) and resumeFSM
(after enqueueing the higher-priority reconfiguration). Processing these commands takes
tabortReconfiguration = 7 and tresumeFSM = 3 cycles respectively on the reconfigurable fabric [7]. Fur-
thermore, the frequency factor between CPU and reconfigurable fabric cfreq needs to be accounted
for—for instance, the CPU runs at a frequency cfreq times higher than the reconfiguration con-
troller. Therefore, the WCET for processing the commands for preemption in CPU cycles is

WCEThp_cmds = cfreq · (tabortReconfiguration + tresumeFSM) = cfreq · 10. (2)

In the presented case, the reconfiguration controller runs at 100MHz, while the ARM Cortex R5F
runs at 600MHz on the Xilinx Zynq UltraScale+ (i.e., cfreq = 6). In total, the following WCET in CPU
cycles that the higher-priority task experiences as an overhead for its reconfiguration requests, in
case it needs to preempt an ongoing reconfiguration from a lower-priority task, is obtained:

WCEThp (Nrsp) =WCEThp_driver (Nrsp) +WCEThp_cmds = 18289 + �log2 (Nrsp) + 1� · 233. (3)

This is the worst-case overhead that needs to be considered for reconfiguration requests in
response-time analyzes like presented in Biondi et al. [2], when reconfiguration preemption should
be allowed. Figure 12 shows how the overhead grows, depending on the number of resumption
points available in the bitstream that is preempted. Note that the overhead is guaranteed to re-
main below 21,100 cycles when providing resumption points for every second frame (every 202
words) for a bitstream that is smaller than 2.5MiB (approximately the size of a full bitstream for
the Xilinx Zynq-7010). This overhead corresponds to ca. 8% of the observed worst-case scheduling
overhead in an ARM-based Linux system with real-time extensions [4]. Even when reconfiguring
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25% of the total resources of the Zynq-7010 at maximum reconfiguration bandwidth, the designed
preemption approach would increase the delay by only 1.75% in the worst case.

8.2 Reconfiguration Delay of Preempted Reconfigurations

This section focuses on providing an upper bound for the reconfiguration delay of lower-
priority reconfiguration requests under reconfiguration preemptions (rdelaylp ). Tasks in the
lower-priority level encounter preemptions from higher-priority levels only; therefore, we rea-
son about preemptions encountered by a single lower-priority task in the following. Using
configureBitstreamInt, the reconfiguration controller sets up a memory transfer from FPGA-
internal SRAM to the reconfiguration port (taking exactly nine cycles), and then transfers one word
(4 bytes) of bitstream in each cycle (full utilization of the reconfiguration port). Reconfiguration
controller, reconfiguration port, and the FPGA-internal SRAM can be clocked at up to 100MHz,
resulting in a maximum reconfiguration bandwidth of 400MB/s.4 Given a bitstream of size B in
bytes, a reconfiguration without any preemptions takes exactly rdelay(B) = 9 + �B/4� cycles on
the reconfigurable fabric using the designed reconfiguration controller (details are provided in
Damschen et al. [7]).

To determine the worst-case reconfiguration delay under preemptions, we need to consider the
number of preemptions that can occur during the reconfiguration. Each preemption creates over-
head that prolongs the reconfiguration delay, creating the possibility for additional preemptions.
To bound this effect, we apply an iterative process from response time analysis [3] as follows. As-
suming the minimum distance between preemptions (due to reconfiguration requests from higher-
priority tasks) is tpreempt, we obtain the following recursive sequence:

rdelayn+1
lp (B) = rdelay(B) +

⎡
⎢
⎢
⎢
⎢
⎢

rdelayn
lp

(B)

tpreempt

⎤
⎥
⎥
⎥
⎥
⎥

︸������������︷︷������������︸

number of preemptions

· (trsp + tsync)

︸��������︷︷��������︸

overhead of being preempted

. (4)

The process starts with rdelay0
lp

(B) = rdelay(B) and terminates when rdelayn+1
lp

(B) = rdelayn
lp

(B).

trsp is the maximum time that it takes to configure the difference between two resumption points
(the maximum progress that is lost when a reconfiguration is preempted). For example, trsp = 101
cycles using Per-Frame resumption points (see Section 6.3). tsync = 470 cycles is the latency of
the sendSyncronization command when processed by the reconfiguration controller. Then, we
obtain the reconfiguration delay of a reconfiguration request from a lower-priority task under
reconfiguration preemptions as

rdelaylp (B) = rdelayn
lp (B) +

⎡
⎢
⎢
⎢
⎢
⎢

rdelayn
lp

(B)

tpreempt

⎤
⎥
⎥
⎥
⎥
⎥

· waitinghp , (5)

where waitinghp is the maximum time that the reconfiguration port is occupied by higher-priority
tasks during a preemption. Note that tpreempt and waitinghp need to be bounds for tasks from all
higher-priority levels (than the priority level of the task that is currently preempted). For instance,
for more than two priority levels, this simple analysis will be imprecise. A more precise analysis
would need to be integrated into the response-time analysis of the whole task set and is out of the
scope of this article, as we focus on the reconfiguration itself. In the following, we will show that
a minimum progress for the lower-priority task can be guaranteed.

4For instance, (4 · 1024−2)/10−8 = 381.4697265625MiB/s.
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Fig. 13. Reconfiguration delay guarantee (rdelaylp (338KiB), with waitinghp = 0) for different time windows

of unpreempted reconfiguration and different resumption point types (resulting in different latency over-
heads of being preempted due to lost progress in reconfiguration (trsp)).

8.2.1 Guaranteeing Minimum Reconfiguration Progress Under Preemptions. Intuitively, a re-
configuration (that is subject to preemptions) advances, when the time windows of unpreempted
reconfiguration are bigger than the latency overhead of being preempted. More formally, we
show that minimum reconfiguration progress can be guaranteed when tpreempt > trsp + tsync

(see Section 8.2). Minimum progress during reconfiguration is equivalent to a bound on the
reconfiguration delay (see Equation (5)). Assuming waitinghp is bounded, we therefore need to
show that the iterative process of Equation (4) converges.

Proposition 1. tpreempt > trsp + tsync ⇒ ∃n ∈ N : rdelayn+1
lp (B) = rdelayn

lp (B).

Proof. By induction, showing that rdelayn+1
lp (B) ≤ (trsp + tsync + 1) · rdelay(B) and that the se-

quence is monotonically increasing. �

Convergence of Equation (4) immediately follows from Proposition 1. Therefore, we can guar-
antee a minimum progress for a reconfiguration that is subject to preemptions, when the time
windows of unpreempted reconfiguration (tpreempt) are bigger than the latency overhead of being
preempted (trsp + tsync).

Figure 13 shows how rdelaylp (B) evolves for different values of tpreempt for a bitstream of

B = 338KiB and different granularities of placing resumption points. waitinghp is set to 0, because

the bound of how long a higher-priority task occupies the reconfiguration port has no impact on
convergence of Equation (4), and to focus on the overhead of preemption. It is observable that
tpreempt as well as the granularity at which resumption points are provided for a certain bitstream
have a considerable impact on whether the reconfiguration delay can be bounded as well as on
the size of the obtainable bounds. Note that tpreempt is measured in cycles of the reconfiguration
controller (running at 100MHz in the presented case). When using Simple resumption points only,
higher-priority tasks can preempt the lower-priority reconfiguration at most every 73,290 CPU
cycles (tpreempt = 12, 215 cycles of the reconfiguration controller) on a 600MHz CPU so that a min-
imum progress can be guaranteed. This bound is more than one magnitude lower for Per-Frame
resumption points. Combining the results shown in Figure 12 and Figure 13, it can further be seen
that there is a trade-off between the minimum guaranteed bandwidth for reconfigurations of the
lower-priority task and the WCET bound on performing preemptions for the higher-priority tasks.
Reasonable trade-offs can be determined for specific use cases by choosing a suitable granularity

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 2, Article 10. Pub. date: July 2018.



Preemption of the Partial Reconfiguration Process to Enable Real-Time Computing 10:21

Table 2. FPGA Resource Utilization. (a) Resource Utilization of the Whole Hardware Design Consists
of two Reconfigurable Slots and the Designed Reconfiguration Controller that are Connected to the

ARM Cores on the Xilinx Zynq. (b) Resource Utilization of the Reconfiguration Controller that Enables
Preemptive Reconfiguration Supports Eight Priority Levels and up to 128 Pending Commands for Each

Level

Resource Utilized Available % Utilized

LUT 7,252 17,600 41.20%
LUTRAM 729 6,000 12.15%

FF 8,449 35,200 24.00%
BRAM 12.50 60 20.83%
BUFG 10 32 31.25%

(a)

Resource Utilized Available % Utilized

LUT 2,006 17,600 11.40%
LUTRAM 193 6,000 3.22%

FF 2,261 35,200 6.42%
BRAM 5 60 8.33%
BUFG 8 32 25.00%

(b)

Note: In both tables, percentages refer to a Zynq-7z010 chip.

of placing resumption points. This was achieved by introducing Per-Frame resumption points in
Section 6.

9 EXPERIMENTAL EVALUATION

The experimental evaluation of this work has been done on a Xilinx Zynq-7z010, featuring an ARM
Cortex-A9 dual-core running at 600MHz and an Artix-7 FPGA on the same SoC. The real-time
operating system FreeRTOS5 was extended to support preemptive reconfiguration: a reconfigura-
tion driver was added for the designed custom reconfiguration controller and the task scheduler is
aware of pending reconfiguration requests to wake up the respective tasks for completed recon-
figurations. We utilize two reconfigurable slots with different dimension and incorporate different
type of resources: the bigger slot has 2,400 LUTs, 10 BlockRAM, and 20 DSPs, and its bitstream’s
size is 364KB and has a reconfiguration time of 932.35μs; the smaller has 800 LUTs, 10 BlockRAM,
and no DSPs, and its bitstream’s size is 103KB and has a reconfiguration time of 265.59μs . In this
evaluation, the reconfiguration controller contains 8 command and resume queues each, one (pair)
for each FreeRTOS priority level (see Section 7.2). Each queue can store up to 128 pending com-
mands. The reconfiguration controller’s interrupt line and interrupt lines for each reconfigurable
slot have been connected to the Zynq system.

The test application consists of two periodic user tasks and one driver task that handles all recon-
figuration requests. Each user task has its own private reconfigurable slot that reconfigures mul-
tiple time during its execution. After a reconfiguration request, the user tasks self-suspend. The
driver task is the highest priority task in the system and the only task allowed to communicate with
the reconfiguration controller. It executes immediately after a reconfiguration request and checks
whether the reconfiguration controller is idle or a reconfiguration is ongoing. If a lower-priority
reconfiguration is ongoing, the driver handles the whole process of preempting the reconfiguration
(see Section 7.3). Every time a reconfiguration is completed, the reconfiguration controller triggers
an interrupt and the interrupt handler resumes the user task that requested the reconfiguration.

9.1 Experimental Results

9.1.1 Resource Utilization. Table 2(a) shows the resource utilization of the entire system,
whereas Table 2(b) shows the resource utilization of the reconfiguration controller. Results in
Table 2(a) do not account for any logic inside the reconfigurable slots (i.e., configured accelerators
would add to the resource utilization).

5http://www.freertos.org/.
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Fig. 14. Priority inversion experiment. The ongoing reconfiguration cannot be stopped and must be com-
pleted before starting another reconfiguration. (a) The start time of both tasks while the period of the high-
priority task varies. (b, c) The distribution of the maximum observed execution time of user tasks for each
value of the high-priority task period.

Utilization rates of the FPGA shown in Table 2(a) and (b) refer to a Zynq-7z010 device, which is
the smallest Zynq-7000 device. For example, on the next-bigger Zynq-7z015, only 15.7% of LUTs
and 13.9% of BRAMs would be utilized by the whole hardware design. On the biggest Zynq-7000,
the Zynq-7z100 less than 3% of the resources would be utilized, respectively. Despite its constrained
resources, it is showed that preemptive reconfiguration can be realized on the low-end Zynq-7z010.

9.1.2 Maximum Observed Execution Time. Three experiments were performed that reflect the
motivational examples explained in Section 3 and show the benefits of preemptive reconfiguration.
Due to the used FPGA device, both reconfigurable slots are quite small and have small reconfigu-
ration time, so small that would have been difficult, with only two tasks in the system, to clearly
show problems of non-preemptive and benefits of preemptive reconfiguration. For this reason,
the reconfiguration time of each slot has been software extended, associating one reconfiguration
request with multiple physical reconfiguration.

In all the experiments, the low-priority task has a fixed period of 50ms and a reconfiguration
time of 32.63ms while the high-priority task’s period is varied from 5ms to 44ms with a fixed
reconfiguration time of 0.79ms.

Response time analysis in real-time systems needs to provide guarantees for the worst case—
that is, that reconfiguration requests from the low-priority and high-priority tasks are in conflict
and that the higher-priority task needs to preempt the lower-priority reconfiguration. To provoke
this case, the tasks perform frequent reconfigurations, but no additional computations.

Figure 14 shows configure-to-completion (Section 3, item (a)), where the reconfiguration inter-
face cannot be preempted and the ongoing reconfiguration has to be completed. In this scenario,
both tasks can run concurrently, as Figure 14(a) shows, but the high-priority task is delayed due to
priority inversion. As Figure 14(c) shows, the maximum execution time of the high-priority task
that has been measured is 32.45ms.

Figure 15 shows the abort approach (Section 3, item (a)). This approach allows to abort the
ongoing reconfiguration and restart it later from the beginning. Figure 15(a) shows the start time of
both user tasks while the period of the high priority task varies. Both user tasks are periodic and the
start time is the time where a task starts its routine from the beginning, and it is clearly visible that
the low-priority task starves until the high-priority task’s period reaches 34ms. Then, the period
of the high-priority task is large enough to allow the low-priority one to reconfigure the FPGA.

Figure 16 shows the preemption approach—for instance, it is possible to preempt and later re-
sume the ongoing reconfiguration (Section 3, item (c)) while keeping the reconfiguration progress.
Both tasks benefit from preemptable reconfiguration, because the low-priority task does not suffer
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Fig. 15. Abort experiment. The ongoing reconfiguration can be aborted and later restarted from the begin-
ning. (a) The start time of both tasks while the period of the high-priority task varies. (b, c) The distribution
of the maximum observed execution time of user tasks for each value of the high-priority task period.

Fig. 16. Preemption experiment. The ongoing reconfiguration can be preempted to serve an higher priority
reconfiguration request and later resumed. (a) The start time of both tasks while the period of the high-
priority task varies. (b, c) The distribution of the maximum observed execution time of user tasks for each
value of the high-priority task period.

from starvation while the high-priority task does not experience priority inversion. Therefore, as
Figure 16(a) shows, both task can run concurrently on the system, reconfiguring the FPGA.

As all the experiments show, priority inversion increased the execution time of the high-priority
tasks by more than 3× and starvation prevented the low-priority task to complete its execution.
Preemptable reconfiguration solved these problems by avoiding priority inversion and preventing
the low-priority task to starve, allowing it to improve the utilization of the system.

10 CONCLUSION

This article presented the first realization of preemptive reconfiguration and was evaluated on a
Xilinx 7 series FPGA that uses the ICAP as the reconfiguration port. Our approach does not re-
quire any changes to the bitstreams that should be configured. Moreover, we have proven that our
presented solution solves the problems of priority inversion and starvation caused by contention
on the reconfiguration port under reasonable conditions (e.g., no adversarial high-priority tasks
that constantly generate reconfiguration requests). Worst-case latency bounds were presented. To
achieve preemptive reconfiguration, resumption points were defined (i.e., parts of a bitstream from
which a preempted reconfiguration can safely be resumed). Furthermore, methods to determine
all possible and safe resumption points were presented. Resumption points were leveraged by a
combination of a custom command-based reconfiguration controller and a reconfiguration driver
that manage reconfiguration requests and handle reconfiguration preemption and resumption.
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Worst-case bounds on the latency overhead that a higher-priority task experiences when pre-
empting a lower-priority task and upper bounds on the reconfiguration delay—experienced by
the lower-priority task for a given worst-case interval of reconfiguration preemptions—have been
determined analytically and revealed the trade-off between the minimum guaranteed bandwidth
for reconfigurations of lower-priority tasks and the WCET bound on performing preemptions for
higher-priority tasks. Experimental results verified that priority inversion and starvation caused
by contentions on the reconfiguration port are effectively solved using the proposed realization of
preemptive reconfiguration, when integrated into the industry-grade real-time operating system
FreeRTOS. This was achieved even on a low-end (in terms of resources) reconfigurable device, the
Xilinx Zynq-7z010. In total, it was shown that the overhead for achieving preemptive reconfigu-
ration is considerably outweighed by the benefits it provides.

Preemptive resources are fundamental to fulfill real-time constraints and this work enables
multi-priority real-time systems (including mixed-criticality systems) to benefit from runtime-
reconfigurable hardware accelerators with preemptive reconfiguration capabilities.
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