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Abstract—Grid-based methods have been proposed to solve
the Coverage Path Planning problem using Unmanned Aerial
Vehicles in irregular-shaped areas since simple geometric flight
patterns, such as the back-and-forth, are inefficient in this
type of scenario. However, the grid-based methods usually
apply simplistic cost functions and demand high computational
time leading to inefficient and expensive paths, making them
not usable in real-world scenarios. This paper introduces an
energy-aware grid-based approach aimed at minimizing energy
consumption during mapping missions over irregular-shaped
areas. Our work was built upon a previously proposed grid-
based approach. Here we introduce an energy-aware cost
function based on an accurate energy model. The proposed
approach was able to save up to 17% of energy in real flight
experiments, proving that the original cost function was not
capable of finding the optimal solution in terms of real energy
measurements. Additional simulation experiments were also
performed to state the energy savings in different irregular-
shaped scenarios. As a further contribution, we also applied
two pruning techniques to the original approach dropping the
computation time up to 99%.

1. Introduction

Unmanned Aerial Vehicles (UAVs) consist of aircrafts
with no pilots onboard, usually remotely controlled by a
pilot on the ground, by a program with a flight plan, or by
intelligent systems. These vehicles have increasingly been
employed in several application domains, such as surveil-
lance [1], smart farming [2], wildfire tracking [3], cloud
monitoring [4], and power line inspection [5].

Many UAVs applications are related to the Coverage
Path Planning (CPP) problem, which consists of determining
a path that guarantees that an agent will pass over a given
zone usually to fully reconstruct the area by photogrammetry
[6]. Nowadays most UAVs engage in missions based on CPP
using simple geometric flight patterns [7]. The main one
employed in real-world scenarios is the back-and-forth, also
referred in literature as the lawnmower pattern, adopted by
the most popular flight-control software [8] to allow flights
based on an offline programmed plan. Recent efforts present

Figure 1. Irregular-shaped area discretized into a regular grid with the
starting position marked with number 1 and the surrounding neighbors
with number 2, and so on. Obstacles and no-fly zones are marked with -1.

novel energy-aware CPP solutions considering the back-
and-forth [9] and the spiral [10] patterns for regular-shaped
scenarios. These approaches employ an energy model [9]
based on real measurements to optimize the speed in order
to minimize the energy during the flights.

However, these flight patterns may be inefficient de-
pending on the complexity of the shape of the area. In
order to deal with these areas in CPP missions, Valente
et al. [11] proposed a more complex algorithm using a
Deep-limited search with a backtracking procedure over a
scenario discretized into a regular grid through approximate
cellular decomposition [6], as shown in Fig. 1. The irregular-
shaped area consists of a concave/convex polygon, which
may contain obstacles and no-fly zones inside or outside.
These regions are marked with a −1. The decomposed area
is converted to a regular graph numerically labeled by the
Wavefront algorithm, which is a flooding algorithm that
marks the neighborhood adjacency of cells. The starting cell
is marked with the number 1 and all of its neighbor cells are
marked with the number 2, and so on. The farther the cell
is from the initial position, the greater it is value. Using this
approach, the search length can be limited to the number of
vertices, and consequently, the search neither goes around
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in infinite cycles nor visits a node twice [11].
Despite being the state-of-the-art in CPP missions over

irregular-shaped areas, the algorithm proposed by Valente
et al. [11] presents high computational time during the
offline search phase due to the complexity of the area.
The approach may need several hours to find a path on a
scenario with a reasonable number of cells, e.g. 50. This
is impractical for real-world applications considering the
amount of time spent for a single run. Besides, the quality of
the solution is based on an unreliable cost function that relies
exclusively on the number of turns, which may provide more
expansive paths in terms of real measured energy, while
discarding promising solutions during the minimization pro-
cess. In fact, several authors consider the minimization
of the turning maneuvers as the main performance metric
for CPP problems aiming at indirectly minimizing energy
consumption [12, 13, 14, 15, 16]. We intend to show that
it is possible to use an energy estimation to generate more
economic paths in terms of energy instead of minimizing
the turns.

This paper proposes an energy-aware grid-based cover-
age path planning algorithm aimed at minimizing the energy
consumption during mapping missions over irregular-shaped
areas using UAVs, specifically multi-rotors. This work im-
proves the state-of-the-art grid-based approach proposed by
Valente et al. [11] by replacing its original cost function
based on the sum of the angles to a novel energy-cost
function. The function computes the cost of the path by
considering the dynamics of the vehicle and exploits the
energy model described by Di Franco and Buttazzo [9]
and improved by Cabreira et al. [10] to account not only
for the energy required for every turn but also for the
energy needed when accelerating/decelerating and flying at a
constant speed. Real flights have been performed to validate
the proposed approach and verify the accuracy of the energy
model. In particular, the energy-cost function allowed saving
17% of the energy with respect to paths generated by the
previous cost function. Additional simulation experiments
were also performed in different irregular-shaped scenarios
varying size and complexity, stating once more the effec-
tiveness of the proposed approach over the original one.

As a further contribution of this work, we also apply
two pruning techniques to the original algorithm drastically
reducing the computation time up to 99%. This improvement
allows us to generate complete coverage paths for all the
different starting positions in the workspace. Once the paths
are computed offline in a reasonable amount of time (in
order of seconds), we are able to indicate the ideal location
to start the mission, saving even more energy and making
this approach feasible for real-world applications.

The remain of the paper is organized as follows: Sec-
tion 2 presents the related work. Section 3 describes the
proposed approach using the energy-aware cost function and
the two pruning techniques applied to reduce the computa-
tional time of the original algorithm. Section 4 reports a set
of experimental results carried out to validate the proposed
approach. Section 5 draws the conclusions and presents
some future work.

2. Related Work

The problem of Coverage Path Planning (CPP) using
UAVs has been addressed by several authors in the litera-
ture. A survey on CPP was recently published by Cabreira
et al. [17], where the authors exclusively review approaches
related to UAVs. The authors consider the classic taxonomy
defined by Choset [6] to classify the existing approaches
according to the cellular decomposition technique adopted.

Some approaches explore only rectangular areas as
presented by Andersen [7], where the author compares
five types of flight patterns from the US National Search
and Rescue Manual, including back-and-forth (parallel and
creeping line), square, sector search, and barrier patrol. More
complex areas containing obstacle-regions with arbitrary
shapes are explored by Xu et al. [18]. The authors decom-
pose the area into a simple set of cells using Boustrophedon
Cellular Decomposition (BCD) [6] and build an adjacency
graph with the vertices representing the cells and the edges
connecting the adjacent cells. Each cell is explored using
a back-and-forth pattern and the order between the cells
follows a Eulerian circuit with start and end at the same
vertex. This coverage algorithm avoids to fly over previously
explored regions, but it is applied only for fixed-wing UAVs.

Concave polygonal areas are decomposed into convex
subregions by Li et al. [13] using a minimum width sum
algorithm based on a greedy recursive method [19]. The al-
gorithm finds the optimal line sweep direction and performs
back-and-forth motions perpendicular to this line aiming
at minimizing the number of turning maneuvers. Different
sweep directions for each convex subregion are employed
in order to optimize the complete coverage path. Another
recent CPP algorithm for convex and non-convex areas is
proposed by Torres et al. [16]. A back-and-forth pattern
perpendicular to the optimal line sweep direction performs
the coverage in convex polygons. However, in concave
shapes it is necessary to verify if there is an interruption in
the stripes of the pattern. If so, the area is decomposed into
concave and convex subregions. The authors also explore
four back-and-forth alternatives, varying the direction and
the orientation, aiming at minimizing the distance between
the subregions.

A spiral CPP algorithm for missions in coastal regions
using multiple UAVs is explored by Balampanis et al. in
several works. The authors discretize the workspace using a
Constrained Delaunay Triangulation (CDT) [20, 21], stating
that grid decomposition creates regular square cells that are
partially over no-fly zones or outside the workspace. Thus,
the CDT provides triangle cells within the area of interest
matching almost the exact shape of the area. In order to
generate more uniform triangles, they applied the Lloyd
optimization. Then, a spiral algorithm previously proposed
by Balampanis et al. [22], and improved by Balampanis
et al. [23] by introducing a smoothing parameter, is used to
generate the coverage paths in the resulting sub-areas.

Most of the approaches in the literature seek the min-
imization of the number of turning maneuvers to indi-
rectly reduce the mission execution time and the energy
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consumption. Recent studies present energy-aware solutions
exploring the dynamics and the behavior of the UAVs to save
energy. Di Franco and Buttazzo [9] propose an energy-aware
back-and-forth algorithm for photogrammetry with energy
and resolution constraints imposed by the mission. The
algorithm minimizes the energy spent during the mission not
only minimizing the number of turning maneuvers, but also
flying at the maximum altitude and using optimal speeds
in each straight segment of the path. An energy-aware
spiral algorithm is proposed by Cabreira et al. [10]. The
algorithm performs turning maneuvers with wider angles
and does not need to reduce the speed to zero on every turn,
which decreases the acceleration and deceleration periods.
This behavior keeps the optimal speed for longer periods,
providing an even more effective energy saving than the one
proposed by Di Franco and Buttazzo [9]. Both approaches
adopt an energy model derived from real measurements.

Despite the energy outcomes in regular-shaped areas,
back-and-forth and spiral flight patterns still generate inef-
ficient trajectories considering complex areas with irregular
shape and no-fly zones. Thus, some grid-based solutions
have been proposed both for single [11] and multiple-
UAVs [2, 24]. In particular, Valente et al. [11] proposed an
algorithm for image mosaicing in precision agriculture with
irregular-shaped fields. The area of interest is discretized
into a regular grid using the approximate cellular decompo-
sition and converted into a regular graph. A Deep-limited
search is used to build a tree with all possible coverage
paths in order to find a complete coverage path that passes
through all nodes in the adjacency graph only once. A
backtracking procedure is also employed to solve issues,
such as the choice among neighbors with the same potential
weight. Another similar approach is discussed by Nam et al.
[25], where the authors use the same Wavefront algorithm to
obtain the coverage path, but also apply a cubic interpolation
algorithm for smoothing the turning maneuvers.

The algorithm proposed by Valente et al. [11] can be
considered the state-of-the-art for coverage missions over
irregular-shaped areas. However, it has an exponential com-
plexity and uses a simplistic cost function aiming at min-
imizing the number of turning maneuvers to save energy.
Important elements such as acceleration, deceleration, and
optimal speed that impact the energy cost are missing and
will be considered in our proposed energy-aware grid-based
approach.

3. Proposed Approach

Our proposed approach exploits the energy model de-
scribed by Di Franco and Buttazzo [9] and improved by
Cabreira et al. [10] to reformulate the cost function adopted
by Valente et al. [11]. Furthermore, our algorithm includes
two pruning techniques drastically reducing the computa-
tional time (in the order of seconds) and saving even more
energy in a real-world coverage path. It is important to
notice that the planning phase is executed offline and the
resulting coverage path generated by the algorithm is loaded
into the UAV in a waypoint list format.

3.1. Energy-aware Cost Function

The algorithm proposed by Valente et al. [11] presents
a cost function based on the sum of angles to find the
minimum-cost path to perform a complete coverage, as
shown in Eq. (1):

Γ =

m∑
i=1

γ
{i}
k , k ∈ {135◦, 90◦, 45◦, 0◦} (1)

where m represents the number of waypoints of the path
{i1, i2, ..., im} and γ represents the angle of the i-th way-
point compressed by the k set. In literature, the path is
usually evaluated using the number of turns. The authors
often correlate the turns with the power consumption trying
to minimize them to save energy. However, such cost func-
tions are simplistic and do not explore important details as
acceleration and deceleration phases during the turns.

The energy model proposed by Di Franco and Buttazzo
[9] splits the path into a set of straight segments and
rotations to predict the energy cost of a path. Following the
same idea, the cost function has been extended in order to
consider the traveled distance between waypoints. Thus, it
is possible to evaluate the path and estimate the total energy
(and time) using the Eq. (??) as follows:

ΓE =

m∑
i=1

( ∫ vi

0

Pacc dv + Pvi∆T i +

∫ 0

vi

Pdec dv
)

+

m∑
i=1

Eturn(γ{i}) (2)

where the first summation computes the energy consumed
during a set of straight line i by splitting it into three phases
(acceleration, deceleration, and constant speed) and the sec-
ond summation considers all the rotations of the path. Pacc,
Pdec, and Pv define the power consumed when accelerating,
decelerating, and flying at constant speed. Eturn(γ{i}) is the
energy to rotate an angle γ at the i-th waypoint (computed
as the power consumed when turning Pturn multiplied by
the duration of the rotation). ∆T i is the time when flying
the portion of path at constant speed and it is computed
considering the total distance and constant acceleration and
deceleration. The terms in Eq. (2) are polynomial functions
obtained through real measurements and allow reaching high
accuracy in the energy prediction of a given trajectory [9].

3.2. Algorithm Optimization

The proposed Energy-aware Grid-based CPP approach
(EG-CPP) is presented in Algorithm 1. The green lines
represent the additions made during the optimization process
and the red lines represent the modifications in the original
algorithm.
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Algorithm 1 Energy-aware Grid-based CPP Algorithm
1: grid← convertAreaToGrid(area)
2: matrix← floodingMatrix(grid)
3: firstPoint← getStartingPosition()
4: prevCost← 0
5: path← recursiveFunc(firstPoint,matrix, prevCost)
6: loop
7: cell← getLastCell(path)
8: tempMatrix← computeTempMatrix(matrix, cell)
9: neighbors← computeNeighbors(cell, tempMatrix)

10: if There is no neighbors then
11: return
12: end if
13: for each neighbors(i) do
14: path← path+ neighbors(i)
15: cost← computeCost(path)
16: cost← cost+ prevCost
17: if cost > minimumCost then
18: return
19: end if
20: path← recursiveFunc(path, tempMatrix, cost)
21: FiFo← FiFo+ path
22: path← path+ firstPoint
23: cost← computeCost(path)
24: if cost < minimumCost then
25: minimumCost← cost
26: minimumPath← path
27: end if
28: end for
29: end loop
30: minimumPath← min(ComputeCost(FiFo))
31: return minimumPath

3.2.1. Pruning technique 1. In the approach proposed by
Valente et al. [11], the nearest neighbor cell with the highest
value is chosen to find a complete coverage path. If two or
more cells have the same highest value, all the cells must
be explored. Every complete coverage path passes through
all nodes in the adjacency graph only once. A Deep-limited
search is used to build a tree with all possible coverage
paths.

During the recursive search (lines 6-29), the current
cell is obtained from the last added neighbor (line 7) and
marked as visited in the temporary matrix (line 8). Then, the
neighbor cells with the highest values are selected (line 9).
If there is no available neighbor, the search in the current
path ends and it returns to the previously recursive call (line
10), where the path is added to the FIFO data structure
(line 21). Otherwise, the search continues in all selected
neighbors (lines 13-28) with a new recursive call for every
one of them (line 20).

The approach proposed by Valente et al. [11] computes
the entire cost of all possible paths at the end of the algo-
rithm (line 30), including those paths whose cost are much
higher than the minimum value. This repetitive operation
is massive and can be prevented. Thus, we modified the
algorithm to store the minimum-cost and the path associated
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Figure 2. Example of the algorithm adopting the pruning technique 2, where
only the cost of a partial path is computed. (a) sum of angles cost function
(b) energy-aware cost function

with it during the search (lines 25-26). Then, it is checked
if the current path has a cost that is already higher than
the cost of the stored path at each iteration (line 17). By
adopting this technique, it is possible to drastically reduce
the number of unnecessary recursive calls, pruning a huge
number of partial paths (and all the sub-trees starting from
that current cell) that already present higher costs than the
complete current minimum path.

3.2.2. Pruning technique 2. It is not necessary to compute
the cost of the path from the initial cell to the current one
at each iteration, but only the cost introduced by choosing
the next neighbor (line 15).

By applying the pruning technique to the algorithm with
the original cost function, as shown in Fig. 2a, it is necessary
to consider three cells A, B, and C. In the mentioned
example, the cost for travelling the path from the initial
cell to A (red path) was already computed. The current cell
is B and the next chosen neighbor is the cell C. Thus, the
updated cost to reach C is the sum of the previous cost and
the new angle ÂBC.

On the other hand, in order to compute the partial cost
of the path using the algorithm with the energy-aware cost
function, as illustrated by Fig. 2b, it is only necessary to
consider the current straight line and the last performed turn.
In the example, the current position is the cell B and there
are two potential neighbor cells C and D to be explored.
By choosing the cell D, the energy of the partial path can
be computed by Eq. (3) as follows:

Epartial = Epartial + Eturn(ÂBD) + Eline(BD) (3)

where Epartial is the previously computed energy to
travel from the starting position to the current point B,
Eturn(ÂBD) is the energy needed to perform a turn at
B, and Eline(BD) corresponds to the energy necessary to
travel the straight distance from B to D, i.e., the first term of
Eq. (2) considering a single line. However, when choosing
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the cell C, the straight distance increases and the energy of
the partial path should be computed by Eq. (4) as follows:

Epartial = Epartial − Eline(AB) + Eline(AC) (4)

where Eline(AB) is the previously computed energy to
travel from A to B (blue line) and Eline(AC) is the energy
needed to travel from A to C. In this case, since we are
going forward to the cell C, it is necessary to remove the
energy computed considering the old distance (AB) and add
the energy of the new straight line (AC).

The two proposed pruning techniques can be applied
to the algorithm using the original and the energy-aware
cost function. The techniques drastically reduce the com-
putational time of the algorithm during the offline planning
phase, making it time-affordable for real-world applications.
Measurements on such reduction are reported in Section 4.

4. Experimental Results

This section reports a set of experiments aimed at eval-
uating the performance improvements of our Energy-aware
Grid-based CPP Algorithm (EG-CPP) with respect to the
one proposed by Valente et al. [11]. The benefits of the
energy-aware cost function are validated by performing real
energy measurements carried out during real flights. A set
of simulations exploring irregular-shaped areas were also
performed to state the energy savings in different scenarios.
We can trust in the simulation results once the energy
model proved to be quite accurate regarding the real energy
measured and the estimated one. Further simulation experi-
ments were also executed to analyze the computational time
reduction provided by the algorithm optimization using the
pruning techniques.

An IRIS quadrotor with a GoPro camera mounted on
a Gimbal stabilizer was used to perform the experiments.
The quadrotor weighs about 1.3 Kg, carrying a LIPO 3S
battery, and the autopilot is an Arducopter 3.2 on top of a
PixHawk board. For each flight, the autopilot saves a log
with all the useful information to analyze the experiment
(GPS, speed, altitude, voltage and current, etc.). The algo-
rithms have been implemented on MATLAB R© both with
the original and the energy-aware cost function. All files
and logs from the experiments are available at GitHub in
https://github.com/tauacabreira/EGCPP.

4.1. Cost Function Analysis

The area of interest of the real flights consists of a
concave polygon with an internal no-fly zone. The area
was discretized into a grid of 8 x 10 cells according to our
on-board camera characteristics. Since we are interested in
coverage paths for a photogrammetry sensing application,
we consider elements such as flight altitude (10m), camera
resolution (2386 x 2386 pixels), field of view (100 degrees),
and overlapping rate (10%) to determine the size of the cells
in the area. Using the flooding algorithm, we marked 47

valid cells to be considered during the offline search phase
of the coverage path. Cells outside of the area or within the
no-fly zone are not included.

We run the algorithm with the original (O-F) and the
energy-aware (E-F) cost function - see Eq. (1) and Eq. (2) -
considering every valid cell of the area as a potential starting
position for the path. Note that, this test was possible only
thanks to the modified version of the algorithm that includes
the two pruning techniques which sped up the execution
time up to 99%, otherwise just a single run would take about
3 hours making the following analysis difficult to achieve.
Fig. 3a and Fig. 3b present the colormap with the minimum-
cost paths starting in each one of the 47 cells of the scenario.
As it can be seen, there is a wide range of values and the
ideal solution depends on the initial point.
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Figure 3. Colormaps with the minimum-cost paths starting in each one of
the 47 valid cells of the workspace. (a) E-F with the ideal starting position
in cell (4,2), (b) O-F with the ideal starting position in cell (6,1).

The minimum-cost path generated by the E-F (Fig. 3a)
starts at the cell (4,2), while the minimum-cost path gener-
ated by the O-F (Fig. 3b) starts at the cell (6,1). Both cells
are painted in black in the colormap. Despite the fact that the
two cost functions produce distinct behaviors, it is possible
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Figure 4. Four real flights performed with two different starting positions according to the colormap. (a) Path generated with E-F and ideal starting position
at Cell (4,2), (b) Path generated with E-F and normal starting position at Cell (6,1), (c) Path generated with O-F and normal starting position at Cell (4,2),
(d) Path generated with O-F and ideal starting position at Cell (6,1).

to identify some similarities in the results presented in the
two figures. In both colormaps, the ideal starting positions
are at one of the corners of the irregular-shaped area, not in
the center of the scenario. The O-F computes the minimum-
cost path based on the sum of the turning angles, while the
E-F explores directly the energy consumption estimation.
Both generate different coverage paths with different ideal
starting positions. In this way, it is necessary to compare
them in order to point out the most accurate cost function.
Even if cost functions optimize different metrics, we believe
that this is a fair comparison considering that the main goal
of the O-F is indirectly minimizing the energy.

4.2. Flight Results

Four real flights were performed to evaluate the energy
consumption of the minimum-cost paths generated using O-
F and E-F. All flights were executed in a short period of time
(less than an hour), with a speed of 8m/s and in a pleasant
weather condition with almost zero wind. Fig. 4a and Fig. 4b
show the paths generated with E-F, while Fig. 4c and Fig. 4d
present the paths generated with O-F, both starting from the
cells (4,2) and (6,1), respectively. The area of interest and
the no-fly zone are marked by the red line, the planned path
by the blue line, the performed path during the real flights
by the thin white line, the starting position by the green “x”,
and the final position by the red “x”.

The experimental results can be seen in Fig. 5. The
green bars represent the flight results, while the yellow bars
illustrate the estimated values for the energy consumption
obtained through the energy model previously proposed. We
can observe that our proposed E-F obtains the best results,
showing an energy saving of 17% in real flights. The path
generated with the E-F and starting from the ideal position
at the cell (4,2) overcomes the path generated by the O-F
using its ideal initial point at the cell (6,1) - the fourth bar
vs. first bar in Fig. 5. Even not considering the best choice
for the starting position - E-F with cell (6,1), our solution
overcomes the original approach - third bar vs. first and
second bars.

Table 1 presents the detailed information about energy
and time results comparing original and energy-aware ap-
proaches using different starting positions obtained from the

Energy (J) ×104

0 1 2 3 4 5 6 7 8

Cell(4,2) E-F

Cell(6,1) E-F

Cell(4,2) O-F

Cell(6,1) O-F

Estimated energy with the energy model

Measured energy of the real flight

Figure 5. Energy consumption measured during real flights (in green) and
predicted in simulation (yellow) with the O-F and E-F considering two
starting positions. The optimum found by O-F (cell (6,1)) actually behaves
the worst and also consumes more than other discarded paths (cell (4,2))
showing that using the number of turns is not accurate enough. The E-F,
instead, not only produces better paths given the same starting position
(cell (6,1)) but also finds the best path with a resulting energy saving of
17%.

TABLE 1. ENERGY CONSUMPTION AND MISSION EXECUTION TIME
OBTAINED IN ESTIMATION AND REAL FLIGHTS WITH THE ORIGINAL

AND THE ENERGY APPROACHES

Path O-F E-F Real Flight Accuracy

Cell (6,1) O-F N/A 359.15s 348.60s 97.06%
Cell (4,2) O-F N/A 342.91s 340.00s 99.15%
Cell (6,1) E-F N/A 319.97s 317.00s 99.07%
Cell (4,2) E-F N/A 308.75s 306.00s 99.10%

Cell (6,1) O-F 1890o 7.7053× 104J 7.3583× 104J 95.49%
Cell (4,2) O-F 2205o 7.3593× 104J 7.1655× 104J 97.36%
Cell (6,1) E-F 1980o 6.8607× 104J 6.7354× 104J 98.17%
Cell (4,2) E-F 2025o 6.6165× 104J 6.2710× 104J 94.77%

colormaps. The O-F is not able to estimate the time needed
to perform a flight, while our E-F can estimate energy and
time. The O-F tries to indirectly save energy by minimizing
the total sum of angles. However, while the O-F points out
that the path starting from the cell (6,1) presents the minor
cost value (1890o), the E-F states that actually this path
spends the greater amount of energy. The real measurements
confirm this assumption and validate the proposed approach.
The last column of Table 1 presents the accuracy rate of the
E-F in estimating energy and time spent during the flights.
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The logs store information such as velocity, time, current,
and voltage. The last two were used to compute real energy.

The energy-aware cost function (E-F) of the EG-CPP
is based on the energy model proposed by Di Franco and
Buttazzo [9] and improved by Cabreira et al. [10]. It is
able to correctly estimate the energy necessary to perform
a mission. The energy consumption accuracy varies from
94% to 98%, approximately. Using the Eq. (2), it is possible
to correctly estimate the energy needed to perform a given
path splitting it into a set of straight lines composed by
three phases (acceleration, flying at the constant speed, and
deceleration), and a set of turning maneuvers.

The energy model was built upon the real measurements
and considers external forces such as the drag of the ve-
hicle, which explains the estimation precision during the
experiments. The results lead to interesting conclusions and
possibilities. First, it is worth to notice that the colormap
illustrated in Fig. 3a is validated by the results obtained
from the energy model. Second, it is possible to apply the
offline feasibility test proposed by Di Franco and Buttazzo
[9] to know in advance if the energy stored in the battery is
sufficient to perform a flight. An online feasibility test was
also proposed by Di Franco and Buttazzo [9] to constantly
check if the remaining energy in the battery is sufficient to
bring the UAV back to the starting position. In this way, the
proposed solution is able to avoid crashes during flights due
to battery-exhaustion.

4.3. Simulation with Different Scenarios

Additional simulation experiments were performed with
different irregular-shaped scenarios. We explored farm re-
gions near the city of Pisa in Italy, importing such scenarios
to MATLAB R© to compare the O-F and the E-F. As stated
in Section 4.2 and Section ??, the E-F overcame the O-
F in a real scenario considering the energy spent during
the flight. Furthermore, the E-F presents a high accuracy
regarding the estimated energy and the real measured one.
In this way, we can trust in these additional simulations to
state the effectiveness of the proposed approach.

Four irregular-shaped scenarios with different size and
complexity were employed in the experiments: (a) Scenario
A with 37 cells; (b) Scenario B with 45 cells; (c) Scenario C
with 47 cells containing a no-fly zone at the Cell (4,5) and
(d) Scenario D with 50 cells containing a no-fly zone at the
Cell (5,5). Fig. 6 presents the simulation experiment results
considering the flight time and the energy consumption of
the paths generated by the O-F and the E-F and Fig. 7
illustrates the four scenarios and the corresponding complete
coverage paths generated by the cost functions. Table 2
presents the cost values of O-F and E-F for each scenario
and the percentage of energy saving of our proposed ap-
proach over the original one.

The paths generated by the original approach are based
on the O-F, which is the minimization of the total sum
of the angles. For the Scenario A containing 37 cells,
the minimum-cost path using O-F is the path with 1764o.
On the other hand, the paths generated by our proposed
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A with 37 cells B with 45 cells C with 47 cells D with 50 cells
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Figure 6. Simulation experiment results with four different scenarios. (a)
Flight time of the path generated with O-F (in dark grey) and E-F (in light
grey), (b) Energy consumption of the path generated with O-F (in dark
grey) and E-F (in light grey)

TABLE 2. ENERGY CONSUMPTION ESTIMATION WITH THE ORIGINAL
AND THE ENERGY APPROACHES

Scenario Sum of Angles Energy (×104J) Energy savingO-F E-F O-F E-F

A (37 cells) 1764o 1871o 3.9114 3.5810 8.45%
B (45 cells) 1617o 1532o 3.8764 3.6972 4.62%
C (47 cells) 2114o 2205o 4.8980 4.5261 7.59%
D (50 cells) 2009o 1926o 4.6411 4.5249 2.50%

approach are based on the E-F, which computes the energy
consumption necessary to perform the path. In this case, the
minimum-cost path using E-F in the Scenario A consumes
3.5810 × 104J . We can use the O-F to compute the sum
of the angles of the path generated by E-F (1871o), as well
as we can use the E-F to estimate the energy spent by the
path generated by O-F (3.9114 × 104J). In some cases, as
in the Scenario A and the Scenario C, the lower value for
the sum of the angles does not mean the minimum energy
consumption, which states that this is not an appropriate
metric for generating energy-aware complete coverage paths
for UAVs. According to the results presented in Table 2, the
four paths generated by E-F consume less energy than the
paths generated by O-F with energy savings varying from
2.5% to 8.45%.
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Figure 7. Four different irregular-shaped scenarios based on farm regions near the city of Pisa in Italy. (a-d) Scenario A with 37 cells and paths generated
by O-F and E-F, (b-e) Scenario B with 45 cells and paths generated by O-F and E-F, (c-f) Scenario C with 47 cells containing a no-fly zone at the Cell
(4,5) and paths generated by O-F and E-F, (g-h) Scenario D with 50 cells containing a no-fly zone at the Cell (5,5) and paths generated by O-F and E-F.

4.4. Computational Time Analysis

The impact of the two pruning techniques in the compu-
tational time of the algorithms was evaluated in a series of
simulation experiments. The complete coverage paths are
generated during an offline planning phase. Thus, we are
interested in reducing the computational time in order to
speed up the total execution time of the mission.

A generic rectangular area composed by nc × 4 cells,
where nc is the number of columns of the grid, was adopted
to analyze the algorithms. The overall number of cells
can be increased by incrementing nc. We are interested
in measuring the computation time for a generic number

of cells. Note that, we decided to use a rectangular area
without obstacles because complex shaped areas, even with
the same number of cells, may lead to a high difference in
the computational cost.

For the sake of clarity, the original grid-based approach
proposed by Valente et al. [11] is denoted as Alg. A, the
grid-based with the original cost function, but modified by
the pruning techniques as Alg. B, and the Energy-aware
Grid-based CPP (EG-CPP) as Alg. C - with the pruning
and the energy cost function. The computational time of the
coverage paths may change according to the adopted starting
position. For this reason, we performed each experiment
for all starting positions. Fig. 8 reports the average of the
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computational time of Alg. A, Alg. B, and Alg. C in an
area with a number of cells varying from 16 to 48 with a
step of 4.
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Figure 8. Plot of the computational time from 16 to 48 cells comparing
Alg. A (original), Alg. B (optimized), and Alg. C (optimized-energy). The
10x zoom ease to visualize the small difference between the Alg. B and
the Alg. C, which is in order of seconds.

Experimental results show that Alg. A has a significant
computational time during the offline planning phase. For
instance, in a scenario with 36 cells the algorithm takes more
than 3 hours to run. However, the optimization proposed in
Alg. B drastically reduces the computational time spent by
the Alg. A, reaching a percentage of improvement that varies
from 44% to 99,9% as the number of cell increases. In fact,
results show that the computational time is in the order of
seconds instead of hours. Alg. C, that includes the energy-
aware cost function, reaches a percentage of optimization
over the Alg. A that varies from 31% to 99%. The Alg. C is
slightly more expensive than Alg. B but still takes only 35s
to be executed on 36 cells, stating the effectiveness of the
proposed approach. This was expected since the original cost
function only considers the sum of angles of the path, while
the proposed one considers more complex elements, such as
acceleration, deceleration, and constant-speed phases.

Finally, we measured the difference in the total num-
ber of executions of the recursive function considering the
original and the modified approaches, which explains the
improvement in the computation time of the algorithm.
Fig. 9 illustrates the histogram of the cost for all possible
paths searched with Alg. A and B in a scenario with 24
cells.

The original approach explores the entire sample field
presenting a wide range of values with a large number of
executions for each one them. Several different paths present
the same or similar costs. For example, more than 450 paths
have the cost of 1400, which is the sum of angles in the
original cost function. The optimized approach computes the
cost of the paths during the search phase and discards incom-
plete high-cost solutions, taking advantage of the pruning
technique. In the example shown in Fig. 9, the first path
computed with the pruning technique had a cost of 1400. All
the successive paths (complete or incomplete) higher than
this value were discarded. New paths with a lower value
will further reduce the search cost. This procedure avoids
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Figure 9. Histogram of the cost of all possible paths searched with the Alg.
A (original approach) and the Alg. B (optimized approach) in a workspace
containing 24 cells. Using the optimized approach, the cost of the first
complete path was 1400 and all the remaining searched paths, whose costs
were higher than this value, were discarded without being fully explored.

an excessive number of executions of the recursive function,
which is responsible for a considerable time in the algorithm
execution.

5. Conclusion

In this paper, we proposed the Energy-aware Grid-based
Coverage Path Planning Algorithm (EG-CPP) that aims at
minimizing the energy consumption during mapping mis-
sions over irregular-shaped areas. We compared the EG-
CPP with respect to the original state-of-the-art approach.
Measurements on the energy spent by a quadrotor during
real flights proved an energy saving of 17%, stating the
effectiveness of the proposed approach. Additional simu-
lation experiments in different irregular-shaped scenarios
also support this statement. By adopting the energy-aware
cost function, we were able to consider not only turning
maneuvers, but also complex elements, such as acceleration,
deceleration and optimal speed in the coverage path.

Thanks to the energy model, we were able to correctly
estimate the energy required to perform a mission with high
accuracy (97%). This allowed us to know in advance the
amount of energy required to perform a flight. As a notable
result, we drastically reduced the computational time of the
algorithm up to 99%. For instance, it is possible to compute
a minimum-cost path to cover an area divided in 36 cells
in 35s, instead of more than 3 hours. Moreover, since
the computational time has been drastically reduced, it is
possible to run the algorithm on all the starting positions to
find the global minimum-cost path in a reasonable amount
of time, saving even more energy.

As a future work, we intend to explore the coverage
algorithms for regular and irregular-shaped areas in order
to obtain a global solution regardless of the workspace.
Furthermore, we are exploring dynamic programming to
speed up even more the proposed algorithm.
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