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Abstract—Real-time dynamic workload consists of tasks that can arbitrarily join and leave the system at run-time. To avoid incurring

deadline misses, tasks that request to join the system must pass an admission test, which has to cope with potential scheduling

transients originated by the residual effect of the tasks that previously left the system. This phenomenon may require some tasks to

suffer an admission delay before being accepted for execution. This paper focuses on uniprocessor earliest-deadline first (EDF)

scheduling with constrained deadlines and explicitly considers methods for handling scheduling transients in the presence of dynamic

real-time workload. A generalized analysis framework is first presented to overcome several limitations of the existing approaches

(including the support for overlapping transients), and is then used to derive methods for computing bounds on the admission delays

incurred by tasks. Building on such results, an on-line protocol is proposed to handle the admission control of a dynamic workload,

which also comes with a variant that can execute in polynomial time to favor its practical application. Furthermore, the paper shows how

the presented analysis can be used off-line for analyzing mode-changes among static task sets. Experimental results are finally

presented to evaluate the proposed algorithms.

Index Terms—Real-time systems, scheduling transients, dynamic workload, mode change, schedulability analysis, deadline-based

scheduling
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1 INTRODUCTION

SEVERAL real-time applications are characterized by a
dynamicworkload, where computational activities (tasks)

are allowed to exit and join the system at run-time. Some rep-
resentative examples of such applications are multimedia
software systems [1], cloud databases [2], and open environ-
ments, in which new software components may arrive in the
system while other components are already executing. Most
of the operating systems that include real-time scheduling
capabilities are conceived to support a dynamic workload, as
tasks can freely be created and destroyed at run-time. For
instance, this is the case for VxWorks, QNX, and Linux.

To avoid incurring deadline misses, tasks that request to
join the system must pass an admission test before being
admitted for execution, which generally consists in a sched-
ulability test. However, when a new task requests to join
the system after other tasks left, the system can experience a
scheduling transient originated by the residual effect of the
leaving tasks. That is, despite the system would result
schedulable in steady-state conditions according to a classi-
cal schedulability test after admitting the new task, the exe-
cution of the leaving tasks may already have influenced the
schedule of the system so that the admission of a new task

can generate deadline misses. Therefore, as identified in [3],
[4], a standard steady-state schedulability analysis that
neglects the leaving tasks would not be safe, if deadline
misses cannot be tolerated. A solution to this problem con-
sists in delaying the admission of new tasks up to a safe time
in which they can start executing without causing (or incur-
ring) deadline misses. The time a task waits during a sched-
uling transient is denoted as admission delay.

The analysis of scheduling transients is similar to the one
of systems with mode-changes, which has been extensively
studied in the literature (a detailed review is reported in
Section 2). However, dealing with a dynamic workload
presents considerable differences. Two of the most impor-
tant ones are the need for computing admission delays
online, and the possibility to manage overlapping transients
originated by multiple (and potentially interleaved) leav-
ing/joining tasks; i.e., the case in which multiple tasks
request to join the system at different times while the system
is still experiencing a scheduling transient.

To the best of our knowledge, the methods addressing
such problems under earliest-deadline first (EDF) schedul-
ing are only available for implicit-deadline tasks, where
the analysis is performed with simple utilization-based
tests. Besides the theoretical relevance of supporting con-
strained deadlines, recent works showed that EDF-based
semi-partitioned scheduling allows achieving very high
schedulability performance with limited run-time over-
head, but the methods require dealing with constrained
deadlines even to schedule implicit-deadline tasks [5], [6].
Hence, this work can also serve as a building block for
future work targeting the computation of admission delays
under semi-partitioned EDF-based scheduling.
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Contributions. This paper focuses on uniprocessor (or mul-
tiprocessor partitioned) EDF scheduling with constrained
deadlines andmakes the following three contributions:

� First, a schedulability analysis framework is presented
to cope with overlapping scheduling transients and
constrained-deadline tasks, which is entirely based on
a new modeling approach that has been conceived to
support a dynamic real-timeworkload.

� Second, based on the proposed analysis, an on-line
protocol is proposed to handle the admission control
of a dynamic workload. The proposed protocol comes
with two algorithms for computing the admission
delays of tasks, where one of them has a polynomial-
time complexity to favor its online usage.

� Third, the paper shows how the presented analysis
can be used off-line for guaranteeing the schedulabil-
ity of transients originated by mode changes.

Experimental results are finally presented to assess the per-
formance of the proposed approaches and compare them
with state-of-the-artmethods to deal withmode-changes.

Paper Structure. The remainder of this paper is organized as
follows. Section 2 provides a state-of-the-art analysis for the
related work, illustrating the differences with the present
paper. Section 3 presents the system model and recalls some
essential background. Section 4 presents two schedulability
analysis techniques for managing scheduling transients.
Section 5 proposes an on-line protocol to handle transients
and two algorithms for computing the admission delays of
tasks. Section 6 discusses how the presented results can also
be adopted to analyze mode changes of static task sets. Sec-
tion 7 reports an experimental study that has been conducted
to assess the performance of the proposed approaches. Sec-
tion 8 concludes the paper and states futurework.

2 RELATED WORK

Methods for dealing with scheduling transients have been
extensively studied in the literature. Many authors analyzed
this issue in the context of multi-moded systems, in
which the application can switch among different operating
modes, each corresponding to a different task set. Other
authors explicitly targeted dynamic workloads, but focused
on implicit-deadline tasks or soft real-time guarantees (e.g.,
bounded tardiness).

Mode-Change.Although some solutions developed for ana-
lyzing mode changes could be extended for being applied to
the problem addressed in this paper, all of them do not sup-
port some peculiar features that are needed to handle the
admission control of real-time workload. In particular, most
of the works targeting mode changes generally assume that
the operating modes of an application are known a-priori,
and hence target static real-timeworkloadwhose schedulabil-
ity can be tested off-line for a giventransition delay. Con-
versely, in the presence of a dynamic workload, operating
modes are not known a priori and admission delays must be
computed on line. In addition, new tasks may request to join
the system while other tasks are still waiting for being admit-
ted, thus originating overlapping transients.

Unfortunately, to the best of our knowledge, all the works
focused on mode changes do not manage overlapping transi-
ents, since they assume that a mode change can only occur in

steady-state conditions and not during another transient. Fur-
thermore, since the admission control of dynamic workloads
must be managed at run time, it is possible to exploit on-line
scheduling information to compute smaller admission delays.
Clearly, this cannot be done for protocols developed for man-
agingmode changes in static task sets.

One of the first works targeting mode changes is due to
Fohler [7], who targeted table-driven scheduling of real-
time tasks. In the context of uniprocessor fixed-priority (FP)
scheduling, several protocols and analysis techniques for
mode-changes have been proposed. The interested reader
can refer to the survey by Real and Crespo [18]. Ander-
sson [10] focused on EDF scheduling and analyzed the
mode-change protocol proposed by Sha et al. [19] but only
assuming implicit-deadline tasks. This assumption allowed
the author to prove an utilization bound. Phan et al. [13]
proposed a multi-mode automata model and the related
compositional analysis technique for processing multiple
event streams. Their analysis considers overlapping mode
changes, but it requires exploring a reachability graph with
an algorithm that has exponential complexity.

Fisher and Ahmed [14] proposed two sufficient schedul-
ability tests for EDF with constrained deadlines considering
applications running under temporal isolation (e.g., sche-
duled by a reservation server) that can experience mode
changes. The two proposed approaches differ in the assump-
tions: in the first one, the authors considered sequences of
mode-changes that are fixed a-priori, while in the second one
the system can arbitrarily switch between a given set of
modes. Both the approaches assume a given transition delay
between themodes and allow for overlappingmode changes.
Later, Ahmed and Fisher [20] developed a parallel algorithm
to speedup the schedulability tests developed in [14]. Stoime-
nov et al. [15] addressed the problem of mode changes under
both EDF and FP scheduling considering the general event
stream model and applying real-time calculus to analyze
the system. However, the authors formulated the analysis in
the continuous domain, without providing bounds on the
analysis interval, hence the method cannot be used to imple-
ment a schedulability test. Similarly, a binary search over an
unbounded domain is briefly suggested for computing tran-
sition delays between operating modes. In a later work,
Stoimenov et al. [21] considered themode-change problem in
the context adaptive reservation servers using time division
multiple access (TDMA), investigating on the resource provi-
sioning during mode switches. Santinelli et al. [22] proposed
schedulability analysis for multi-moded resource reservation
servers. The authors proposed a framework to deal with both
inter-server and intra-server schedulability analysis; however,
the contribution of the paper regards only intra-server analy-
sis, whereas inter-server schedulability is addressed by
means of the results of other works (e.g., [3], [8]). Other works
addressedmode changes undermultiprocessor global sched-
uling. Rattanatamrong and Fortes [23] proposed a global
real-time multiprocessor scheduling algorithm managing
mode transitions, called EAGLE-T. In their algorithm tasks
are characterized by different utilizations in different modes,
and adapt their utilization when mode changes occur. The
authors focused on implicit-deadline tasks only.

Nelis et al. [11] proposed two algorithms, named AM-SO
and SM-SO (working under different assumptions), to
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handle transitions among modes that can be used with any
global preemptive job-level fixed-priority scheduling algo-
rithm. In a later work, Nelis et al. [12] proposed another
mode-change protocol designed to work in conjunction
with global EDF (G-EDF) schedulers, ensuring that (i) every
job completes within its absolute deadline and (ii) during a
mode-change new mode tasks are activated within their
relative transition-deadline.

Lee and Shin [16] extended a schedulability test proposed
by Bertogna et al. [24] for both G-EDF and global fixed-prior-
ity (G-FP) to cope with the off-line analysis of mode changes
consisting of a single transition. No transition delay has been
considered in the analysis. The authors also provided an
approach for computing a transition order for tasks that
allow limiting the amount of interference generated during
themode change.

Finally, some authors also addressed the mode-change
problem in the field of real-time networks: most relevant to us
are theworks by Kopetz et al. [25] andHeilmann et al. [26] .

Dynamic Real-TimeWorkload.Under EDF, a solution to han-
dle scheduling transients in the presence of dynamic work-
loads has been presented by Buttazzo et al. [3], who proposed
an elastic scheduling framework where a resource manager
can modify the period of the tasks. Whenever the period of a
task is modified, the system can incur in a transient and the
modified task may suffer an admission delay. Bounds for
such a delay are computed in [3], even in the presence of over-
lapping transients; however, the work is limited to implicit-
deadline tasks. The latter assumption allowed the authors to
take advantage of simple utilization-based tests for analyzing
the system and derive bounds on the admission delays.

Guangming [8] improved the result derived in [3] by pro-
viding a tighter bound on the admission delay, but again
the solution is valid only for tasks with implicit deadline.
Block and Anderson [17] and Block et al. [27] proposed a
task reweighting scheme for implicit-deadline tasks work-
ing under partitioned and P-Fair scheduling, respectively.
The authors bounded the delay that can be experienced by a
task when a reweighting event occurs. Andersson and
Ekelin [28] proposed an admission controller for task sets
composed of aperiodic and periodic tasks. The controller
exploits the fact that the release times of periodic tasks is
known a priori. No admission delays were considered.

The problem ofmode-changes and admission control have
beenmore recently addressed in the context of mixed-critical-
ity scheduling with the Vestal’s model, where a mode-change
occurs when the system switches its criticality level. For
instance, Masrur et al. [29] extended the EDF-VD [30] algo-
rithm with a bi-level deadline assignment, which handles a
potential increase of the workload due to dynamic task arriv-
als (or criticality mode changes) by assigning smaller virtual
deadlines to high-criticality tasks. Gu and Easwaran [31]
improved the schedulability of EDF-VD by proposing an
alternative test based on demand bound functions.

Comparison and Discussion. To better illustrate the differ-
ences of the present paper with respect to the related work
and to position this paper in the literature, Table 1 presents
a taxonomy organized according to the following
characteristics (reported in the table columns): (i) scheduler
type (e.g., EDF or fixed-priority); (ii) type of deadline
(implicit, constrained, or arbitrary); (iii) single-processor (or
partitioned multi-processor) or multi-processor (global);
(iv) requirement of a-priori knowledge of the workload
(static vs. dynamic workload); (v) type of the adopted
approach (mainly distinguished between schedulability
analysis and online protocol); (vi) ability to handle overlap-
ping transients. For the sake of clarity, only the works most
relevant to us have been included in Table 1.

Finally, it is worth noting that it is a common belief that
the duration of a scheduling transient is bounded by the
deadline of the task that left the system, which hence
would provide a trivial upper-bound for the admission
delay of future tasks. However, this property only holds
for implicit-deadline tasks.1 Fig. 1 shows an example of a
schedule that proves that this property is not true in the
presence of constrained-deadline tasks. In the figure, t1
quits the system at time t ¼ 10, and the new task t4 arrives
exactly in correspondence of the deadline of t1, i.e., at
time t ¼ 20. However, although both task sets ft1; t2; t3g
and ft1; t2; t4g are schedulable (this can be verified by
applying the well-established EDF analysis proposed by
Baruah et al. [32]), t4 experiences a deadline miss.

TABLE 1
Comparison of the Related Work

Paper Scheduler Deadline Processors Workload Approach Overlapping
transients

Fohler [7] Pre run-time Any UP Static Table Driven NO
Buttazzo et al. [3] EDF Implicit UP Dynamic Online protocol YES
Guangming [8] EDF Implicit UP Dynamic Online protocol YES
Rattanatamrong and Fortes [9] Custom Implicit MP-G Dynamic Online protocol NO
Andersson [10] EDF Implicit UP Static Analysis NO
Nelis et al. 2009 [11] EDF / FP Constrained MP-G Static Online protocol NO
Nelis et al. 2011 [12] EDF Constrained MP-G Static Online protocol NO
Phan et al. [13] EDF Arbitrary UP Static Analysis YES
Fisher et al. [14] EDF Constrained UP Static Analysis YES
Stoimenov et al. [15] EDF/FP Arbitrary UP Static Analysis NO
Lee and Shin [16] EDF/FP Constrained MP-G Static Analysis NO
Block and Anderson[17] Custom Implicit UP Dynamic Online Protocol NO
This Paper EDF Constrained UP Dynamic and Static Analysis and Online Protocol YES

1 The validity of this result under implicit-deadline can be easily
proved by upper-bounding the formula for the transient delay pro-
posed in [3] with the relative deadline.
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3 SYSTEM MODEL AND BACKGROUND

This paper considers a uniprocessor system that executes a
dynamic real-time workload consisting of sporadic real-time
tasks that can arbitrarily join or leave the system at run-time.
Tasks are managed under preemptive EDF scheduling. Each
task is characterized by a worst-case execution time (WCET) Ci,
a minimum inter-arrival time Ti, and a relative deadline
Di � Ti. The utilization of a task is denoted as Ui ¼ Ci=Ti.
Before being admitted for execution, a task that requests to
join the systemmust pass an admission test based on its param-
eters (the WCET can be enforced with a budgeting mecha-
nism, e.g., as available in Linux with the SCHED_DEADLINE

scheduling class [33] or inAUTOSAR [34]).
In order to analyze scheduling transients, this paper con-

siders scenarios in which the system is subject to a sequence
of events S ¼ fE1; E2; . . . ; ENg, where each event Ek ¼
hti; tk; typei is characterized by

� a task ti;
� a time tk, relative to the beginning of the last busy

period, in which the event is occurred; and
� the type of the event, where type = {ARRIVAL, EXIT}

represents the arrival or the exit of ti, respectively.
A busy period is defined as a time interval such that (i) the

processor is busy at all times during the interval, (ii) just
before the interval, the processor is idle, and (iii) just after
the interval, the processor is idle. The system is said to be
idle before its startup. All the times are assumed to be rela-
tive to the beginning of an arbitrary busy period of interest,
which is studied by means of the analysis techniques pre-
sented in this paper: this is because, once an idle time
occurs, all the scheduling transients are exhausted [35].

To simplify the notation, it is assumed that a task can have
at most one arrival and one exit event in a sequence S, i.e.,
once a task ti leaves the system it cannot request to join the
system again. Note that multiple join requests of a task ti can
easily be handled by considering the arrival of different tasks
with the same parameters of ti. The set of tasks for which
there exists an exit event into the sequence S is denoted by
GeðSÞ. Similarly, GaðSÞ denotes the set of tasks for which there
exists an arrival event in S. Given a task ti 2 GeðSÞ, tei is
defined as the time at which the task left the system, i.e.,
tei ¼ tk : 9Ek ¼ hti; tk; EXITi 2 S. In a similar way, tai denotes

the time at which task ti 2 GaðSÞ arrived in the system, i.e.,
tai ¼ tk : 9Ek ¼ hti; tk; ARRIVALi 2 S. For each task ti 2
GaðSÞ, the admission delay �i � 0 is defined such that
Di ¼ tai þ �i is the actual time at which ti is admitted for exe-
cution. Once a task is admitted, it can start releasing jobs fol-
lowing a sporadic pattern that respects its minimum inter-
arrival time. Any non-admitted task is rejected. For consis-
tency, we require that if there exists a task ti such that Di > 0
and ti 2 GeðSÞ, then Di�tei , i.e., a task can exit only after the
time it actually joined the system. Note that, differently from
other proposals, this model does not forbid overlapping
scheduling transients.

For the sake of completeness, the analysis presented in this
paper also considers a task setGO thatwas admitted for execu-
tion before the beginning of a given sequence S and that is not
interested by the events inS, i.e., none of the tasks inGO leaves
the system. All the tasks that do not join the system during a
sequence have the admission time set to zero, i.e.,

8ti 2 GO [ fGeðSÞ n GaðSÞg; Di ¼ 0: (1)

To reduce clutter, the set GF ðSÞ ¼ GO [ fGaðSÞ n GeðSÞg is
defined, which represents the set of tasks that are present
into the system after a sequence S has completed. Finally,
the following short notation is adopted: xb c0¼ maxf0; xb cg
and ðxÞ0 ¼ maxf0; xg. Table 2 summarizes the symbols
adopted throughout the paper.

3.1 Background on EDF Analysis

The results presented in this paper build upon the processor-
demand criterion (PDC) proposed by Baruah et al. [32]. The
demand function [36] giðt1; t2Þ of a task ti in an arbitrary inter-
val ½t1, t2� (with respect to an arbitrary schedule) is defined
as the amount of processing time requested by instances
(i.e., jobs) of ti that have both release times and absolute

Fig. 1. Example in which the scheduling transient originated by a task
(t1 in the figure) that leaves the system is not exhausted at the task’s
deadline. The parameter of the tasks in the example (described by
worst-case computation time, relative deadline, and period) are:
t1 ¼ h10; 20; 20i, t2 ¼ h3; 20; 20i, t3 ¼ h7:5; 22; 22i, t4 ¼ h4; 4; 20i. Task
t1 leaves the system at time t ¼ 10, while task t4 joins the system at
time t ¼ 20, equal to t1’s deadline.

TABLE 2
Main Notation Adopted throughout the Paper

Symbol Description

ti ith task
Ci worst-case execution time of ti
Ti minimum inter-arrival time of ti
Di relative deadline of ti
Ui utilization of ti

tei time in which ti lefts the system
tai time in which ti requests to join the system
�i admission delay of ti
Di time in which ti actually enters the system

(Di ¼ tai þ �i)

S sequence of events
Ek specific event Ek ¼ fti; tk; ARRIVAL}
GO set of tasks in the system not interested by sequences
GaðSÞ set of tasks admitted during the sequence S
GeðSÞ set of tasks that left the system during the sequence S
GF ðSÞ set of tasks in the system at the end of the sequence S

dbfiðtÞ demand bound function of ti
dbfei ðt;Di; t

e
i Þ demand bound function of a task ti 2 GeðSÞ

dbfiðtÞ approximate demand bound function of ti
dbfei ðt;Di; t

e
i Þ approximate demand bound function of ti 2 GeðSÞ

DðtiÞ set of check-point for ti according to Theorem 2
�ðtiÞ set of check-point for ti according to Theorem 4
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deadlines in ½t1, t2�. Formally,

giðt1; t2Þ ¼
X

ri;k�t1^di;k�t2

ci;k; (2)

where ri;k and di;k are the release time and the absolute
deadline of the kth job of ti, respectively, and ci;k � Ci is the
execution time of the kth job of ti.

The PDC is based on the notion of demand bound function
dbfðtÞ, which provides the maximum demand generated by a
task in any interval of length t. Clearly, dbfðtÞ upper-bounds
the demand function, i.e., giðt1; t2Þ � dbfiðt2 � t1Þ. For a given
task ti, the demand bound function is defined (see [32]) as:

dbfiðtÞ ¼ tþ Ti �Di

Ti

� �
0

Ci: (3)

Such a function is illustrated in Fig. 2a.
Under EDF scheduling, the PDC allows verifying the

schedulability of a given set G of sporadic tasks with con-
strained deadlines as stated in the following theorem.

Theorem 1 (Processor Demand Criterion). A task set G of
sporadic, arbitrary-deadline tasks is EDF-schedulable if and
only if

8t 2 D�;
X
ti2G

dbfiðtÞ � t; (4)

with D� ¼ S
ti2Gft ¼ Di þ fTi : t < L� ^ f 2 N�0g, where

L� is the length of the analysis interval (bounds are available
in [32], [37]).

4 TRANSIENT-AWARE SCHEDULABILITY ANALYSIS

This section presents two analysis techniques that are capable
of handling transients under EDF scheduling. As discussed in
the previous section, since any transient is exhausted at the
first idle time, both the techniques focus on a sequence of
events S (arrival or exit of tasks) within a single busy-period.
For this reason, all the times reported in this section are rela-
tive to the start time of the busy-period under analysis.

For the purpose of this section, the time at which the events
in S occur and the admission delays of the tasks are assumed
to be given. The proposed analysis techniques will be then
used in the following section as the foundation to develop
methods for handling transients on-line, thus computing the
admission delays.

The first analysis is presented in Section 4.1 and aims at
extending the PDC to verify the system schedulability in the
presence of scheduling transients. The second analysis, pre-
sented in Section 4.2, is based on an approximation scheme
of the PDC and has a polynomial-time complexity.

4.1 PDC-Based Analysis

To begin, it is necessary to extend the definition of demand
bound function to cope with tasks ti 2 GeðSÞ that leave the
system at time tei , that is

dbfei ðt;Di; t
e
i Þ ¼

dbfiðt� DiÞ if t < ai þDi;
dbfiðai � DiÞ þ ci otherwise;

�
(5)

where

ai ¼ tei � Di

Ti

� �
Ti þ Di; (6)

and ci ¼ minðCi; t
e
i � aiÞ. Such a function is illustrated in

Fig. 2b. Intuitively speaking, ai is the time at which ti
releases its last job in the scenario in which its demand is
maximized, i.e., when jobs are released as soon as possible.
As a consequence, function dbfei ðt;Di; t

e
i Þ exhibits a satura-

tion to dbfiðai � DiÞ þ ci after the deadline of such a last job,
which occurs at time ai þDi. The term ci is provided to
bound the time executed by the last job of ti in the same
worst-case scenario. The following lemma formalizes the
validity of function dbfei ðt;Di; t

e
i Þ.

Lemma 1. For a task ti 2 GeðSÞ, the following inequality holds:
8t � 0; gið0; tÞ � dbfei ðt;Di; t

e
i Þ: (7)

Proof. Without loss of generality, let us assume a busy-
period starting at time t ¼ 0 and let a0 be the time in
which the last job of ti is released. Note that the busy-
period includes jobs of ti only up to time tei . By looking at
the definition of demand function in Equation (2), task ti
can then contribute with demand in the busy-period of
interest only up to time a0 þDi, i.e., the absolute deadline
of its last job. Consequently, if t < a0 þDi, the processing
time demanded by ti in ½0; t� is given by giðDi; tÞ, which is
upper-bounded by dbfiðt� DiÞ.

For t � a0 þDi, ti can contribute with processing
demand only with its last job, then no further demand
contribution is possible. Let c0 be the execution time of
ti’s last job. Hence, the demand generated in ½0; t� is con-
stant and equal to giðDi;a

0Þ þ c0, where the first term
accounts for the demand generated by all the jobs of ti
except the last one. Such a contribution is upper-
bounded by dbfiða0 � DiÞ þ c0.

As stated in the standard PDC-based analysis of EDF
scheduling, the demand of a sporadic task is maximized
when jobs are released as soon as possible. Under this
scenario, the last job of ti is released at time ai ¼ bðtei�
DiÞ=TicTi þ Di. The lemma follows by replacing a0 ¼ ai

and noting that the execution time of the last job of ti is
bounded by the minimum between the time span that
goes from the release of the last job and the exit time, i.e.,
tei � ai, and the WCET Ci. tu
With the above lemma in place, it is possible to present

another key lemma that expresses a condition under which
a system that is subject to the sequence S is schedulable
even in the presence of transients.

Lemma 2. A system that is subject to a sequence of events S does
not incur in deadline misses under EDF scheduling if

Fig. 2. Illustrations of the demand bound functions used in Section 4
(solid lines). Insets (a) and (b) show functions dbfiðtÞ and dbfe

i ðt;Di; t
e
i Þ,

respectively.
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8t � 0;
X

ti2GF ðSÞ
dbfiðt� DiÞ þ

X
ti2GeðSÞ

dbfei ðt;Di; t
e
i Þ � t: (8)

Proof. Without loss of generality, assume a busy-period
starting at time t ¼ 0. Due to the optimality of EDF [32],
the system is schedulable if for all intervals ½0; t�, with
t � 0, the overall processing time demanded to the sys-
tem never exceeds the interval length t. Consider an arbi-
trary EDF schedule in ½0; t�. We proceed by considering
the individual contribution to the overall processing time
demanded by each task interested by the sequence S or
present into the set GO.

The processing time demanded in ½0; t� by a task ti 2 GO

(i.e., not interested by the events in the sequence S) is given
by gið0; tÞ. Such a function is upper-bounded by dbfiðtÞ
(note thatDi ¼ 0 for such tasks).

A task ti 2 GaðSÞ that joins the system is admitted at
time Di ¼ tai þ �i. Hence, the processing time demanded
by a task ti 2 GaðSÞ n GeðSÞ (i.e., that joins the system and
does not leave it later) is given by giðDi; tÞ. Such a function
is upper-bounded by dbfiðt� DiÞ. By recalling the defini-
tion of the set GF ðSÞ, the latter two contributions are
expressed by the first term in Equation (8).

Finally, from Lemma 1, the demand of a task ti 2 GeðSÞ
can be upper bounded by dbfei ðt;Di; t

e
i Þ. Since Equation (8)

accounts for an upper bound on the processing demand
imposed by each task within the busy-period of interest,
the lemma follows. tu
As in the classical PDC analysis, to actually implement a

schedulability test based on Lemma 2 we need (i) an upper-
bound of the analysis interval, and (ii) a discretization of the
analysis interval.

For (i), the following lemma can be used.

Lemma 3. Let UF ¼ P
ti2GF ðSÞ Ui. If UF < 1, then Equation (8)

is satisfied 8t > L�, where

L� ¼ WF þWE

1� UF
; (9)

with

WF ¼
X

ti2GF ðSÞ
UiðTi �DiÞ;

WE ¼
X

ti2GeðSÞ
dbfiðai � DiÞ þ Ci:

and ai is defined as in Equation (6).

Proof. For tasks ti 2 GeðSÞ, their contribution to Equation (8)
can be upper-bounded as 8t � 0; dbfei ðt;Di; t

e
i Þ � dbfi

ðai � DiÞ þ Ci. Hence, their overall contribution can be
safely upper-bounded by WE . For tasks ti 2 GF ðSÞ, their
contribution to Equation (8) can be upper-bounded by
removing the floor operator from function dbfiðtÞ, which
gives 8t � 0; dbfiðt� DiÞ � Uiðt� Di þ Ti �DiÞ0. Since
Di � 0, then 8t � 0; Uiðt� Di þ Ti �DiÞ0 � Uiðtþ Ti�
DiÞ0. Given Di � Ti, the ðÞ0 operator can be removed
from the latter expression. Hence, their overall contribu-
tion can be safely upper-bounded byWF þ tUF .

By exploiting such upper-bounds, ifWE þWFþ tUF �
t holds for 8t > L�, then Equation (8) is satisfied
8t > L�. This upper-bound is a straight line with slope
UF . Since UF < 1, there exists an intersection with
the identity function t ¼ t. Solving with respect to t, the
obtained solution is t ¼ L� ¼ ðWF þWEÞ=ð1� UF Þ. The
lemma follows. tu
In the limit case in which UF ¼ 1, the maximum analysis

interval can be bounded by the length of the longest busy-
period that the system can experience. This case is analo-
gous to the one reported in [37], [38] but considering differ-
ent arrival curves that can be obtained from the demand
bound functions adopted in this section. Details are avail-
able in Appendix A.2, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/10.1109/TC.2018.2882451.

Finally, the results of the above lemmas are combined in
the following theorem,which expresses a schedulability test.

Theorem 2. If Equation (8) is verified

8t 2
[

ti2GF ðSÞ[GeðSÞ
DðtiÞ; (10)

where

DðtiÞ ¼ ft ¼ Di þDi þ fTi : t < t�ðtiÞ ^ f 2 N�0g;

t�ðtiÞ ¼ L� if ti 2 GF ðSÞ
minðai þDi; L

�Þ otherwise;

�
and ai defined as in Equation (6), then Equation (8) is verified
8t � 0.

Proof. Note that both functions dbfiðt� DiÞ and dbfei ðt;Di; t
e
i Þ

are step-wise monotonic with discontinuities in points
Di þDi þ fTi with f 2 N�0. The theorem follows after
recalling Lemma 3, which provides the bound L�, and that
the last discontinuity of function dbfei ðt;Di; t

e
i Þ occurs for

t ¼ ai þDi. tu
The computational complexity of Theorem 2 is the same

of the PDC, i.e., pseudo-polynomial if U < 1. It is worth
mentioning that the presented schedulability test can also be
efficiently implemented with the quick processor-demand anal-
ysis (QPA) algorithm proposed by Zhang and Burns [37].

4.2 FPTAS-Based Analysis

In this section, an approximate analysis for scheduling tran-
sients is derived by building upon the fully polynomial-time
approximation scheme (FPTAS) for the PDC proposed by
Fisher et al. [39]. The FPTAS approach is based on approxi-
mate demand bound functions that are defined as follows:

dbfiðtÞ ¼ dbfiðtÞ if t < niTi þDi

Ci þ Uiðt�DiÞ otherwise.

�
(11)

As it can be noted from the latter equation, the approximate
functions accounts for ni þ 1 steps (with ni 2 N�0) equal to
the original demand bound function dbfiðtÞ, and then use a
linear bound with slope Ui for the remaining time intervals.
Such an approximate function upper-bounds function
dbfiðtÞ [39] and is illustrated in Fig. 3a.
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Leveraging the definition of dbfiðtÞ, an approximate
schedulability test can be formulated to verify the system
schedulability in steady-state conditions.

Theorem 3 (From [39]). A task set G of sporadic, constrained-
deadline tasks is EDF-schedulable if

8t 2
[
ti2G

DðtiÞ;
X
ti2G

dbfiðtÞ � t; (12)

with DðtiÞ ¼ fjTi þDi; j ¼ 0; . . . ; nig.
As done in the previous section with Equation (5), the

approximate demand bound function of a task ti 2 GeðSÞ
that leaves the system is defined as:

dbf
e

i ðt;Di; t
e
i Þ ¼ dbfiðt� DiÞ if t < ai þDi;

dbfiðai � DiÞ þ Ci otherwise;

�
(13)

where ai is defined as for Equation (5). The derivation of
such a function (illustrated in Fig. 3b) is analogous to
Lemma 1 and, by construction, it upper bounds function
dbfei ðt;Di; t

e
i Þ.

Leveraging these approximate demand bound functions,
it is possible to formulate an approximate version of the
schedulability test expressed by Theorem 2.

Theorem 4. A system that is subject to a sequence of events S
does not incur in deadline misses under EDF scheduling ifP

ti2GF ðSÞ Ui � 1 and

8t 2
[

ti2GF ðSÞ[GeðSÞ
�ðtiÞ;

X
ti2GF ðSÞ

dbfiðt� DiÞ þ
X

ti2GeðSÞ
dbfei ðt;Di; t

e
i Þ � t; (14)

where

�ðtiÞ ¼
fDi þ jTi þDig if ti 2 GF ðSÞ; j ¼ 0; :::; ni
fDi þ jTi þDig if ti 2 GeðSÞ; j ¼ 0; :::; ni ^

Di þ jTi þDi � ai þDi;

8<:
with ai defined as in Equation (6).

Proof. After recalling Theorem 3 in place of the standard
PDC analysis, the proof is analogous to the one of Theo-
rem 2 but considering the finite set of discontinuities of
the adopted approximate demand bound functions. Such
discontinuities occur at points Di þ jTi þDi for tasks
ti 2 GF ðSÞ. Similarly, for tasks ti 2 GeðSÞ, the discontinu-
ities occur for the same family of points in time, but are
limited by the maximum number of jobs that ti can
release leaving the system at time tei , which is accounted
with the term ai þDi, as done in Lemma 1. tu

The computational complexity of the test provided by
Theorem 4 is Oðj S ti2G�ðSÞ�ðtiÞjÞ ¼ OðPti2G�ðSÞðni þ 1ÞÞ
where G�ðSÞ ¼ GF ðSÞ [ GeðSÞ.

5 HANDLING TRANSIENTS ONLINE

This section presents an on-line protocol to handle schedul-
ing transients and proposes two methods for computing the
admission delays �i for tasks that request to join the system.
As a prerequisite, the run-time scheduling mechanism is
required to keep track of the beginning time of the current
busy period, and of the sequence S of events occurred within
that interval. The protocol consists of the following rules:

R1. Whenever a new task ti requests to join the system at
time tai , the system verifies the steady-state schedul-
ability by means of an admission test.

R2. Whenever there is an idle time, any task that passes
the admission test can join the system without incur-
ring an admission delay.

R3. Whenever a task ti passes the admission test, the
admission delay �i is computed with one of the meth-
ods presented in the following sections. The task is
admitted for execution at the earliest time between
Di ¼ tai þ �i and the time at which the first idle
time occurs.

The admission test used in rule R1 is strictly dependent on
themethod that is used in rule R3 for computing the admission
delays. In the following, building on the analysis techniques
presented in Section 4, two methods for computing the admis-
sion delays are presented, where each of them is accompanied
with a corresponding admission test. The first one is able to
compute the minimum delay with respect to the precision
enabled by the analysis, but it suffers from a large run-time
complexity. The second one is based on an approximation of
the analysis and allows computing the admission delays in
polynomial time, thus favoring its practical applicability.

5.1 Method 1

This section considers a task tN that requests to join a sys-
tem at time taN and presents a method for computing the
admission delay �N of tN . The system is assumed to be
schedulable previously to the arrival of tN . Let S be the
sequence of events occurred within the current busy period
of the system up to time taN , where the last event in S corre-
sponds to the arrival of tN . The proposed method assumes
that the standard PDC (Theorem 1) is used as admission
test, i.e., considering the task set GF in steady-state
conditions.

Following the analysis stated by Theorem 2, the objective
of the proposed method consists in solving the following
optimization problem:

minimize �N

subject to 8t 2 D�;X
ti2GF ðSÞnftNg

dbfiðt� DiÞ þ
X

ti2GeðSÞ
dbfei ðt;Di; t

e
i Þ

þ dbfNðt� taN � �NÞ � t:

(15)

Fig. 3. Illustrations of the approximate demand bound functions used in

Section 4 (solid lines). Insets (a) and (b) show the approximate functions

dbfiðtÞ and dbf
e

i ðt;Di; t
e
i Þ respectively. The functions are illustrated for

vi ¼ 1 and Di ¼ 0. The dashed lines depict functions dbfiðtÞ.
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This optimization problem can be solved by applying the
following iterative algorithm:

1) Initially, let �N ¼ 0.
2) Apply Theorem 2 to S. If the schedulability test is

passed, then tN can be admitted with delay �N and
the algorithm terminates. Otherwise, let t� 2 D� be a
check-point in which Equation (8) is not satisfied.

3) Compute the minimum delay �0
N such that the sched-

ulability test in t� does not fail. Then, set �N ¼ �0
N and

go to step 2.
The validity of this approach is ensured by the fact that all

the terms in Equation (8) are monotone in �N . In the follow-
ing, two lemmas are presented to compute the admission
delay at step 3. To avoid discussing the limit case of a fully-uti-
lized system, the following results assume

P
ti2GF ðSÞ Ui < 1.

First note that the failure point t� can correspond to (i) a
check-point in D� originated by tN , or to (ii) a check-point in
D� originated by another task ti 6¼ tN . Case (i) is addressed in
Lemma 4 and case (ii) in Lemma 5.

Lemma 4. Let t� 2 DðtNÞ be a check-point originated by tN in
which Theorem 2 is not verified. Also, let t0 ¼ t� � �N . The fail-
ure in t� can be removed by setting the admission delay �N of
tN to the least fixed-point of the following recursive equation:

�0
N ¼

X
ti2GF ðSÞ

dbfiðt0 þ �0
N � DiÞþX

ti2GeðSÞ
dbfei ðt0 þ �0

N;Di; t
e
i Þ � t0:

(16)

Proof. Theorem 2 is verified in the check-point t� ifX
ti2GF ðSÞ

dbfiðt� � DiÞ þ
X

ti2GeðSÞ
dbfei ðt�;Di; t

e
i Þ � t�:

Being both the demand bound functions involved in the pre-
vious inequality non-decreasing in t�, the minimum admis-
sion delay such that the check-point is satisfied is given
when the LHS of the inequality is equal to t�. The resulting
equation is recursive, as both sides depend on t� (which in
turn depends on �N ). The equation can be rewritten as Equa-
tion (16) and its convergence (i.e., the existence of a fixed
point) can be proved by observing that: (i) it is monotonic
non-decreasing as Equation (16) comprises a sum of mono-
tonic non-decreasing functions; and (ii) it is upper-bounded
as long as

P
ti2GF ðSÞ Ui < 1 (see Appendix A.1, available

online, for details). Hence the lemma follows. tu
Equation (16) can be solved with a fixed-point iteration

starting from �0
N ¼ �N (i.e., the current admission delay

before removing the failure in t�).

Lemma 5. Let t� 2 D� n DðtNÞ be a check-point not originated
by tN in which Theorem 2 is not verified. The failure in t� can
be removed by setting the admission delay �N of tN to:

�0
N ¼ t� �K þ TN �DN � taN þ �; (17)

where � > 0 (arbitrary small) and

K ¼ t� �KF �KEÞ
CN

� �
0

þ 1

� �
TN

with

KF ¼
X

ti2GF ðSÞnftNg
dbfiðt� � DiÞ;

KE ¼
X

ti2GeðSÞ
dbfei ðt�;Di; t

e
i Þ:

Proof. First note that, since t� does not depend on �N , both
KF and KE are constants. To fix the failure point by set-
ting �N ¼ �0

N , the following condition must be verified:

KF þKE þ dbfNðt� � ðtaN þ �NÞÞ � t�: (18)

By replacing the definition of dbfNðt� � ðtaN þ �NÞÞ in
Equation (18), it follows that

t� � ðtaN þ �NÞ þ TN �DN

TN

� �
0

� t� �KF �KE

CN
;

which, by exploiting the properties of the floor function,
can be rewritten as:

t� � ðtaN þ �NÞ þ TN �DN

TN
<

t� �KF �KE

CN

� �
0

þ1:

Solving with respect to �N , the inequality becomes:

�N > t� �K þ TN �DN � taN;

with K defined as in the lemma statement. Hence the
lemma follows. tu
Implementation and Complexity. By leveraging some prop-

erties of the involved equations, an efficient implementation
of the proposed iterative algorithm can be devised. The
resulting algorithm is named ADT (Admission Delay for
Transients) and is reported in Fig. 4. Algorithm ADT
exploits the observation that, once Equation (15) is satisfied

Fig. 4. Pseudo-code for the ADT (Admission Delay for Transients)
algorithm.
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in a check-point t� 2 D� n DðtNÞ by using a particular delay
�N , it remains satisfied 8�0

N � �N . This property directly fol-
lows from the monotonicity in �N of the demand bound
function of tN . The main advantage introduced by the latter
result is that it is not necessary to verify Theorem 2 many
times, but instead it is possible to design an algorithm that
requires to process each check-point in the set D� n DðtNÞ
only once.

The ADT algorithm starts by initializing �N ¼ 0 and by
setting Doth as the set of check-points that are not originated
by tN . Then, it proceeds by processing such check-points by
means of Lemma 5, updating �N accordingly (line 6). Note
that the algorithm avoids processing the check-points before
time taN at which tN requested to join the system: this is
because the demand contribution of tN cannot affect them.
Finally, the algorithm processes the check-points originated
by tN (set DðtNÞ) by means of Lemma 4. Such check-points
are processed as long as �N does not increase (see the loop at
lines 8-17). The termination of the algorithm is guaranteed by
the fact that �N is never decreased and that �N is upper-
bounded by a constant term as long as

P
ti2GF ðSÞ Ui < 1 (see

Appendix A.1, available online, for details).
As for the standard PDC analysis, the ADT algorithm

runs for a pseudo-polynomial number of iterations as long
as the steady-utilization of the system is strictly less than
one. Each iteration has either (i) a constant-time complexity,
when Lemma 4 is applied (e.g., by storing the sum of
demand-bound functions in an incremental fashion when-
ever a new task joins the system), or (ii) a Oð��

NÞ complexity
when Lemma 5 is used, where ��

N is an upper-bound on �N

(as discussed after the lemma). The average-case perfor-
mance of the algorithm can be further improved by comput-
ing the bound L� (see Lemma 3) at each iteration in which
�N changes. Since L� decreases as �N increases, using an
updated value of L� may allow to processing a lower num-
ber of check-points.

5.2 Method 2: Approximated Delay Computation

This section aims at deriving an approximate algorithm to
compute the admission delay in polynomial time. To this
end, the FPTAS-based analysis introduced in Section 4.2 is
used as admission test in rule R1 of the proposed protocol.

As done in the previous section, consider a task tN for
which it is required to compute a safe admission delay �N ,
and let S be the sequence of events occurred within the cur-
rent busy-period of the system up to the arrival of tN (time
taN ). The same assumptions stated in the previous section
have been adopted, with the only exception being that The-
orem 3 is used to verify the steady-state schedulability. Our
objective is to leverage Theorem 4 to express a transient-
aware schedulability test in the form of H constraints
�N � Vz, with z ¼ 1; . . . ; H, where Vz is a constant term.
Once this has been accomplished, a safe admission delay
can then be computed as

�N ¼ maxz¼1;...;HfVzg:

More specifically, each term Vz will be derived by the
check-points of the test in Theorem 4, for a total ofH ¼ jft 2
[ti2GeðSÞ[GF ðSÞ�ðtiÞ : t � taNgj constraints.

In the following, four lemmas will be presented to cope
with the derivation of the terms Vz from the check-points.
Note that each check-point can be originated by (i) tN , or (ii)
another task ti 6¼ tN .

Case (i). Following Theorem 4, a check-point originated by
tN can be expressed as t� ¼ taN þ �N þDN þ jTN (with
j 2 N�0). Due to the dependency of t� on �N , a circular depen-
dency arises when evaluating in t� the demand bound func-
tions of the other tasks 6¼ tN . In fact, being �N the parameter
to be computed (and hence unknown), such demand bound
functions can be either in their piece-wise constant part or in
their linear part; hence, their expression is not known a-priori.
The following lemma allows breaking such a circular depen-
dency by deriving a safe lower bound for �N .

Lemma 6. Let UF ¼ P
ti2GF ðSÞnftN g Ui and let t� 2 �ðtNÞ be a

check-point of Theorem 4 originated by tN defined as t� ¼ DN

þt0 with t0 ¼ DN þ jTN and j 2 N�0. The check-point t� is
verified if

�N � dbfNðt0Þ þKF þKE � taN � t0

1� UF
; (19)

where

KF ¼
X

ti2GF ðSÞnftNg
Ci þ UiðtaN þ t0 � Di �DiÞ0;

KE ¼
X

ti2GeðSÞ
dbfiðai � DiÞ þ Ci;

and ai is defined as in Equation (6).

Proof. The lemma follows by exploiting upper bounds on
the terms that compose Equation (14) and the fact that
such terms are non-decreasing in t. In particular, the
upper bound on functions dbfiðt� DiÞ is obtained by
degenerating the approximation to a single discontinuity
point, thus obtaining a linear and continuous bound
equal to Ci þ Uiðt� Di �DiÞ0. By replacing t ¼ t�, such
an upper bound can be rewritten as Ci þ Uiðtai þ t0�
Di �DiÞ0 þ Ui�N . Then, summing over all tasks in GF ðSÞ,
the upper bound on the first term of Equation (14) results
KF þ UF�N þ dbfNðt0Þ. Note that there is no need to
leverage an upper bound on function dbfNðtÞ, as in the
check-point t� its value does not depend on �N (i.e.,
dbfNðt� � DNÞ ¼ dbfNðt0Þ), hence dbfNðt0Þ is a constant
term. Finally, the upper bound on functions dbf

e

i ðt;Di; t
e
i Þ

is obtained by noting that such functions exhibit a satura-
tion to dbfiðai � DiÞ þ Ci. tu
The upper bound provided by the above lemma can be

quite coarse, especially for high values of UF ; however, it
can be used as an initial solution to devise an iterative
method that refines the bound on �N . In fact, by leveraging
a given upper bound �ub

N on �N , the following lemma allows
tightening the admission delay.

Lemma 7. Let t� 2 �ðtNÞ be a check-point of Theorem 4 origi-
nated by tN defined as t� ¼ DN þ t0 with t0 ¼ DN þ jTN

(j 2 N�0). Given an upper bound �ub
N � �N , the check-point is

verified if

�N � dbfNðt0Þ þK � taN � t0; (20)
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with

K ¼
X

ti2GF ðSÞnftNg
dbfiðt00 � DiÞ þ

X
ti2GeðSÞ

dbf
e

i ðt00;Di; t
e
i Þ;

where t00 ¼ taN þ �ub
N þ t0.

Proof. As done in the proof of Lemma 6, the lemma follows
by exploiting upper bounds on the terms that compose
Equation (14) and the fact that such terms are non-decreas-
ing in t. Since �ub

N � �N , then t00 � t�. As a consequence,

dbfNðt0Þ þK provides a safe upper bound of the LHS of

Equation (14) when evaluated in the check-point t ¼ t�. tu
Lemma 7 can be repeatedly applied, thus generating a

non-increasing sequence of lower bounds on �N . At the first
iteration, �ub

N is set at the value obtained with Lemma 6; then,
the obtained bound can in turn be used to set �ub

N for a next
application of Lemma 7, and so on for a desired number of
iterations.

Case (ii). Now, consider the case in which a constraint in
the admission delay �N is derived from check-point of Theo-
rem 4 that is not originated by tN . In this case, being the
check-point independent of �N , all the terms in Equation (14)
are constant with the exception of dbfNðt� DNÞ, which
instead depends on �N through DN . Since function dbfN ðt�
DNÞ is composed of a piece-wise constant part and a linear
part, two corresponding sub-cases must be considered.
These are respectively managed by Lemma 8 and Lemma 9,
which providemutually-exclusive conditions (note the second
equations in the systems considered by the two lemmas).

Lemma 8. Let t� 2 �ðtiÞ be a check-point of Theorem 4 origi-
nated by ti 6¼ tN . The check-point is verified if the following
system of equations is verified:

�N > t� �K þ TN �DN � taN
�N > t� � nNTN �DN � taN

�
(21)

where

K ¼ t� �KF �KEÞ
CN

� �
0

þ1

� �
TN;

KF ¼
X

ti2GF ðSÞnftNg
dbfiðt� � DiÞ;

KE ¼
X

ti2GeðSÞ
dbfei ðt�;Di; t

e
i Þ:

Proof. Following the definition of function dbfNðtÞ, if
t� < DN þ nNTN þDN then dbfNðt� � DNÞ corresponds
to a value in the piece-wise constant part of the function.
Rewriting the latter inequality by expanding DN ¼
taN þ �N , it follows that �N > t� � nNTN �DN � taN . Note
that, under such a condition, dbfNðt� � DNÞ ¼
dbfNðt� � DNÞ. Hence, the same approach adopted in the
proof of Lemma 5 can be used to derive a lower bound on
�N . The only difference consists in taking into account the
constant terms KF and KE , which must be redefined by
means of the approximate demand bound functions.
Hence, the lemma follows. tu

Lemma 9. Let t� 2 �ðtiÞ be a check-point of Theorem 4 origi-
nated by ti 6¼ tN . The check-point is verified if the following
system of equations is verified:

�N � UN ðt��DN�ta
N
ÞþKFþKEþCN�t�
UN

�N � t� � nNTN �DN � taN;

(
(22)

whereKF andKE are defined in Lemma 8.

Proof. Following the definition of function dbfNðtÞ, if
t� � DN þ nNTN þDN then dbfNðt� � DNÞ corresponds to
a value in the linear part of the function. Rewriting the lat-
ter inequality by expanding DN ¼ taN þ �N , it follows that
�N � t� � nNTN �DN � taN . Under such a condition,
dbfNðt� � DNÞ ¼ CN þ UNðt� � DN �DNÞ; hence, by also
expanding DN , Equation (14) becomes

CN þ UNðt� � taN � �N �DNÞ þKF þKE � t�:

The lower bound on �N reported in the lemma statement
is obtained by solving the latter inequality with respect
to �N . Hence, the lemma follows. tu
The above four lemmas are finally combined into an algo-

rithm for computing an approximate admission delay for tN .
Implementation and Complexity. Fig. 5 reports the AADT

(Approximated Admission Delay for Transients) algorithm.
The AADT algorithm starts by initializing �N ¼ 0 (and other
auxiliary variables) and by setting �oth as the set of check-
points that are not originated by tN . Then, it proceeds by
deriving the lower bounds on �N by the check-points in �oth,
which is accomplished by Lemmas 8 and 9 (lines 6-7). In
the reported algorithm, functions Lemma 8 and Lemma 9
return the minimum value of �N that satisfies the system of

Fig. 5. Pseudo-code for the AADT Approximated Admission Delay for
Transients) algorithm.

CASINI ET AL.: HANDLING TRANSIENTS OF DYNAMIC REAL-TIME WORKLOAD UNDER EDF SCHEDULING 829

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on April 13,2020 at 17:24:50 UTC from IEEE Xplore.  Restrictions apply. 



equations in the corresponding lemmas (a value represent-
ing infinity is returned when a solution does not exist). By
construction of these two lemmas (which match mutually-
exclusive scenarios), both the obtained solutions are valid
lower-bounds for �N : hence, the minimum solution is taken.
To obtain a solution that is valid for all the check-points in
�oth, the maximum admission delay obtained by the lemmas
is stored in �

ð1Þ
N (line 8s).

Similarly, the subsequent for loop processes all the check-
points originated by tN (set �ðtNÞ) by deriving a lower bound
for �N according to Lemma 6 (line 11). Again, to copewith all
such check-points, the maximum admission delay is stored
in �

ð2Þ
N (line 12). Finally, the algorithm refines the solution by

iteratively applying Lemma 7 for x times (as previously dis-
cussed below the presentation of the lemma), where x 2 N�0

is an input parameter for the algorithm. At every iteration,
the solution is updated in the variable �N , which is finally
returned at the end of the algorithm.

Assuming that each check-point can be processed in con-
stant time (e.g., by storing the sum of demand-bound func-
tions in an incremental fashion whenever a new task joins
the system), the AADT algorithm has Oðj�othj þ ðxþ 1Þj�
ðtNÞjÞ complexity. The cardinality of the involved sets is
given by the number of check-points adopted in Theorem 4,
hence the algorithm complexity is OðPti2G� ðni þ 1Þþ
ðxþ 1ÞðnN þ 1ÞÞ, with G� ¼ GF ðSÞ [ GeðSÞ n ftNg. The com-

plexity is hence polynomial in the involved parameters.

6 HANDLING MODE CHANGES

Although the previous sections were focused on dynamic
workloads, the analysis proposed in Section 4 can also be
adopted to analyze static task sets that exhibit mode
changes. To this end, some additional notation and assump-
tions are needed.

Notation and Assumptions. This section considers a system
that can be subject to an arbitrary number nmc of mode
changes, where Mc ¼ fmc1;mc2; . . . ;mcnmcg denotes the set
of all possible mode changes. The hth mode change is defined
by a tuple mch ¼ fMa

h;M
b
h; t

mc
h ; dmc

h g where tmc
h is the time at

which a mode change from mode Ma
h to mode Mb

h is
requested, and dmc

h represents the transition delay, meaning
that the tasks of modeMb

h are allowed to actually join the sys-
tem only at time tmc

h þ dmc
h . The tasks in the leaving modeMa

h

are allowed to complete the last job released before or at time
tmc
h . Each couple of modes Ma

h and Mb
h is associated with a

corresponding couple of task sets Ga
h and Gb

h. Likewise most
of the other works that targeted mode changes (e.g., [14] and
[16]), this section assumes that (i) the transition delay dmc

h of
each mode change mch is assumed to be fixed, (ii) the task
sets Ga

h and Gb
h are schedulable in steady-state conditions, and

(iii) scheduling transients do not overlap (i.e., at most one
mode change per busy period). Please refer to Appendix A.3,
available online, for a discussion on how (iii) can be relaxed.

Analysis. Now, it is possible to proceed by showing how
mode changes can be mapped into the model based on the
sequence of events introduced in Section 3. For a given
mode changemch, the idea is to consider the first task set Ga

h

as the one that is present in the system before the beginning
of a sequence S that should model the mode change from

Ga
h to Gb

h. The results of Theorem 2 can then be adopted to

analyze mch by constructing the sequence S as the concate-

nation of two sub-sequences: (i) SE , which comprises the

exit events of all tasks that leave the system, i.e., those in the
set Ga

h n Gb
h, and (ii) SA, which comprises the arrival events

of all tasks that join the system, i.e., those in the set Gb
h n Ga

h,

thus obtaining:

� SE ¼ f[ti2fGahnGbhg
< ti; t

mc
h ; EXIT > g,

� SA ¼ f[
ti2fGbhnGahg

< ti; t
mc
h þ dmc

h ; ARRIVAL > g,
� S ¼ fSE; SAg.
Analogously, the task sets introduced in Section 3 can be

defined as follows:

� GO ¼ Gb
h \ Ga

h;

� GeðSÞ ¼ Ga
h n GO;

� GaðSÞ ¼ Gb
h n GO.

Finally, to ensure a consistent matching between the two
models, the parameters tei and �i are defined as follows:

� 8ti 2 GeðSÞ; tei ¼ tmc
h , tai ¼ 0, and �i ¼ 0;

� 8ti 2 GaðSÞ; tai ¼ tmc
h and �i ¼ dmc

h .
Although this model transformation allows adopting the

results presented in the previous sections, a major issue is
still present. When performing an off-line analysis of static
task sets with mode changes, the times tmc

h at which mode
changes occur may not be known a priori, i.e., they may be
triggered at different times when the system is running. A
safe analysis must therefore cope with all valid values for
times tmc

h .
Theoretically speaking, if Theorem 2 is verified 8tmc

h � 0,
then the system subject to mode change mch is schedulable.
However, this approach does not allow realizing a practical
schedulability test, as the continuous domain of tmc

h would
have to be explored. Nevertheless, by studying the equa-
tions involved in Theorem 2, it is possible to devise a safe
domain discretization for tmc

h , as it is expressed by the fol-
lowing lemma.

Lemma 10. Let cdbfei ðt;Di; t
mc
h Þ be a simple upper bound of func-

tion dbfei ðt;Di; t
mc
h Þ (defined in Equation (5)) where ci ¼ Ci. If

Theorem 2 holds by replacing dbfei ðt;Di; t
mc
h Þ with cdbfe

i

ðt;Di; t
mc
h Þ

8tmc
h 2

[
ti2GeðSÞ

ffTi : f 2 N�0g; (23)

then Theorem 2 also holds 8tmc
h � 0.

Proof. The lemma follows by studying the dependency of

Equation (8) on tmc
h after replacing dbfe

i ðt;Di; t
mc
h Þ withcdbfei ðt;Di; t

mc
h Þ. First note that function cdbfe

i ðt;Di; t
mc
h Þ

depends on tmc
h by means of terms tmc

h ¼ tei , which in turn

affect the definition of ai in Equation (6). Since for all tasks

ti 2 GeðSÞ; Di ¼ 0, then ai, and consequently cdbfei 1
ðt;Di; t

mc
h Þ, changes only for tmc

h ¼ fTi with f 2 N�0.
Second, observe that function dbfiðt� DiÞ depends on

tmc
h by means of Di ¼ tmc

h þ dmc
h and that such a function is

non-increasing in Di. Hence, fixed a time t and for a
given interval ½fTj; ðf þ 1ÞTjÞ, dbfiðt� DiÞ is maximal in
tmc
h ¼ fTj. Consequently, if Equation (8) holds in
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tmc
h ¼ fTj, then it cannot be violated for tmc

h 2 ðfTj;
ðf þ 1ÞTjÞ. Finally, note that the term t�ðtiÞ in Theorem 2
also changes for tmc

h ¼ fTi with f 2 N�0. Hence, the lemma
follows. tu
Since all scheduling transients are exhausted at the first

idle-time, the mode-change times tmc
h considered in the pre-

vious lemma can be limited to the length of longest busy-
period [37] of Ga

h.
Fig. 6 reports the MCA (Mode-Change Analysis) algo-

rithm, which exploits Lemma 10 to implement a schedul-
ability test.

7 EXPERIMENTAL RESULTS

This section presents the results of two experimental stu-
dies that have been conducted to evaluate the proposed
approaches. The first one is aimed at assessing the perfor-
mance of the ADT and AADT algorithms proposed in Sec-
tion 5, comparing the admission delays provided by the
two algorithms in the context of dynamic real-time work-
loads. The second experimental study is aimed at evaluat-
ing the schedulability analysis for task sets with mode
changes proposed in Section 6 (algorithm MCA), which is
compared against the SUBI algorithm proposed by Fisher
and Ahmed [14] and against the schedulability analysis pro-
posed by Lee and Shin in [16].

7.1 Dynamic Workload: ADT versus AADT

This experimental study has been performed by simulating
the protocol presented in Section 5. The protocol has been
stimulated by synthetic sequences of events, which represent
the arrival and the exit of tasks at randomly-generated times.
The experimentation aims at computing the average of the
admission delay bounds (computed with the algorithms pre-
sented in the previous section) incurred by tasks during such
sequences. To ensure ameaningful comparison, themeasured
admission delays are normalized to the task periods, i.e., for
an arbitrary task ti, the parameter �i=Ti ismeasured.

Sequence Generation. Let UF be a configurable generation
parameter that represents the steady-state utilization of the
system. First, a task set G is generated, which contains
the tasks that are present in the system at the beginning of
the sequence. These tasks are considered to be simulta-
neously released at t ¼ 0, where the busy-period under

analysis starts. Given a number of tasks n ¼ jGj and a target
utilization UF=2, the utilization of each task ti 2 G has been
generated using the UUnifast algorithm [40]. Then, a
sequence S of N events was generated by alternating exit
and arrival events. When generating an arrival event, the
utilization of the corresponding task ti was generated to
keep the total utilization UF constant. To enable a meaning-
ful comparison between the ADT and AADT algorithms,
the generation discards the tasks that do not lead to a sched-
ulable system in steady-state according to Theorem 4, where
the parameter ni has been set to ni ¼ 2 for all tasks. Exit
events were generated by selecting a random task as the
one that leaves the system: to avoid inconsistencies in the
comparison, only the tasks in G are selected, otherwise the
two algorithms would be subject to different sequence of
events.2 For all tasks, periods were generated in the interval
½1; 1000�ms with uniform distribution, and the WCETs were
obtained as Ci ¼ UiTi. Relative deadlines have been gener-
ated with uniform distribution in the interval
½Ci þ bðTi � CiÞ; Ti�, where b 2 ½0; 1� is another generation
parameter. The times tk at which the exit events occur have
been proportionally generated with respect to the tasks’
periods, i.e., tk ¼ xTAVG, where TAVG is the average
period of tasks for which an exit event has not yet been gen-
erated, and x is a real number that was randomly generated
with uniform distribution in ½0; 1�. Similarly, the times tk in
which arrival events occur have been generated as
tk ¼ sxTAVG, where the additional parameter s was intro-
duced to better regulate the distance from the last generated
event. The generation of a sequence terminates when all the
tasks in the set G are exited.

Admission Delays. The algorithms ADT and AADT have
been compared with a multidimensional exploration of the
parameters that control the workload generation. In particu-
lar, the generation parameters have been varied as follows:

� UF 2 ½0:5; 0:95�, with step 0.5;3

� n from 2 to 20, with step 1;
� b in the set f0:1; 0:3; 0:6; 0:9g; and
� s in the set f0:001; 0:05; 0:15g.
For each configuration of the parameters, 10000 sequen-

ces of events have been generated. Each sequence has been
then processed with both the ADT and AADT algorithms
averaging the normalized admission delays incurred by
tasks. Different variants of the AADT algorithm have been
compared, considering 0, 1, 3, 5, 10 and 15 iterations for
Lemma 7. In the following, the notation AADT(k) is used to
denote that the AADT algorithm is adopted with k iterations
for Lemma 7. When processing a sequence with a given
algorithm, the admission delays are not computed when-
ever a task arrival event occurs after the length of the
corresponding longest busy-period: such events are also
assigned with an admission delay equal to zero.

Fig. 6. Pseudo-code for the MCA (Mode-Change Analysis) algorithm.

2. Note that, at a given time t, a task that requested to join the system
at a time t1 < t may not be actually admitted (i.e., when t1 þ Di > t)
and hence it may not be eligible for leaving the system. This depends
on the admission delays and then on the adopted algorithm.

3. A preliminary experimental study showed that for UF < 0:5 the
admission delays are very low (close to zero) with both the proposed
algorithms.
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The experimental results for six representative configura-
tions are reported in Fig. 7, where the dependency of the
admission delay on various parameters can be observed.

At a high level, the ADT algorithm always provides very
limited admission delays. The same holds for the AADT(k)
when k � 10. For instance, this can be observed as a func-
tion of the utilization UF from Figs. 7a and 7b, where differ-
ent values for n, b and s have been adopted.

Fig. 7c illustrates the average admission delay as a function
of the parameter b, which has been used to control the genera-
tion of relative deadlines. From the plot, it emerges that the
tighter the deadline, the higher the admission delays obtained
with all the algorithms. A similar trend can be observed in
Fig. 7d, where the distance in time between arrival and exit
events has been varied by controlling the parameter s. Finally,
Figs. 7e and 7f show that, when adopting a low number of
iterations k, the admission delays obtained with the AADTðkÞ
remain almost constant as the number of tasks increases. Con-
versely, for themore precise algorithms, the admission delays
decrease as the number of tasks increases, also showing a sat-
uration to extremely low delays at some cut-off values of n.
Note that these two figures have a logarithmic scale.

Additional Experiments. Additional experimental results
have been carried out to further evaluate the proposed
approach. To this aim, the ADT algorithm has been tested by
using Theorem 1 as admission test, which is possible as it has
not been compared against AADT. Albeit the adoption of The-
orem 1 in place of Theorem 3 allows testing the algorithm
with a wider range of task sets, Fig. 8a shows that the

normalized admission delay is still very low. Finally, Fig. 8b
targets the case of task sets composed of only implicit-dead-
line tasks, and compares the proposed approaches with the
methodology for computing the admission delay proposed
in [3], which is denoted in the figure as Buttazzo*. The
methodproposed in [3] requires the knowledge of the remain-
ing execution time of the last job of each task ti 2 GeðSÞ, which
is not available in our sequence-based model. To enable a
comparison, the remaining execution times have been consid-
ered to be equal to the correspondingWCETs.

Running Times. The maximum running times of the
tested algorithms have been measured during the experi-
mental study discussed above. The experiments have been
performed on a machine equipped with an Intel Core i7-
6700K @ 4.00GHz. Algorithms have been realized with lit-
eral implementations (i.e., not designed for being extremely
efficient). The Microsoft VC++2015 compiler has been used
and running times have been measured by means of the
Windows API.4 Fig. 9 shows that ADT requires a consider-
able amount of time (up to 43 ms), thus resulting unsuitable
for online admission control. Conversely, running-times
observed with AADT(15) are always under 500 ms.

Fig. 7. Average normalized admission delay (with respect to the period of each admitted task) obtained by using the ADT and AADT(k) algorithms as
a function of the number of tasks (insets (e) and (f)), the utilization UF (insets (a) and (b)), and the parameters s and b (insets (c) and (d),
respectively).

4. Wall-clock has been measured by executing the experiments on a
dedicated processor. Therefore, the measurements also include some
additional overhead (e.g., execution of the kernel). A preliminary
experiment excluded the possibility of using the Windows API aimed
at only measuring the time spent in the process (e.g., GetProcessTimes()),
as the running time of the AADT algorithm is often under (or compara-
ble with) the precision offered by that API.
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7.2 Mode-Change

A second experimental study has been carried out to evaluate
the proposed analysis for static task sets with mode changes
(MCA algorithm of Section 6), by comparing it with SUBI algo-
rithm proposed by Fisher et al. in [14] and the schedulability
analysis proposedbyLee and Shin [16] (referred to asRTA_LS
in the following). A MATLAB implementation of the SUBI

algorithmhas been kindly provided by the authors.
This experimental study measured the schedulability

ratio, i.e., the ratio between the number of schedulable task
sets (in the presence of mode changes) and the overall num-
ber of generated task sets.

Workload Generation. The evaluation considered task sets
with two modes Ma and Mb (bi-directional mode changes
are possible). Given a target utilization UM1 of modeM1, the
corresponding task set GM1 was generated with UUnifast by
fixing a number of task nM1. The second task set GM2 was
obtained by the first one by removing w1 randomly-selected
tasks and then adding w2 new tasks. The latter were gener-
ated with UUnifast, setting a target utilization UM2 that is

randomly generated with uniform distribution in the range
½UM1 � �; UM1 þ ��, where � is a generation parameter. A
preliminary experimental study conducted on the imple-
mentation of SUBI showed that the running time for a sim-
ple system composed of 4 tasks and 2 operating modes
(specifically, the one depicted in Fig. 1 with the parameters
scaled by 103) is about 6 minutes. It is worth observing that
this large running time may depend on the fact that, differ-
ently from MCA, SUBI is capable of handling overlapping
mode changes. Nevertheless, it has been found that the run-
ning time is largely dependent on the tasks’ periods (likely
because the analysis conditions are checked for all integers
within a time window), which prevented us to perform
experiments with random periods within a given range. To
cope with this issue, the periods have been randomly cho-
sen from the bucket f10; 20; 25; 30; 40; 45; 50; 60; 65; 80g ms.
Relative deadlines were computed as in Section 7.1 with
b ¼ 0:5. The task sets that resulted not schedulable in
steady-state conditions according to Theorem 1 have been
discarded.

Fig. 8. Average normalized admission delay (with respect to the period of each admitted task) obtained by using the ADT and AADT(k) algorithms as
a function of the utilization UF , and the parameters s and b. Inset (a) reports only the performance of the ADT algorithm, and hence uses Theorem 1
as admission test. Inset (b) compares the proposed approaches with [3] for implicit-deadline tasks.

Fig. 9. Maximum observed running times (in microseconds) obtained by running ADT and AADT(15) with respect to the number of tasks (inset (a))
and the utilization UF (inset (b)).

Fig. 10. Schedulability ratio of different schedulability analyses for mode changes with parameters uniformly distributed in: (a) nM1 2 ½5; 8� and
w1; w2 2 ½2; 4�, (b) nM1 2 ½6; 10� and w1; w2 2 ½2; 6� ).
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Experiments. Note that the RTA_LS algorithm only sup-
ports mode changes without admission delays. To allow a
fair comparison, the three algorithms have been configured
to work under the same conditions by setting dhmc ¼ 0.

The schedulability performance of the three algorithms
has been studied as a function of the utilization UM1

.
Fig. 10 reports the experimental results under two repre-
sentative configurations. As it emerges from the graphs,
the proposed algorithm (MCA) significantly outperforms
both SUBI and RTA_LS, especially for significant utiliza-
tion values (UM1

> 0:6). In particular, note that MCA

reaches a performance improvement up to 96 percent with
respect to RTA_LS (UM1 ¼ 0:6) and up to 72 percent with
respect to SUBI (UM1 ¼ 0:7).

8 CONCLUSIONS

This paper presented a schedulability analysis framework
for real-time dynamic workloads that can experience sched-
uling transients under EDF scheduling. The framework is
able to deal with constrained-deadline tasks and is entirely
built upon a new modeling approach based on a sequence
of events. Leveraging this proposal, an on-line protocol has
been presented to handle the admission control of dynamic
workloads , which comes with algorithms for computing
the admission delays that new tasks must wait before join-
ing the system. Both pseudo-polynomial-time and polyno-
mial-time solutions have been proposed. Finally, the paper
also showed how the proposed analysis can be used off-line
for guaranteeing the schedulability of static task sets with
mode changes. Experimental results showed that the poly-
nomial-time algorithm allows reaching an empirical perfor-
mance that is close to the pseudo-polynomial-time solution,
while incurring a very limited running time. Furthermore,
the proposed approach has been also shown to be effective
in analyzing static task sets with mode changes, exhibiting a
performance improvement in terms of schedulability ratio
up to 72 percent over state-of-the-art methods.

Interesting research can follow from this work, including
the derivation of methods for computing admission delays
that are tailored for semi-partitioned scheduling, the study
of analysis techniques to handle overlapping mode changes
in the presence of static task sets, and the design of further
approximation schemes for the proposed approach.
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