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Floorplanning is a mandatory step in the design of hardware accelerators for FPGA platforms, especially

when adopting dynamic partial reconfiguration (DPR). This paper presents FLORA, an automated floor-

planner based on optimization via Mixed-Integer Linear Programming (MILP). The floorplanning problem is

solved by means of a novel fine-grained modeling strategy of FPGA resources. Furthermore, differently from

other proposals, our approach takes into account several realistic Partial Reconfiguration (PR) floorplanning

constraints on FPGAs. FLORA was compared against state-of-the-art floorplanners by means of benchmark

suites, showing that it is capable of providing better performance in terms of resource consumption, max-

imum inter-region, wire-length, and running time required to produce the solutions. Finally, FLORA was

utilized to generate placements for a partially-reconfigurable video processing engine that was implemented

on a Xilinx Zynq-7020.
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1 INTRODUCTION

System-on-chips (SoC) based on field-programmable gate arrays (FPGA) are promising platforms
to address the needs of modern cyber-physical systems, offering the possibility to deploy high-
performance and energy-efficient hardware accelerators onto the FPGA fabric. In addition, mod-
ern FPGAs come with a very interesting feature, named dynamic partial reconfiguration (DPR).
With DPR, it is possible to dynamically reconfigure a portion of the FPGA area while the modules
programmed on the rest of the area continue to operate. This feature opens a new dimension in
resource management for FPGAs and, similarly to multitasking for classical processors, it allows
virtualizing the available area by interleaving the configuration of multiple hardware modules that
would not fit in the available area under a static allocation [3].
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However, to properly exploit the power of FPGA-based SoCs, today’s technologies still require
a considerable expertise with hardware design and, with respect to software development, involve
complex design flows in which some steps must be manually performed. Despite FPGA vendors,
such as Xilinx, are pushing for improving the programmability of FPGAs, e.g., by means of high-
level synthesis (HLS) and tools such as SoC Accel, there are still some design steps that do not
dispose of proper automated tools to perform the corresponding tasks.

In particular, consider the design flow under DPR. The first stage corresponds to the synthesis of
the behavioral description of hardware modules (written in hardware description languages such
as Verilog or VHDL, or obtained via HLS), which are converted into gate-level net-lists. The second
stage consists of floor-planning, i.e., the geometrical placement within the FPGA fabric of regions
in which the net-lists will be implemented. Finally, the last stage requires the implementation (and
the corresponding routing) of the net-lists within the regions selected in the previous stage.

Unfortunately, the floorplanning requires the manual intervention of the designer, which has
to be experienced with FPGAs. The floorplanning for partial reconfiguration (PR) is even more
complex than the standard floorplanning for static areas, as it involves generating placements that
must also adhere to an additional set of non-trivial PR-related constraints [13]. Also, the decisions
made during floor-planning may severely impact resource utilization and performance. To achieve
a fully-automated design flow for FPGAs, hence enhancing their programmability, automated so-
lutions to perform the floor-planning are required.

Contribution. This paper aims at filling this gap in the design flow for partial reconfiguration
by proposing FLORA, an automated floor-planner based on optimization via Mixed-Integer Lin-
ear Programming (MILP). Differently from previous proposals, the proposed approach adopts a
novel fine-grained modeling of FPGA resources, taking into account several realistic technologi-
cal constraints mandated by commercial FPGA design tools. FLORA has been tested on platforms
by Xilinx using a synthetic benchmark suite and its performance has been compared with other
two state-of-the-art floorplanners.

Paper Structure. The remainder of this paper is organized as follows. Section 2 provides an anal-
ysis of the state-of-the-art based on a categorization of previously-proposed floorplanners for PR.
Section 3 presents the adopted FPGA model with some background analysis. Section 4 provides a
systematic definition of the floorplanning problem. The proposed MILP formulation of the floor-
planning problem, the definitions of the constraints, and the objective function are presented in
Section 5. Section 6 reports the experimental results. Finally, Section 7 concludes the paper and
discusses possible future work.

2 RELATED WORK

Over the years, several authors proposed different FPGA floor-planners for partial reconfiguration.
Earlier works [12, 16] focused on floor-planning by considering only a single type of resource
(mostly CLBs), while later works [1, 6, 15] started to consider different types of resources (CLBs,
BRAMs, DSPs) with a uniform layout on the FPGA fabric. Both of these approaches considered
a simplified model of the device and therefore they would not be suitable for real-world FPGA
families, which consist of heterogeneous resources with a non-uniform distribution. Furthermore,
with the new generations of FPGA families, the requirements for DPR became more complex. This
section only focuses on reviewing the works that targeted heterogeneous resources distributed in
a non-uniform manner.

The approaches proposed in the literature can be differentiated by those that apply a direct

representation of the FPGA fabric, and those that apply an indirect representation.
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Direct representation. Few works adopted a direct representation of the solution space for their
floor-planning algorithm [10, 14]. Among the solutions that do not use heuristics and optimization,
Vipin et al. [14] proposed an iterative algorithm defining each tile of resources as a kernel. Their
approach uses primary information about the types and locations of each kernel, and prioritizes
regions based on the type and number of their resource requirement. Other authors [10] achieved
improvements on the quality of the solution obtained by this approach.

Specifically, Rabozzi et al. [10] proposed two algorithms, (HO) and (O), based on a MILP formu-
lation. The first algorithm (HO) improves the quality of sub-optimal solutions of other heuristic
approaches, such as [5]. The second algorithm (O) directly encodes the floor-planning problem
as a MILP formulation. Similar to [14], the authors adopted a strategy for reducing the minimum
reconfigurable unit into tiles. (HO) is dependent on the solution of other approaches while (O) is
capable of exploring the whole solution space. As the problem instance gets harder (higher uti-
lization and higher number of reconfigurable regions), (O) was reported [10] as being very slow
to even find a feasible solution and it had to be initialized with a sub-optimal solution of other
algorithms. A key characteristic of [10] is that the authors partitioned the FPGA fabric into ab-
stract rectangles called portions. This reduced the solution space to be explored at the expense of
reducing the precision of the formulation.

The solution proposed in this paper strongly differs from the one in [10] as (i) it uses a more
fine-grained modeling strategy of the FPGA fabric and (ii) it supports more realistic (and updated
with respect to the today’s FPGA technology) constraints mandated by synthesis tools for partial
reconfiguration. Furthermore, as it will be detailed in Section 6, our solution significantly improves
on the performance of [10].

Indirect representation. Indirect representations of the FPGA fabric were proposed by using
different methods, such as slicing trees, sequence pairs [5], and binary trees, while other authors
constructed different types of higher-level abstract structures to characterize the distribution of
resources on the FPGA area [8, 9, 11]. In a follow up work [9, 11], Rabozzi et al. proposed an
improvement to their earlier work, using again an MILP optimization but this time defining an
abstract structure called conflict graph to describe the feasible placements for all reconfigurable
regions and the conflicts between them. This approach improved the results achieved by (HO) and
(O). The same authors [9] tried to improve their work by employing a similar concept of conflict
graph and replacing the MILP optimization with genetic algorithms. Nguyen et al. [8] proposed a
floorplanner where a biparitioning heuristic is used to find a feasible placement. Similarly to [9,
11], their algorithm first iteratively lists all the possible placements for each region on the FPGA
fabric and constructs a graph based on these placements.

Unfortunately, the approaches in [8, 9, 11] suffer of a crucial shortcoming when used in floor-
planning for partial reconfiguration: the resources required by each reconfigurable region must be

known in advance to generate the indirect representation (e.g., the conflict graph in [9, 11]) before
performing the actual optimization. This requirement may not be suitable for all cases in which
the amount of resources within each reconfigurable region must be computed at the stage of op-
timization. For instance, if floorplanning optimization is jointly considered with a partitioning
phase to assign reconfigurable modules to reconfigurable regions, such as in [4], the resource re-
quirement of the regions is not known a-priori as it depends on the reconfigurable modules they
host. That is, each reconfigurable region must dispose of enough resources to host all hardware
modules assigned to it, which are unknown before starting the optimization. Note that a two-stage
approach that first partitions the modules into a set of reconfigurable regions, and then performs
the floorplanning, may lead to sub-optimal solutions.

For this reason, this work focuses on a direct representation of the FPGA fabric.
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Fig. 1. (a) Resource layout of a sample FPGA and (b) its resource fingerprint.

3 BACKGROUND AND MODELING

This section briefly describes the general architecture of FPGAs, together with a set of technolog-
ical constraints related to floor-planning for partial reconfiguration, and the corresponding model
adopted in this paper. This work is based on the 7-series Virtex and Zynq FPGA families from Xil-
inx, but can easily be adapted for older FPGA families by disabling some of the constraints related
to modern FPGA families

3.1 FPGA Architecture and Technological Constraints

FPGAs are characterized by heterogeneous resources distributed in a non-uniform manner across
the fabric. The configurable fabric of Xilinx FPGAs is divided into quadrants named clock regions.
As it is illustrated in Figure 1(a), each clock region includes columns of different configurable
resources, such as CLBs, BRAMs, or DSPs.

A single column in a clock region is named tile and contains resources of the same type. The
number of resources in a tile varies depending on the FPGA family. For example, in the Virtex 7
family FPGAs, a CLB tile contains 50 CLBs, while BRAM and DSP tiles contain 10 BRAMs and 20
DSPs each, respectively.

Xilinx FPGAs, in particular 7-series devices, also contain specific tiles denoted as interconnect

tiles, which serve to realize routing. These tiles are placed back-to-back in groups of two as shown
in Figure 1(a) (black boxes). Finally, the configurable fabric is also characterized by a central clock
column and by forbidden regions (such as clock buffers).

The problem of floorplanning for partial reconfiguration consists in geometrically placing re-

configurable regions (RR) within the total area available on the fabric. Each RR can host multiple
hardware modules (one at a time). Note that the placement of RRs cannot be arbitrary, as Xilinx
tools pose the following constraints:
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• RRs must be rectangular;
• the vertical boundaries of each RRs cannot be placed between pairs of back-to-back inter-

connect tiles;
• forbidden regions cannot be included in RRs; and
• the horizontal boundaries of each RR shall be aligned to the boundary of a tile (i.e., the

height of RRs spans a full clock-region) to improve the design performance.1

The solution proposed in this paper is able to hande all these constraints.
Note that, as shown in Figure 1(a), the central clock column of Xilinx FPGAs divides the FPGA

into left and right regions. Since clock regions do not pose particular constraints for placing the
vertical boundaries of RRs, it is convenient to fuse each pair of horizontally adjacent clock regions
into a single one, which is denoted as fused clock region in Figure 1(a). To simplify terminology,
from now on fused clock regions will be simply denoted by clock regions.

3.2 Model

The FPGA area is identified with a discrete Cartesian coordinate system, placing the origin at
the bottom-left corner. Each unit on the x-axis denotes a line that separates columns of resources
(CLB, BRAM, DSP, interconnects, central clock column), while each unit on the y-axis represents
a line that separates clock regions (see Figure 1(a)). Note that a different granularity is adopted
between the axes. The FPGA area is hence said to beW columns wide and H clock regions high.
The area includes Nint pairs of back-to-back interconnect columns, and the x coordinate of the line
separating the z-th pair is denoted by Iz , with z = 1, . . . ,Nint. For instance, in Figure 1(a), Nint = 1
and I1 = 5.

This work considers the problem of floor-planning a set R = {R1, . . . , RNr
} of Nr RRs. Each re-

configurable region Ri is characterized by a vector ci of resource requirements, where ci,t denotes
the amount of resources required by Ri for each type t ∈ {CLB, BRAM, DSP}. Clearly, the amount
of resources required by each RR must be enough to host any hardware module that can be pro-
grammed into it (i.e., ci must reflect a component-wise maximum of the resource requirements of
each module).

Once a floor plan is obtained, each reconfigurable region Ri can be characterized by a tuple
ri = (xi ,yi ,wi ,hi ) where xi and yi represent its bottom-left coordinates, and wi and hi represent
its width and height, respectively. A valid floor plan must hence guarantee that the following
inequalities hold for each reconfigurable region Ri ∈ R:

xi +wi ≤W ∧ yi + hi ≤ H . (1)

Forbidden regions are encapsulated within minimal-bounding rectangles, which are identified
with the same tuple used for RRs: the parameters specifying the rectangle associated with the k-th
forbidden region are denoted by δk = (xk ,yk ,wk ,hk ).

RRs may be connected (e.g., to realize direct communication channels):Qi,k denotes the number
of wires connecting Ri to Rk , where Qi,k = 0 if the two RRs are not connected.

FPGA resource finger-printing. This paper adopts a new modeling strategy to cope with the
heterogeneous distribution of FPGA resources over the x-axis. As illustrated in Figure 1(b), the
distribution of resources can be modeled with piece-wise functions ft (x ), where ft (x∗) denotes

1This constraint is driven by combining a less restrictive Xilinx PR constraint and a good design practice. The constraint

states that two RRs cannot be stacked on top of each other in the same clock region (i.e., they cannot share columnar

resources in the same clock region). Aligning horizontal boundaries of RRs to clock regions is a good design practice in

that doing so allows the designer to take advantage of the fabric’s native reset-after-reconfiguration feature to improve

synchronization and avoid implementing a custom reset-after-reconfiguration logic for the RRs.
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the amount of resources of type t included in a clock region within the range [0,x∗]. For instance,
in Figure 1, ft (9) = 12 when t =CLB since the range [0, 9] in the clock region includes the tiles of
the first, second, third, and ninth columns, each composed of three CLBs.

Using the function ft (x ), it is possible to analytically define ηi,t , which represents the total
amount of type t ∈ {CLB, BRAM, DSP} of resource within a reconfigurable region Ri , i.e.,

ηi,t = hi · ( ft (xi +wi ) − ft (xi )). (2)

Note that these functions are defined by assuming the same distribution of resources across all
FPGA rows, i.e., by neglecting the existence of forbidden regions: this is because a valid floor plan
cannot comprise RRs that include forbidden regions, and hence there is no need to explicitly model
their (negative) contribution to the resources available in an area. In other words, the impact of
forbidden regions is binary: either a placement is valid, and they do not have to be taken into
account, or it is not, and hence it has no meaning to compute the resources within an area.

4 PROBLEM DEFINITION

This paper proposes an approach based on Mixed-Integer Linear Programming (MILP) to compute
a floor plan for a set {R1, . . . ,RNr

} of Nr RRs under the modeling strategies reported in Section 3.2.
A valid floor plan is characterized by the following properties:

• the geometrical placement satisfies the constraints reported in Section 3.1;
• for each reconfigurable region Ri , and for each resource type t ∈ {CLB, BRAM, DSP}, it

holds that Ri encompasses at least ci,t units of resources of type t ; and
• RRs do not overlap.

The floor-planning algorithm takes as input (i) a description of the resource distribution on
the FPGA area, i.e., its layout, from which it is possible to obtain functions ft (x ), and the set of
forbidden regions; (ii) the set of RRs with their resource requirements ci; and (iii) the intercon-
nections between regions characterized by the number of wires that implement each connection.
The logical and computational components of the FPGA that are required to implement the com-
munication between RRs and the static region (such as AXI interconnects) are considered as part
of the static region. The algorithm outputs the coordinates and the sizes of each RR.

4.1 Evaluation Metrics

The floor-planning problem can have multiple valid solutions—i.e., as long as a valid geometrical
placement is found for each RR, the floor-planning is considered correct. However, not all valid
floor-plans lead to the same performance. This work considers the following two metrics to eval-
uate the solutions produced by the proposed algorithm.

Wasted resources (WR): The wasted resources inside a reconfigurable region Ri refer to the
amount of extra resources contained in the area in which Ri is geometrically placed beyond the
amount of resources required by the RR. Since different numbers of resources are available for each
type, and since the types differ in function, each wasted resource is associated to a type-specific
weight. Formally, let νt be the cost associated to wasting a resource of type t . Then, the WR metric
ω is defined as

ω =
Nr∑

i=1

∑

t ∈{CLB,BRAM,DSP}
νt · (ηi,t − ci,t ), (3)

where ηi,t denotes the number of resources of type t included in Ri and ci,t denotes the amount
of resources of type t required by Ri .
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This metric accounts for the weighted number of wasted resources within each region Ri (i =
1, . . . ,Nr ). A natural choice for the weights νt corresponds to the case in which the number of
wasted resources are normalized to the total amount of resources Tt available for each type t ,
i.e., νt = 1/Tt . Note that, besides favoring the extensibility of a floor-plan, lowering the number of
wasted resources may reduce the reconfiguration time. Indeed, the smaller the RR, the lower the
size of the corresponding bitstream. As the reconfiguration process consists in copying a bitstream
into the FPGA configuration memory, smaller bitstreams correspond to shorter reconfiguration
times.

Maximum inter-region wire-length (MIW): The wire-length between two reconfigurable re-
gions Ri and Rk is defined as the product of (i) the Manhattan distance between the centroids of
Ri and Rk , and (ii) the total number Qi,k of wires between them.

Let S be a set that contains all the interconnections between RRs in the design. The elements of
this set are tuples of the form (Ri ,Rk ,Qi,k ) where Ri ∈ R, Rk ∈ R, and Qi,k ≥ 0 is the number of
wires between Ri and Rk that realize the corresponding interconnection. To support the presen-
tation of the MIW metric, Pi,x and Pi,y are defined as the centroids of a region Ri in the x and y
axes, respectively. The centroids can be simply computed as Pi,x = xi +wi/2 and Pi,y = yi + hi/2.

Finally, the inter-region wire-length between regions Ri and Rk can mathematically be defined
as the product of the Manhattan distance between the centroids of the RRs and the number of
wires between them. The total inter-region wire-length, Ω, is then obtained as the sum of the
wire-length between all interconnected regions, that is

Ω =
∑

(Ri ,Rk ,Qi,k )∈S
Qi,k · | (Pi,x − Pk,x ) | + | (Pi,y − Pk,y ) |

(4)

The MIW metric can be extended to account for connections between a RR and a portion of the
static region (e.g., in which an AXI interconnect is placed) by considering the centroid of the latter.

These metrics (WR and MIW) can either be singularly considered or combined in a single per-
formance index (e.g., each weighted by a scalar factor). In both the cases, they can be used to define
an objective function to be minimized at the stage of optimization: this is addressed in Section 5.5.
Although this paper focuses on these two metrics, the proposed solution is prone to be extended
for supporting other metrics such as the aspect ratio of RRs and the wire-length for the connections
between RRs and I/O ports.

5 MILP FORMULATION

This section presents the proposed MILP formulation to perform floorplanning. First (Section 5.1),
the main optimization variables are introduced and then the constraints are presented. The con-
straints are split into (i) structural constraints (Section 5.2), (ii) constraints related to resource avail-

ability (Section 5.3), and (iii) constraints to avoid splitting interconnects (Section 5.4). Finally, the
objective function to be optimized is presented (Section 5.5).

5.1 Optimization Variables

The following binary and real variables are defined to formulate the floorplanning problem as a
MILP.

For each reconfigurable region Ri ∈ R, we define the following variables:

• {xi ,yi ,wi ,hi } ∈ R≥0: bottom-left coordinates and width-height values of Ri , respectively;
• βi, j ∈ {0, 1}: a binary variable such that βi, j = 1 if the j-th clock region is included in Ri ,

βi, j = 0 otherwise;
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For each pair of reconfigurable regions (Ri ,Rk ) ∈ R × R, with Ri � Rk we define:

• a binary variable γi,k ∈ {0, 1} such that γi,k = 1 if and only if the bottom-left corner of Ri is
placed on the left of the bottom-left corner of Rk (or they are aligned), i.e., xi ≤ xk .

For each reconfigurable region Ri ∈ R and for each FPGA resource type t ∈ {CLB, BRAM, DSP},
we define:

• ηi,t ∈ R≥0, which specifies the number of resources of type t included in Ri .

Note that, even though most of the optimization variables are defined as real variables, their
integrality will be enforced by the following constraints. This choice has been made to limit the
number of integer variables, hence aiming at minimizing the branching of the MILP solver. Some
of the following constraints make use of a large numerical constant M to represent infinity, which
is formally defined as M = fCLB (W ) · H + 1.

5.2 Structural Constraints

The constraints reported in this section ensure the structural integrity of the RRs.
First, we enforce that each RR must be at least be one column wide and one clock region high

(positive area), and that its rightmost x coordinate and its top y coordinate must not exceed the
boundaries of the fabric.

Constraint 1. ∀Ri ∈ R,
wi ≥ 1, hi ≥ 1

xi +wi ≤W , yi + hi ≤ H
(5)

Second, another constraint is provided to enforce the contiguity of the RRs on the y axis with
respect to variables βi, j . Indeed, if a RR includes the j-th and the (j + 2)-th clock region, then it
must also include the (j + 1)-th one.

Constraint 2. ∀Ri ∈ R, ∀j = 1, . . . ,H − 2,

βi, j+1 ≥ βi, j + βi, j+2 − 1 (6)

Proof. If Ri includes the j-th and the (j + 2)-th clock regions, then βi, j+2 = βi, j . Hence, Equa-
tion (6) can be rewritten as βi, j+1 ≥ 1 + 1 − 1 = 1, correctly enforcing the desired property. If any
of the terms βi, j+2 and βi, j is zero, then the constraint can be rewritten as βi, j+1 ≥ −1 or βi, j+1 ≥ 0,
not enforcing any constraint. �

The height of a RR can then be obtained by enforcing the following simple constraint.

Constraint 3. ∀Ri ∈ R,hi =
∑H

j=1 βi, j

Finally, it is of paramount importance to encode a constraint to enforce that RRs must not over-
lap each other.

Constraint 4. ∀(Ri ,Rk ) ∈ R × R,Ri � Rk , ∀j = 1, . . . ,H ,

xk ≥ xi +wi − (3 − γi,k − βi j − βk, j ) ·M (7)

Proof. Consider two reconfigurable regions Ri and Rk . Without loss of generality, assume that
Ri is the one with the leftmost x coordinate for its bottom-left corner (on any of the two if they
have the same coordinate), i.e., xi ≤ xk . In this case, it holds that γi,k = 1. Note that, if the two
RRs overlap, then they must share a clock region, say the j-th one. Hence, it must also hold that
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Fig. 2. Example of compression of functions ft (t ) for the purpose of linearization.

βi, j = βk, j = 1 and it follows that the term (3 − γi,k − βi j − βk, j ) is zero. Consequently, the con-
straint degenerates to xk ≥ xi +wi , correctly enforcing that the two regions do not overlap (the
left vertical boundary of Rk is after, or overlapped with, the right vertical boundary of Ri ). In all
other cases, the term (3 − γi,k − βi, j − βk, j ) is positive and hence the right-hand side of the con-
straint degenerates to a negative number: as a result, no constraint is enforced. �

Since forbidden regions are also modeled as rectangles, an analogous constraint can be enforced
to avoid overlapping RRs with forbidden regions.

Furthermore, a simple if-then constraint is provided to enforce the definition of variables γi,k .

5.3 Resource Constraints

This section presents the constraints that need to be enforced in order to satisfy the resource
requirements of each RR by leveraging the resource finger-printing model presented in Section 3.2.
Unfortunately, it is not directly possible to encode the resource requirements as linear constraints
due to the following two reasons. First, note that Equation (2) is not linear and hence it cannot
be directly encoded in a MILP. Second, even if treating each piece of functions ft (x ) individually,
a multiplication by the optimization variable hi would be anyway required to obtain the total
amount of resources available in an area, hence originating quadratic constraints.

These issues are solved by linearizing Equation (2) with the help of a limited set of auxiliary
variables and a pre-processing of functions ft (x ). As a first step, for each reconfigurable region
Ri , for each clock region j = 1, . . . ,H , and for each type of resource t , an auxiliary variable μi, j,t

is defined as

μi, j,t = βi, j · ( ft (xi +wi ) − ft (xi )). (8)

In this way, the number of resources of type t available in Ri can be simply expressed by summing
the resource contribution provided by each clock region, i.e., ηi,t =

∑H
j=1 μi, j,t , and the resource

requirement can be finally enforced as follows:

Constraint 5. ∀Ri ∈ R, ∀j = 1, . . . ,H , ηi,t ≥ ci,t

To encode such a constraint in MILPs, both ft (x ) and Equation (8) must be linearized. To this
end, before starting the optimization, each function ft (x ) is compressed by identifying macro-ranges
that can be expressed by a linear function, rather than a sequence of steps—see Figure 2. This
strategy allows for a significant reduction of the number of variables and constraints of the MILP
formulation.

Let Nmr be the total number of macro-ranges identified in ft (x ), and MRk be the k th macro-
range. A pair of auxiliary variables Z2k and Z2k−1 is defined for each macro-range MRk such that,
given a coordinate x , it falls within MRk if and only if the corresponding variables comply to the
following two requirements:
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REQ1 Z2k = Z2k−1 = 1; and
REQ2 among all other pairs said variables related to other macro-ranges, only one variable of the

pair is set = 1.

5.3.1 Example. We first explain the compression and linearization of ft (x ) with an intuitive
example and then provide the generic mathematical formulation. Consider the case of function
ft (x ) illustrated in Figure 2 (continuous line), where three macro-ranges have been identified:
[0, 3), [3, 4), and [4,W ). Suppose that auxiliary variables Z1,Z2 correspond to the first macro-
range, Z3,Z4 to the second one, and Z5,Z6 to the third one. By observing the linear bounds placed
above the first and third macro-ranges (vertical dashed lines), it is possible to rewrite ft (x ) as

ft (x ) =
⎧⎪⎪⎨
⎪⎪
⎩

x 0 ≤ x < 4,
3 4 ≤ x < 5,
x − 1 5 ≤ x <W .

(9)

Hence, function ft (x ) can be expressed by means of the following three constraints:

ft (x ) ≥ x −M (2 − Z1 − Z2) ∧ x ≥ ft (x ) −M (2 − Z1 − Z2)

ft (x ) ≥ 3 −M (2 − Z3 − Z4) ∧ 3 ≥ ft (x ) −M (2 − Z3 − Z4)

ft (x )≥ (x − 1)−M (2 − Z5 − Z6)∧ (x − 1)≥ ft (x )−M (2 − Z5 − Z6)

(10)

The intuition behind these constraints is that, once a coordinate x falls inside a macro-range,
only the corresponding pair of auxiliary variables will be set—hence correctly enforcing the cor-
responding constraint, while all the other constraints will take no effect. For instance, if x falls in
the second macro-range, then Z3 = Z4 = 1, the second constraint is enforced, and the other two
are disabled as one between Z3 and Z4 is zero, and one between Z5 and Z6 is zero. Consequently,
it results that ft (x ) ≥ 3 ∧ 3 ≥ ft (x ), which implies ft (x ) = 3.

5.3.2 Computing the Macro-ranges. With the above example in place, the linearization of func-
tions ft (x ) can now be formalized. Each macro-range MRk is defined by a tuple (λk ,Λk ,θk ,αk )
where:

• λk ∈ R and Λk ∈ R are constant values that represent the slope and the intercept of the
linear function that describes MRk (linear functions are considered in the form λk · x + Λk );

• θk ∈ R and αk ∈ R are constant values that represent the left and right vertical bounds of
MRk , respectively, i.e., θk ≤ x < αk .

Algorithm 1 is proposed to automatically compress functions ft (x ), and is meant to be executed
for each resource type t ∈ [CLB, BRAM, DSP] before setting up the MILP. The algorithm outputs
the macro-ranges described by the corresponding tuples).

The algorithm explores the x axis of the FPGA area (from 0 up to the maximum widthW ) and
tries to identify contiguous steps in function ft (x ) that can be merged into the same macro-range.
This is accomplished by computing the slope of the line passing between the two points that would
delimit a macro-range (line 7), and moving the right-hand-side point of the macro-range until the
slope does not change (line 12). Then, the intercept of the line passing between the two points is
also computed (line 15), and the tuple of the corresponding macro-range is saved (line 17). From
this point on, the algorithm starts looking for the next macro-range. This procedure is repeated
until the maximum value on the x axis is reached.

5.3.3 Deriving the Constraints. Given a coordinate x and a function ft (x ) with the correspond-
ing set of macro-ranges {MR1, . . . ,MRNmr

}, requirements REQ1 and REQ2 mentioned above can
be enforced with the the following constraint.
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ALGORITHM 1: pseudo-code for compressing functions ft (x )

Constraint 6. ∀k = 1, . . . ,Nmr

M · Z2k−1 ≥ x − θk + ϵ

M · Z2k ≥ αk − x
Nmr∑

k=1

Z2k−1 + Z2k = Nmr + 1

(11)

where ϵ > 0 is an arbitrarily small positive number.

Proof. By definition of constants θk and αk , when x falls in the kth macro-range it holds θk ≤
x < αk . Hence, both the right-hand-sides of the first two inequalities in Equation (11) are positive
and Z2k and Z2k−1 are forced to be set to 1. This satisfies REQ1. Note that there are k − 1 macro-
ranges on the left of MRk and Nmr − k macro-ranges on the right of MRk . For the former ones, i.e.,
MR j with j < k , it holds that x is always greater than their left boundary (θ j ): hence, variablesZ2j−1

are forced to 1 by the first inequality in Equation (11). Meanwhile, the corresponding variables Z2j

remain unconstrained (the right-hand-side of the second inequality is negative, hence Z2j can take
both 1 or 0). Following the same reasoning, the contrary holds for all the macro-ranges on the right
ofMRk , i.e., for each macro rangeMj with j > k variableZ2j is constrained to 1 while variableZ2j−1

remains unconstrained.
Now, note that there are k − 1 variables forced to 1 for macro-range on the left of MRk , and

Nmr − k variables forced to 0 for the ones on the right. As shown at the beginning of the proof,
when x falls in the kth the two corresponding variables are forced to 1. Therefore, there are (k −
1) + (Nmr − k ) + 2 = Nmr + 1 variables forced to 1, while the others are unconstrained. The last
inequality in Equation (11) forces such variables that would be unconstrained to be zero, hence
matching REQ2. �

Note that the constraints in Equation (10) follow a specific pattern: (i) they enforce upper- and
lower-bounds for ft (x ) in a macro-range MRk , and (ii) provide a term M · (2 − Z2k−1 − Z2k ) to
disable the constraint when the coordinate x does not fall in MRk . Following this rationale, the
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constraints in Equation (10) can be generalized for each macro-range MRk as follows:

ft (x ) ≥ λk · x + Λk −M · (2 − Z2k−1 − Z2k )

∧
λk · x + Λk ≥ ft (x ) −M · (2 − Z2k−1 − Z2k ).

(12)

Therefore, every time a term of the form ft (x ) has to be involved in a constraint, it is sufficient
to create an auxiliary variable and enforce the two corresponding auxiliary constraints reported
in Equation (12) (the auxiliary variable should simply replace ft (x ) in the constraints). Thanks to
this result, we are finally ready to express Equation (8) by means of linear constraints.

Constraint 7. ∀Ri ∈ R,∀j = 1, . . . ,H ,∀t ∈[CLB, BRAM, DSP]

μi, j,t ≥ 0

μi, j,t ≤ βi, j ·M
μi, j,t ≤ ft (xi +wi ) − ft (xi )

μi, j,t ≥ ft (xi +wi ) − ft (xi ) − (1 − βi, j ) ·M

(13)

Proof. The objective is to show that Equation (13) and Equation (8) are equivalent. There are
two cases: βi, j = 1 and βi, j = 0. When βi, j = 1, the first two constraints in Equation (13) become
μi, j,t ≥ 0 and μi, j,t ≤ M and hence have no effect. Furthermore, the last two constraints in Equa-
tion (13) become μi, j,t ≤ ft (xi +wi ) − ft (xi ) and μi, j,t ≥ ft (xi +wi ) − ft (xi ), which essentially
reduce to a single constraint μi, j,t = ft (xi +wi ) − ft (xi ). Note that the combination of the four
constraints results in Equation (8). When βi, j = 0, the first two constraints in Equation (13) become
μi, j,t ≥ 0 and μi, j,t ≤ 0, which reduce to a single constraint μi, j,t = 0. The last two constraints in
Equation (13) become μi, j,t ≤ ft (xi +wi ) − ft (xi ) and μi, j,t ≥ −M , which still allow forcing μi, j,t

to zero. In this case, note that also Equation (8) gives μi, j,t = 0. Hence the constraints follow. �

5.4 Avoid Splitting Interconnects

As stated in Section 3.1, RR vertical boundaries cannot be placed in the middle of back-to-back
interconnect columns. Formally, it must be enforced that, for each reconfigurable region Ri ∈ R,
and for each interconnect z = 1, . . . ,Nint, it holds xi � Iz ∧ xi +wi � Iz . Since these two conditions
can be enforced in the same manner, it is sufficient to show how to deal with the first one (xi � Iz ).

An auxiliary binary variable σi,z is first defined such that σi,z = 1 if xi > Iz (the left vertical
boundary of Ri is after the central column) and σi,z = 0 if xi < Iz (the left vertical boundary of
Ri is before the central column). When xi = Iz , σi,z can be either 0 or 1. This definition can be
enforced with the following auxiliary constraints:
∀Ri ∈ R,∀z = 1, . . . ,Nint,

xi ≥ Iz −M · (1 − σi,z ) ∧ xi ≤ Iz +M · σi,z . (14)

Note that the second inequality of the above constraint forces σi,z = 1 when xi > Iz , while the
first one forces σi,z = 0 when xi < Iz .

The main constraint to enforce xi � Iz can be finally presented.

Constraint 8. ∀Ri ∈ R, ∀z = 1, . . . ,Nint,

xi − Iz ≤ −ϵ +M · σi,z

xi − Iz ≥ ϵ − (1 − σi,z ) ·M (15)

where ϵ > 0 is an arbitrarily small positive number.
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Proof. Remember that M is a numerical constant used to represent infinity. There are three
cases. If xi > Iz , then σi,z = 1 and the two constraints become xi ≤ Iz − ϵ +∞ and xi ≥ Iz + ϵ ,
which are both true. If xi < Iz , then σi,z = 0 and the two constraints become xi ≤ Iz − ϵ and xi ≥
Iz + ϵ −∞, which are both true. Finally, whenxi = Iz thenσ becomes either 0 or 1 (i.e., the auxiliary
constraint of Equation (14) does not constrain σ to a single value). Hence, under this condition,
both constraints cannot be true at the same time. Overall, the case xi = Iz is not allowed by the
constraint, while all other cases are allowed. �

5.5 Objective Function

The proposed MILP formulation can be integrated with several objective functions. As stated in
Section 4.1, in this work we selected to minimize a linear combination of the MIW and WR metrics.
Hence, the objective function to be minimized can be expressed as

min {a · Ω/Ωmax + b · ω/ωmax }, (16)

where Ω and ω respectively represent the total MIW and WR as defined in Equations (3) and (4),
while Ωmax and ωmax are the maximum values for MIW and WR, respectively, which are used for
normalization purposes. Finally, a ∈ [0, 1] and b ∈ [0, 1] are two tunable real weights to balance
the contribution of the two metrics to the objective function. Specific values for these parameters
will be used in the experimental evaluations discussed in the next section.

6 EXPERIMENTAL RESULTS

The proposed solution, denoted by FLORA, has been implemented in C++ leveraging the Gurobi
solver v.7.0.2 as MILP optimization engine. A visualization tool was also developed to graphically
analyze the floorplanning generated by the solver, which served for debugging purposes.

Three experimental sessions have been conducted. In the first one, FLORA has extensively been
compared against (i) the [O] algorithm from [10] and (ii) the floorplanner based on a genetic al-
gorithm (GA) proposed in [9], for a state-of-the-art test suite. It bears repeating that the solution
proposed in [9] works upon an indirect representation of the FPGA area (see Section 2), and hence
the comparison against FLORA is not perfectly fair in the sense that the approach of [9] is con-
ceived for more stringent assumptions (the resource requirements of the RRs has to be fixed at the
stage of optimization). Conversely, the [O] algorithm is the most mature solution working on a
direct representation of the FPGA area (see Section 2). In the second experimental session, FLORA
has been compared against [10] and [9] for benchmark circuits. Finally, in the third experimental
session, FLORA has been tested upon a case study and compared against the case of a manual
floorplanning: the solution computed by FLORA has also been synthesized on a Xilinx Zynq-7020
and executed.

6.1 State-of-the-art Test Suite

A first comparison was performed by using the same synthetic test suite used by the authors of [10]
and [9] Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, plac-
erat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget,
consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi
tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus
rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor
gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem
vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis
ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu,
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accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.2 This
test suite, which is targeted at Virtex-5XC5VLX110T devices, consists of 20 circuits with
{5, 10, 15, 20, 25} RRs and a percentage of occupancy of resources in the set {70% , 75% , 80% , 85%}
that in the following will be referred to as utilizations. Since both FLORA and [O] can guarantee
the optimality of solutions, the comparison with [O] has two objectives. The first one is to demon-
strate that the optimal solutions computed by FLORA (when optimizing singularly for each metric
or for the combination of the metrics) are better than the optimal solutions from [O]. This allows
demonstrating the benefits of adopting the fine-grained modeling strategy of the FPGA area em-
ployed by FLORA. The second objective of the comparison with [O] is to demonstrate that FLORA
reaches optimal solutions faster than [O].

Since the GA-based floorplanner in [9] cannot guarantee the optimality of its solutions (in
essence, it is a heuristic approach), our objective in comparing FLORA with [9] is to demonstrate
that in the same running time FLORA provides better solutions than [9] (even for cases where
FLORA did not find the optimal solution in the limited running time). To compare FLORA with
the GA-based algorithm in [9] we generated an indirect representation of the FPGA area, called
conflict graph, as mandated by the authors in their paper. The conflict graph contains all the fea-
sible placements for the RRs and the corresponding placement conflicts.

The first experimental session was conducted in two different settings. The first setting involves
evaluating the quality of solutions obtained by all the three algorithms (i) for each individual metric
supported by the objective function of Section 5.5, i.e., for the cases (a = 1,b = 0) and (a = 0,b = 1);
and (ii) for the combination of both metrics (a = 1, b = 1). In this setting, the running time of all
algorithms was limited to 60 minutes. This entails limiting the execution time of the MILP solver in
both FLORA and [O] to 3600s and applying an input stopping parameter based on elapsed time for
the approach of [9]. Please note that the time limit was required to compare against [9], as genetic
algorithms cannot guarantee optimal solutions and hence a user-defined stopping condition is
required to terminate the algorithm.

In the second setting, FLORA and [O] were compared with respect to the elapsed time required
to obtain optimal solutions when the objective function accounts for both MIW and WR metrics
(a = 1 and b = 1 in Equation (16)). This configuration of the objective function was chosen as it
was the most challenging optimization problem out of the three mentioned for the first setting.
Both algorithms were run without a time limit.

The experiments of the first setting were conducted on a 2.4 GHz Intel Core Duo machine run-
ning Linux equipped with 2GB of RAM, while in the second setting a 40-core Intel Xeon E5 machine
running at 2.40 GHz with 130 GB of RAM was used. Each test was run five times and the average
measurements are reported here. It should be noted that, in order to find good solutions in faster
times, the authors of [10] provided to [O] initial sub-optimal solutions obtained from their other
algorithm named HO still proposed in [10] (see Section 2). The same can be done with FLORA (by
enforcing a lower-bound to the objective function, as it was done for the HO algorithm). However,
to better illustrate the net difference between the two approaches, this comparison targeted the
case in which no initial solutions are provided.

First setting. Figures 3, 4 and 5 report the results of the experiments conducted in the first mode by
grouping the benchmarks in the test-suite by the number of RRs and reporting the results for each
utilization value. In these figures, the Δ symbol on the top of each bar implies that both FLORA and
[O] reached optimality (within the given time limit), whereas the * symbol is meant to indicate that

2At “http://home.deib.polimi.it/santambr/prj/floorplacer/floorplanner.tar.gz”, the authors had kindly shared both their

work and the test suite they used. The test suite has been adapted to convert slices into CLBs.
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Fig. 3. MIW improvement of (a) FLORA w.r.t [O], and (b) FLORA w.r.t. [9].

Fig. 4. WR improvement of (a) FLORA w.r.t [O], and (b) FLORA w.r.t. [9].

Fig. 5. WR and MIW improvement of (a) FLORA w.r.t [O], and (b) FLORA w.r.t. [9].

only FLORA was able to achieve optimality. The absence of these symbols on the top of the bars
means that the comparison was based on the best sub-optimal solutions obtained within the time
limit. Hence, for each test case, the comparison between FLORA and [O] was either (i) between two
optimal solutions from both algorithms, or (ii) two sub-optimal solutions from both algorithms, or
(iii) an optimal solution from FLORA and a sub-optimal solution from [O]. It is important to point
out that there was no case in which only [O] was able to achieve optimality.

Figures 3(a) and 3(b) report the average inter-region wire-length improvement of FLORA against
[O] and [9], respectively. As it can be seen from Figure 3(a), FLORA significantly improved the MIW
metric with respect to [O], while producing optimal solutions for most of the test cases (70% of
the solutions by FLORA were optimal, while only the 25% of [O]’s solutions were optimal). From
Figure 3(a), it can also be noted that, in the cases with less than 20 RRs, the improvement of the
MIW metric provided by FLORA is considerably high (up to 75.5%). By exploiting the more fine-
grained modeling of the FPGA, FLORA was able to explore solutions that cannot be represented
in the model adopted by [O], and was consequently able to produce placements with significantly
lower MIW values compared to [O]. A similar trend can be observed in Figure 3(b) against the
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Fig. 6. Run-time until optimality for FLORA and [O].

Fig. 7. WR and MIW improvement of FLORA w.r.t. [O] by comparing optimal solutions.

approach from [9], although the improvement is not as high as the one against [O] (up to 20%), but
still definitively not negligible. As one can expect, even when utilizing a fine-grained model, the
improvement of the MIW metric diminishes for larger numbers of RRs against both algorithms:
this is because larger numbers of RRs lead to more “compact” placements with no much room to
move the RRs around

Figure 4 reports the improvements in terms of the WR metric. Also in this case, FLORA improves
upon both [O] and [9] for all the cases, and it was possible to obtain performance improvements
up to 20% and 22% compared to [O] and [9], respectively.

Finally both the evaluation metrics were combined in the objective function: the results of this
experiment are reported in Figure 5. It should be noted that this is a difficult optimization prob-
lem. Indeed, as it can be seen in Figure 5(a), neither [O] nor FLORA managed to provide optimal
solutions for test cases beyond 10 RRs and 70% of utilization within the time limit. However, the
sub-optimal solutions produced by FLORA resulted in better placements in all the test cases against
[O] and [9]. With FLORA, it was also possible to compute solutions with up to 7% and 5% improve-
ments against [O] and [9], respectively, under the most difficult cases (25 RRs).

Second setting. The results related to the second experimental setting (i.e., where both FLORA
and [O] freely run until they both reach optimality) are reported in Figures 6 and 7. Figure 6 reports
the total run-time required by the algorithms to compute their corresponding optimal solutions. As
it can be noted from the figure, FLORA shows improvements of more than one order of magnitude
for the cases with 5 and 10 RRs. Furthermore, despite being based on a more fine-grained (i.e., more
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Table 1. Experimental Results for the Benchmark Circuits

Wire-length Execution time (sec)
Circuit #RRs [O] [9] FLORA [O] [9] FLORA
apte 9 6171 4978 4296 1789 3600 1641
xerox 10 20012 12009 11546 3600 3600 3600
hp 11 11579 5912 5887 3600 3600 1428
ami33 33 128123 98123 94312 3600 3600 3600

complex) modeling of the FPGA area, the time required to produce optimal solutions are still lower
than those of [O] even for the cases with 15 or more RRs. For instance, in the most challenging
cases (20 and 25 RRs), FLORA reached optimality up to 5 hours before [O]. Figure 7 reports the
improvements achieved by FLORA by comparing the value of the objective function computed
for the optimal solutions produced by the two algorithms. As it can be seen, FLORA significantly
outperforms [O] in all the cases. Note that this is mainly because the design space that can be
expressed by FLORA is larger than the one of [O] as FLORA adopts a more fine-grained modeling
of the FPGA area.

6.2 Benchmark Circuits

A second experimental session was performed to compare FLORA against both [O] and the work
in [9] on four benchmark circuits derived from the MCNC benchmark [2]. This standard ASIC
benchmark was adapted for FPGA by following an approach similar to the one adopted in [7]. A
time limit of 60 minutes was used also in this experimental session. The objective function was
configured to deal with the MIW metric only (a = 1 and b = 0).

The experimental results are reported in Table 1. Out of the four benchmark circuits, FLORA
was able to provide optimal solutions for two circuits (apte and hp), while [O] was able to produce
the optimal solution only in one case (apte). As it can be seen from the table, FLORA had largely
improved the MIW metric against [O] (by up to 95.8% for the hp circuit), while still achieving
non-negligible improvements with respect to [9] (e.g., 15.8% for apte). Despite the improvements
with respect to [9] are limited, it is worth observing that FLORA performs better or at least as [9]
without working on an indirect representation of the FPGA area (see Section 2 for the limitations
introduced by indirect representations).

6.3 Case Study

The third experimental session targeted a case study focused on a partially-reconfigurable video
processing design to be implemented on a Xilinx Zynq-7020 SoC (Pynq board). The Vivado tool
by Xilinx was used. The design consists of 6 RRs, each hosting two alternative versions of a hard-
ware module; specifically, five RRs host image filters (fastx, fir, gaussian, gmap, and sobel) and
one hosts a matrix multiplier. All the hardware modules have been taken from the Xilinx HLS li-
brary. Each image filter is available in two versions: one designed for 3x3 kernels and the other for
5x5 kernels. The matrix multiplier is also available in two versions: one designed for a 4x4 matrix
multiplication and another for an 8x8 multiplication. Each of such versions can be reconfigured
in the corresponding RR. The resource requirement of the reconfigurable modules is summarized
in Table 2. The ”hosting region” column of Table 2 denotes the id of the RR which hosts the cor-
rosponding accelerator in the same row. The design is completed by static modules (i.e., not subject
to PR) that are automatically placed by the Vivado tool (no floorplanning is required).

Here, we compare the floorplan generated by FLORA against the best floorplan we were able to
manually find in terms of (i) time needed to obtain the floorplan, and (ii) sizes of the bitstreams for
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Table 2. Resource Requirement of the Reconfigurable Modules in the Case Study

Filter type Kernel size LUT FF BRAM DSP Hosting Region
fastx 3 × 3 5004 4331 14 3 1

5 × 5 6128 6371 19 8 1
fir 3 × 3 1629 2400 2 39 2

5 × 5 2025 3476 4 48 2
gaussian 3 × 3 1889 2104 7 12 3

5 × 5 2414 3096 11 16 3
gmap 3 × 3 1710 2204 6 3 4

5 × 5 2014 3176 10 8 4
matrix_mul 4 × 4 3546 6081 14 12 5

8 × 8 4296 8945 24 20 5
sobel 3 × 3 1465 1923 4 3 6

5 × 5 1845 2212 7 6 6

Fig. 8. Floorplans generated (a) by FLORA and (b) manually.

each RR. FLORA was configured to optimize the WR metric only (i.e., a = 0 and b = 1) as the case
study does not involve direct connections between the RRs (the hardware modules communicate
with a shared-memory paradigm).

The two floorplans are illustrated in Figure 8, which has been obtained by taking screenshots
from the Xilinx Vivado tool. The entire design utilizes 94% of the total FPGA resources of the
Zynq-7020: hence, generating a valid floorplan that satisfies all the resource requirements of the
RRs without violating the PR constraints is particularly challenging. To the best of our abilities,
the manual floorplanning of this design took approximately one hour and a half to obtain a valid
solution. Conversely, FLORA computed the optimal solution in only 10 seconds. Table 3 summa-
rizes the sizes of the partial bitstream of the modules used in the case study. Note that the floorplan
produced by FLORA led to partial bitstreams up to 26% smaller (see the 3 × 3 FIR filter module)
than those corresponding to the manual floorplan, while both designs (the manual and the one
by FLORA) are able to run at a clock speed of 125 MHz on the Pynq board (the input clock was
used without modification in the RRs). For instance, considering a reconfiguration interface with
clock speed of 100 MHz (a total reconfiguration bandwidth of 400 MB/s), in the manual floorplan
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Table 3. Partial Bitstream Sizes for Manual and FLORA Generated

Floorplans Along with Clock Speed of Modules in the Case Study

Filter type Kernel size Manual (KB) FLORA (KB)
fastx 3 × 3 806 737

5 × 5 1100 1000
fir 3 × 3 749 554

5 × 5 956 745
gaussian 3 × 3 1000 898

5 × 5 1200 1000
gmap 3 × 3 621 515

5 × 5 788 699
matrix_mul 4 × 4 1100 925

8 × 8 1300 1100
sobel 3 × 3 545 490

5 × 5 810 728

it takes 1.87 ms to reconfigure the 3 × 3 FIR filter (the partial bitstream size is 749 kB), while it
takes 1.38 ms to reconfigure the same filter when the floorplan is generated by FLORA (the partial
bitstream size is 554 KB). Note that this reduction in reconfiguration time is a direct consequence
of minimizing the number of wasted resources in the RRs, which in turn led to smaller bitstreams.

7 CONCLUSIONS

This paper presented FLORA, a solution to automatically compute the floor planning of a set of
reconfigurable regions. Our approach leveraged mixed-integer linear programming and a fine-
grained direct modeling of the layout of the FPGA area, which also allows taking into account
several realistic technological constraints mandated by commercial FPGA synthesis tools. Experi-
mental results demonstrated that FLORA allows improving the maximum inter-region wire-length
(up to 103%), the amount of wasted resources, and the solving time (even by one order of magni-
tude) with respect to other state-of-the-art approaches. For typical PR designs, which consist of
an average of 5 reconfigurable regions, the experimental evaluation revealed a 70% average im-
provement in terms of inter-region wire-length, while exhibiting solving times that are one order
of magnitude lower than those of state-of-the-art methods.

Future work will attempt at integrating FLORA in the Vivado suite to implement a completely
automatic design flow under partial reconfiguration.
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