
Predictable Memory-CPU Co-Scheduling
with Support for Latency-Sensitive Tasks

Daniel Casini∗†, Paolo Pazzaglia∗, Alessandro Biondi∗†, Marco Di Natale∗, and Giorgio Buttazzo∗†
∗TeCIP Insitute, Scuola Superiore Sant’Anna, Pisa, Italy

†Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Pisa, Italy

Abstract—Predictable execution models have been proposed over the
years to achieve contention-free execution of real-time tasks by preloading
data into dedicated local memories. In this way, memory access delays can
be hidden by delegating a DMA engine to perform memory transfers in
parallel with processor execution. Nevertheless, state-of-the-art protocols
introduce additional blocking due to priority inversion, which may
severely penalize latency-sensitive applications and even worsen the
system schedulability with respect to the use of classical scheduling
schemes. This paper proposes a new protocol that allows hiding memory
transfer delays while reducing priority inversion, thus favoring the
schedulability of latency-sensitive tasks. The corresponding analysis is
formulated as an optimization problem. Experimental results show the
advantages of the proposed protocol against state-of-the-art solutions.

I. INTRODUCTION

Multicore architectures are becoming the standard choice for the
implementation of embedded systems. However, as identified by
several authors [1], the execution of tasks on multicores is affected
by variable delays when accessing resources shared among the cores,
such as caches, dynamic memories, and interconnects. The adoption
of core-level local memories, such as scratch-pads, is an advisable
choice to reduce interference in accessing shared global data. How-
ever, interference cannot be fully avoided because of the limited
size of local memories and in the end, a global, shared memory
(e.g., a DRAM) is still needed. Predictable execution models [2]
have been proposed to transfer data from global to local memory,
and viceversa, leveraging data transfer intervals before and after the
actual task execution. Such models rely on loading data (and possibly
instructions) in local memory before executing a segment of code free
from memory contention. The results produced by tasks are written
back in global memory at the end of their execution.

To further reduce the impact of such memory phases on the
timing performance of tasks and leverage the direct memory access
(DMA) engines that are typically available on many platforms, several
protocols [3]–[5] hide memory-copy delays by parallelizing the
copies to and from local memories with the execution of the tasks on
the cores. To make sure that the data loaded on local memories is not
evicted, such protocols mandate the use of non-preemptive execution
— once a task is scheduled, it is executed until completion, delaying
any higher-priority task that is possibly released during its execu-
tion (priority inversion). Unfortunately, these protocols significantly
increase the blocking time due to priority inversion with respect to
classical non-preemptive scheduling. This is a critical issue because
non-preemptive blocking has a high impact under non-preemptive
scheduling, especially for latency-sensitive tasks, i.e., those that can
tolerate only very limited scheduling delays. Surprisingly, we found
that this phenomenon may even make such protocols performing
worse than the case of standard non-preemptive scheduling without
the parallel execution by DMA of memory loads/unloads.
This paper. This paper proposes a novel protocol to leverage parallel
memory copies performed by DMA engines without penalizing
latency-sensitive tasks. The worst-case timing analysis of tasks ex-
ecuting according to our protocol is formulated as a mixed-integer
linear programming (MILP) optimization problem. An extensive set

of experiments shows the advantages of the proposed approach in
terms of schedulability performance with respect to state-of-the-art
protocols and classical non-preemptive scheduling.

II. SYSTEM MODEL

Platform Model. The platform consists of a set P = {p1, . . . , pP }
of P identical cores. Each core pm has a private local memory, which
comprises a data memory and an instruction memory. The platform
also includes a shared global memory, which contains the application
data and instructions, that can be accessed by all the cores. A DMA
engine for each core is in charge of handling memory transfers
from the shared memory to the local memory, and viceversa. Local
memories may be scratch-pads or caches. In the latter case, caches
need to be configured with lockdown techniques used in conjunction
with software implemented access policies [1], and to support cache-
stashing, a mechanism that allows to load data into the cache via
DMA [6]. Furthermore, local memories are dual-ported, i.e., different
portions of the memory can be concurrently accessed from a core and
a DMA engine without contention. Finally, a crossbar interconnect
provides point-to-point communication among the cores, the DMA
engines, and the local and global memories. This platform model
matches real-world COTS embedded platforms, such as the NXP
QorIQ T1042 platform [6].

Task and Execution Model. The workload is composed by a set
of independent real-time tasks Γ = {τ1,. . .τn}. Each task τi ∈Γ
is characterized by a worst-case execution time Ci and a unique
priority πi. Tasks are statically partitioned to cores and execute non-
preemptively. For simplicity, a single processor pm under analysis is
considered next, but all the results apply to multiprocessor partitioned
scheduling by considering each core in isolation.

Each task τi releases a potentially-infinite sequence of instances or
jobs. An arrival curve ηi(δ) upper-bounds the maximum number of
release events of τi in any time interval of length δ. For instance, a
periodic task with period Ti, or a sporadic task with minimum inter-
arrival Ti can be modeled with ηi(δ) = dδ/Tie. Each job of any
task τi needs to complete within Di time units from its release (Di
is the relative deadline of τi). Each task is characterized by inter-job
precedence constraints, i.e., at most one instance of each job can be
pending at the same time. The sets of tasks with priority higher and
lower than τi are denoted with hp(τi) and lp(τi), respectively.

Each task τi ∈ Γ allocated to pm executes according to a three-
phase model [2]. First, in the copy-in phase, the instructions and
data needed by τi are loaded from the global memory to the local
memory of pm. Then, τi executes by accessing (i.e., reading or
writing) variables and instructions in the m-th core local memory
(execution phase). Finally, in the copy-out phase, the data produced
by τi are copied (unloaded) from the local to the global memory.
Similar to the tasks execution, also the memory copy phases are non-
preemptable. The worst-case times required to perform the copy-in
and copy-out phases of τi are denoted as li and ui, respectively. Both
delays may account for the possible contention in global memory (if
present), computed using the analysis techniques in [7, 8].

978-1-7281-1085-1/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on June 18,2021 at 07:29:20 UTC from IEEE Xplore. Restrictions apply.

giorgio
Casella di testo
Proc. of the 57th ACM/IEEE Design Automation Conference (DAC 2020), San Francisco, CA, USA, July 19-23, 2020.

An instance of τi is ready if it has already been released but
its copy-in phase has not started yet, and is completed when its
corresponding copy-out phase terminates. A per-core ready queue
keeps track of ready tasks. A task is said to be blocked due to priority
inversion (simply referred to as blocked) when it is experiencing delay
due to lower priority tasks from when it is released until when its
execution phase begins. The response time of a job is defined as
the difference between the time in which its copy-out phase finishes
and the time when the job is released. The worst-case response time
(WCRT) Ri of task τi is defined as the longest response time of any
job of τi. Task τi is said to be schedulable if Ri ≤ Di. A task set
Γ is said to be schedulable if all tasks τi ∈ Γ are schedulable.

III. BACKGROUND AND RELATED WORK

A predictable execution scheme characterized by disjoint read,
execute, and write phases is the foundation of the PRedictable
Execution Model (PREM) proposed by Pellizzoni et al. [2] for
uniprocessor scheduling of periodic tasks. The concept has been
generalized to different contexts [3, 5, 9]–[14]. Wasly and Pelliz-
zoni [12] proposed to leverage the parallelism between DMAs and
CPUs to load and store data in parallel with the task execution
in a read-execute-write model. The authors proposed an algorithm
to build a static schedule that overlaps DMA transfers with task
executions for periodic independent tasks. Later, they proposed a
more dynamic mechanism for non-preemptive fixed-priority parti-
tioned scheduling [3] of sporadic independent tasks. Tabish et al. [4,
5] proposed a similar execution model but using a single shared DMA
engine in time-division multiplexing (TDMA). Recently, Rouxel et
al. [15] proposed a scheduling technique to hide the communication
delay for parallel periodic real-time tasks. The authors leveraged static
scheduling in which DMA operations hide communication delays.
This work is focused on sporadic tasks (no static schedules) and
multi-DMA systems: hence, the closest work to ours is [3] and is
recalled in Section III-A.

A. Handling DMA Transfers for Sporadic Tasks

Following the approach in [3], each per-core, dual-ported, local
memory is divided into two memory partitions (simply referred to as
partitions hereafter), which can be accessed in parallel by the CPU
and the corresponding DMA engine. In this way, the CPU can execute
a task accessing the data contained in one of the partitions while the
DMA engine loads data for the following task in the other partition.
The algorithm in [3] is built upon the concept of time intervals,
defined on a per-CPU basis (partitioned scheduling). When an interval
begins, the CPU schedules the task for which the data have been
loaded in local memory during the previous interval and, in parallel,
the DMA engine loads the data for the highest-priority tasks that is
currently ready (if any). This operation may require to first unload
a portion of the local memory by copying some data to the global
memory. The interval terminates at the completion of the longest
between the execution on the CPU and the DMA transfers. At the
following time interval, the partitions of local memory used by the
DMA and the CPU are swapped, i.e., the one used by the DMA will
be used by the CPU and viceversa.
Drawbacks of [3]. As introduced in Section I, this protocol may
negatively affect the schedulability of latency-sensitive tasks. Indeed,
as identified in [3], a task τi under analysis can be blocked by up to
two lower-priority tasks. This may even lead to worse performance
than standard non-preemptive scheduling (i.e., without parallelized
DMA copies). Figure 1(a) shows an example schedule in which such
a phenomenon occurs, while Figure 1(b) shows the corresponding
schedule under non-preemptive scheduling. In both insets, a task τi

���

���

Copy-out

Copy-in

Execution

��
�� ��

��

��

��

��
��

�� ��

��

��

�� �� ��

��
��

��
��

��
��

��

�� � ��

�� � ��

���

��

��

�� � �� � ��

��
��

�

Release

Completion

Deadline

���

���

� �� ���

�

��
��

�� �� �� ��

Figure 1. Example of schedule in which task τi is schedulable by non-
preemptive scheduling (b) but not schedulable using the protocol in [3] (a).

under analysis is released at time t = 1 and, at t = 0, other two
tasks τ lp1 and τ lp2 are pending, both with a lower priority than τi.
First consider Figure 1(a), where two timelines are shown, one for the
CPU and one for the DMA. Task τ lp1 executes in interval I0. At time
t = 0, τ lp2 is selected for being executed in the following interval I1
and contextually the corresponding copy-in phase is accomplished by
the DMA in I0 after performing the copy-out phase of a previously-
executed task τp (note that the length of the interval does not depend
on up as it is bounded by Clp1). At time t = 5, interval I1 starts and
τi is selected to be executed in I2. Consequently, in I1, the DMA
performs the copy-in phase of τi (after unloading the data of τ lp1),
while the CPU executes τ lp2 . In I2, τi is executed by the CPU, while
the DMA performs the copy-out of τ lp2 and the copy-in of another task
τn. Finally, at time t = 13, τi completes its copy-out phase, missing
its deadline at t = 11. Figure 1(b) shows the same task set managed
under standard non-preemptive fixed-priority scheduling (DMAs are
not used). Thanks to a reduced blocking (only one lower-priority
task), τi can meet its deadline.

IV. A PROTOCOL WITH REDUCED BLOCKING

This section presents a new scheduling protocol that allows hiding
memory transfer delays while providing a better control of priority-
inversion blocking. To this end, specific rules are defined to reduce
priority-inversion for a set of tasks marked as latency-sensitive (LS).
We focus on a core pm under analysis hosting a task set Γ (the
protocol works on a per-core basis). For notational convenience,
ΓLS is defined as the set of all the latency-sensitive tasks on pm.
Furthermore, ΓNLS = Γ \ΓLS is the set of all the tasks that are not
latency-sensitive (NLS). Given an arbitrary task τi ∈ Γ, the sets of LS
tasks with higher and lower priority than τi are defined as hpLS(τi)
and lpLS(τi), respectively. Similarly, hpNLS(τi) and lpNLS(τi) denote
the set of NLS higher and lower priority tasks. The system is said to
be idle if both pm and the DMA are idle.

Building upon [3], local memories are divided in two (memory)
partitions of the same size. Each core and the corresponding DMA
use only one partition at a time, respectively. We assume that the
copy-out phase is always managed by the DMA, while the copy-in
phase can be performed by either the processor and the DMA. The
algorithm uses the concept of scheduling time interval.

Definition 1 (Scheduling time interval). A scheduling time interval
Ik of a core pm is a time span Ik = [tk, tk+1) where:
• the system is never idle in Ik;
• at any time in Ik, the memory partitions of pm are always assigned

to the same unit (one to the CPU and one to the DMA); and
• at time t= tk− ε and t= tk+1 with ε > 0 arbitrarily small, either

the assignment of the partitions is swapped or the system is idle.

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on June 18,2021 at 07:29:20 UTC from IEEE Xplore. Restrictions apply.

By definition, as long as the system is not idle, an interval begins
immediately after the end of the previous one. When the system is
idle, an interval begins when a job becomes ready.

A. Execution protocol

The protocol proposed in this paper is formally defined by the
following rules for any core pm.
R1. When an interval begins, the assignment of partitions is

swapped: the one that was assigned to the processor is assigned
to the DMA engine, while the DMA partition is assigned to the
processor.

R2. At the beginning of each interval Ik, if the partition assigned to
the DMA contains output data from a previous execution, then
the DMA performs a copy-out to global memory. Subsequently,
in the same interval, if the ready queue is not empty the copy-
in phase of the task with highest priority is scheduled to be
performed by the DMA (after the possible copy-out) and the
task is removed from the ready queue.

R3. In each interval Ik, if an LS task τs ∈ ΓLS is released while
the copy-in of a task τl ∈ lp(τs) is performed by the DMA, the
copy-in is canceled and τl is put back in the ready queue.

R4. At the end of each interval Ik, if a copy-in has been canceled
or no copy-in has been executed by the DMA in in Ik, then
the highest-priority LS task τ∗s ∈ΓLS released in the interval (if
any) becomes urgent and is removed from the ready queue.

R5. At the beginning of each interval Ik, if there is an urgent task,
then the CPU performs its copy-in phase and then executes it
(sequentially). Such a task then stops being urgent. Otherwise,
if there is no urgent task at the beginning of Ik, the processor
checks if the copy-in for a task was performed in Ik−1. If so,
then the task is executed; else, it idles until the end of Ik.

R6. The length of each interval corresponds to the longest duration
of the operations performed by the CPU and the ones performed
by the DMA.

Differently from [3], the proposed protocol avoids blocking LS
tasks in the interval following their activation. This is accomplished
by canceling the copy-in performed by the DMA (R3), setting a task
as urgent (R4), and replacing the data in the partition by means of a
copy-in performed by the processor (R6). Additionally, with rule R2
the copy-out phase is performed as soon as possible (even when no
other copy-in operations are required). This also allows extending the
protocol to the case of communicating tasks (e.g., for data-driven task
chains), when data outputs must be communicated in a timely and
predictable fashion to ensure flow preservation in functional chains.
This application is left as future work.

B. Properties of Task Phases

The protocol rules enforce a strict order among the task phases, as
formalized in Properties 1 and 2.

Property 1. If an NLS task τn ∈ ΓNLS executes in an interval Ik,
then its copy-in and copy-out operations are performed by the DMA
engine during intervals Ik−1 and Ik+1, respectively.

Proof. Assume the property does not hold. Then it exists an NLS task
τn ∈ ΓNLS executing in Ik such that (i) the corresponding copy-in
is not performed in Ik−1, or/and (ii) the corresponding copy-out is
not performed in Ik+1. In case (i), due to the ordering of task phases
and since τn is NLS, the copy-in of τn must have been performed
only in an interval preceding Ik. By rule R4, an NLS task can never
become urgent. By rule R5, as τn ∈ ΓNLS executes in Ik, there were
no urgent tasks at the beginning of Ik and hence τn’s copy-in must
have been performed in Ik−1. In case (ii), rule R2 mandates that at

the beginning of each Ix, if a task has been executed by the CPU
in Ix−1, then its copy-out is performed by the DMA in Ix. Since
by assumption τn executes in Ik, its copy-out is performed in Ik+1.
Hence both cases lead to a contradiction.

Property 2. If an LS task τs∈ΓLS executes in interval Ik, then its
copy-out operation is performed by the DMA engine in Ik+1.

Proof. The property follows similarly as Prop. 1 by noting that rules
R3, R4 and R5, which specify the behavior of LS tasks, do not change
how the copy-out phase is performed.

The following Properties 3 and 4 are required to bound the number
of tasks that can generate priority inversion for an arbitrary task.

Property 3. An NLS task τn ∈ ΓNLS cannot be blocked in more
than two intervals due to lower-priority tasks.

Proof. First, due to the priority ordering, blocking cannot be expe-
rienced after interference. By contradiction, assume τn ∈ ΓNLS is
blocked for more than two intervals. It follows that, if τn is released in
interval Ik, it will be blocked at least up to Ik+2. In Ik+2, four cases
may occur on the CPU side: (i) a task τl ∈ lp(τn) is executed, (ii) an
LS task τls ∈ lp(τn) is executed as urgent task, (iii) a higher-priority
task τh ∈ hp(τn) (either NLS or LS) is executed, or (iv) no task is
executed. In case (i), due to R5 it means that τl has been selected
to perform the copy-in in Ik+1, but this is impossible since τn is in
the ready queue at the beginning of Ik+1 and it would have been
selected over τl by rule R2. Similarly, in case (ii) if τls was selected
as urgent at the end of Ik+1, by R3 and R4 it means that another
task τx ∈ lp(τls) ⊂ lp(τn) with a lower priority than τls and τn was
performing the copy-in in Ik+1 (or no copy-in was performed), which
is impossible since τn is in the ready queue since Ik. In case (iii)
τn is not blocked but interfered, which means it will not be blocked
anymore. Case (iv) requires that no copy-ins are performed in Ik+1,
but this is impossible since τn is in the ready queue. All cases lead
to a contradiction, thus the property follows.

Property 4. An LS task τs ∈ ΓLS can be blocked for at most one
interval due to lower-priority tasks.

Proof. As in the proof of Prop. 3, assume τs is released in interval Ik.
By contradiction, assume that τs is blocked in at least two intervals,
i.e., Ik and Ik+1. Since τs is LS, four cases may occur in Ik+1: (i) a
task τl ∈ lp(τs) is executed, (ii) an LS task τls ∈ lp(τs) is executed
as urgent task, (iii) a higher-priority task τh ∈ hp(τs) (either NLS
or LS) is executed, or (iv) no task is executed. In case (i), it means
that τl has been selected to perform the copy-in in Ik, but this is
impossible since τs is LS and the copy-in would have been canceled
by rule R3. In case (ii) it is impossible that τls was selected as urgent
in Ik, since τs is LS and has higher priority (R4). In case (iii) τs
is not blocked but interfered, which means it will not be blocked
anymore. Case (iv) requires that no copy-in is instructed in Ik, but
this is again impossible since τs or another higher priority LS task
would have been selected as urgent. All cases lead to a contradiction,
thus the property follows.

V. BOUNDING THE WORST-CASE DELAY

In this section we aim at bounding the worst-case delay suffered
by a task τi ∈ Γ under analysis. The proposed schedulability analysis
is performed in an iterative fashion. Given a task under analysis τi
and a tentative response time Ri of τi, we study an arbitrary time
window Π of length t = Ri−Ci−ui, such that τi is released at the
beginning of Π. The term t indicates the size of the time interval in
which the start of τi’s execution is delayed (i.e., τi starts executing

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on June 18,2021 at 07:29:20 UTC from IEEE Xplore. Restrictions apply.

at the end of Π). A set of constraints in an MILP formulation defines
the set of all the possible schedules S in Π by ruling out those that
violate rules R1-R6 as defined in Section IV-A. Arrival curves are
leveraged to bound the maximum number of intervals that can contain
an interfering workload in Π. The objective function of the MILP
aims at maximizing the length of such intervals, hence maximizing
the delay incurred by τi. Given an initial value for Ri, the result
of the MILP optimization is a new value for the tentative response
time. Similar to other classical response-time analysis methods, this
procedure is iterated until convergence of Ri.

The analysis is different according to the type of the task (τi as
NLS as opposed to τi as LS). We start by presenting the analysis
technique and the MILP constraints for the first case (NLS), and
then we discuss the differences for the other case.

A. MILP Formulation when τi is NLS

The MILP formulation takes as input the task set Γ and the number
Ni(t) of intervals to model the schedule S for the task under analysis
τi ∈ ΓNLS . By construction, the execution of τi occurs in the last
interval of the schedule (i.e., in INi(t)−1). Thus, from Prop. 1, the
copy-in phase of τi is performed in interval INi(t)−2. The number
of intervals Ni(t) in S is bounded by Theorem 1.

Theorem 1. The number of intervals occurring between the release
of an NLS task τi ∈ ΓNLS and the instant when its execution phase
completes is bounded by Ni(t) =

∑
τj∈hp(τi)(ηj(t) + 1) + 3.

Proof. By Property 3, an NLS task can be blocked by at most two
lower-priority tasks. By definition of arrival curve, in an interval of
length t at most ηj(t) release events of each higher-priority task
τj ∈ hp(τi) may occur. Hence, each τj may interfere with τi with
at most (ηj(t) + 1) instances. Since each task executes in exactly
one interval (R5), blocking and interfering tasks contribute with at
most 2 and

∑
τj∈hp(τi)(ηj(t)+1) intervals, respectively. Overall, for∑

τj∈hp(τi)(ηj(t) + 1) + 2 intervals. An additional interval is then
required for the execution of τi itself. The theorem follows.

The variables required in the formulation are defined as follows.
• For each interval Ik, with k ∈ [0, Ni(t)− 1]:

– ∆k ∈ R≥0 denotes the length of Ik in S;
– ∆C

k ∈ R≥0 denotes the time needed by the core to complete the
execution of a task in Ik;

– ∆L
k ∈ R≥0 denotes the time used by the DMA to perform the

copy-in operation in Ik; and
– ∆U

k ∈ R≥0 denotes the time used by the DMA to perform the
copy-out operation in Ik.

• For each task τj ∈ Γ:
– Lkj ∈ {0, 1}, Ekj ∈ {0, 1}, Ukj ∈ {0, 1} are binary variables

set to 1 iff task τj performs its copy-in, execution and copy-out
phase in Ik, respectively;

– CLkj ∈ {0, 1} is a binary variable set to 1 if the copy-in phase
of τj is canceled in Ik; and

– LEkj ∈ {0, 1} is a binary variable set to 1 if the core performs
the copy-in of τj followed by its execution in Ik (rule R5).

In the following, the main constraints of the proposed MILP
formulation are presented. The proofs of simpler constraints are
omitted due to lack of space.

1) Objective function: The objective function aims at maximizing
the sum of the lengths of all the Ni(t) intervals in which task τi can
be delayed (by Theorem 1):

Ri := maximize
Ni(t)−1∑
k=0

∆k + ui. (1)

The term ui is added because, by rule R2, τi’s copy-out is executed
in interval INi(t) by the DMA without being delayed.

2) Task phases ordering: The ordering between task phases, as
defined in Properties 1 and 2, is enforced by Constraints 1 and 2.

Constraint 1. ∀ τj ∈ Γ and ∀ Ik with k ∈ [0, Ni(t)−3], Lkj = Ek+1
j .

Constraint 2. ∀ τj 6= τi and ∀ Ik, with k ∈ [0, Ni(t) − 2],
Ekj + LEkj = Uk+1

j .

3) Properties of lower-priority tasks: The execution phase of tasks
with priority lower than τi may only occur in the first two intervals.
This is enforced by setting the corresponding variables Lkj , CLkj , Ekj
and LEkj equal to zero in all other intervals.

Constraint 3. ∀ τj ∈ lp(τi) and ∀ Ik, with k ∈ [1, Ni(t) − 3],
Lkj = CLkj = 0 and Ek+1

j = LEk+1
j = 0.

Proof. By Prop. 3, each NLS task may be blocked by at most two
tasks. Due to the priority ordering, blocking may be experienced only
before interference. Hence, lower-priority tasks may execute only in
the first two intervals, I0 and I1, and, by Prop. 1, the DMA may
perform a copy-in of a lower-priority only in I0 (because performing
a copy-in of a task τlp ∈ lp(τi) in I1 would potentially cause τlp to
execute in I2, thus contradicting Prop. 3). The constraint follows.

4) Execution and copy-in phases: According to R4, NLS tasks
cannot be urgent. Thus, their copy-in phase is never performed by
the core followed by their execution. This is enforced by Constraint 4.

Constraint 4. ∀τj ∈ΓNLS and ∀Ik, with k∈ [0, Ni(t)−2], LEkj = 0.

By R5, only one task executes in each Ik, either with a simple
execution phase or a copy-in followed by an execution. This is
enforced by Constraint 5.

Constraint 5. ∀ Ik, with k ∈ [0, Ni(t)−2],
∑
τj 6=τi(Ekj +LEkj) = 1,

while Eki = LEki = 0 for τi.

Similarly, by rule R2, only one copy-in can be performed in each
interval (either completed or canceled).

Constraint 6. ∀ Ik, with k ∈ [0, Ni(t)−3],
∑
τj∈Γ(Lkj +CLkj) = 1.

Constraint 7 is then defined to upper-bound the number of job
executions of tasks τj ∈ hp(τi). We also enforce that each lower-
priority task may execute at most one time in window t.

Constraint 7. ∀ τj ∈ hp(τi),
∑Ni(t)−2
k=0 (Ekj + LEkj) ≤ (ηj(t) + 1)

and ∀ τj ∈ lp(τi),
∑Ni(t)−2
k=0 (Ekj + LEkj) ≤ 1.

When τi is in the ready queue during Ik and an urgent task executes
in Ik+1, a copy-in has surely been canceled in Ik. This is encoded
by Constraint 8.

Constraint 8. ∀ τj 6= τi and ∀ Ik, with k ∈ [0, Ni(t) − 3],∑
τx∈lp(τj) CLkx ≥ LEk+1

j .

Proof. The left-hand side (LHS) of the inequality is equal to 1 if a
copy-in is canceled for some task τx ∈ lp(τj) in Ik. If τj performs
its copy-in sequentially with its execution on a core in Ik+1, i.e.,
LEk+1

j = 1, then either: (i) a copy-in was canceled in interval Ik
(R3, R4, and R5), or (ii) no copy-in occurred in interval Ik. Since
by construction τi executes in interval INi(t)−1, in Ik (with k ∈
[0, Ni(t)− 3]) τi is still in the ready queue. It follows that case (ii)
is impossible because otherwise τi would have already been executed.
Hence in case (i) a copy-in has been canceled and, since LEk+1

j = 1,
the LHS is coherently constrained to be equal to 1. If LEk+1

j =
0, nothing can be deduced on what happens in interval Ik and the
constraint does not take effect (

∑
τx∈lp(τj) CLkx ≥ 0).

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on June 18,2021 at 07:29:20 UTC from IEEE Xplore. Restrictions apply.

5) Interval rules: In the following, the duration of the various
phases in each interval is bounded. By R5 and non-preemptive
scheduling, at most one task can execute in each interval Ik. Hence,
the work performed by a core in Ik is bounded by the WCET of the
task that executes in it, plus the possible copy-in implied by R4.

Constraint 9. For each interval Ik, with k ∈ [0, Ni(t) − 2],
∆C
k ≤

∑
τj 6=τi Ekj · Cj +

∑
τj 6=τi LEkj · (lj + Cj)

The time spent by the DMA in performing copy-in (either com-
pleted or canceled) and copy-out operations is also bounded by the
two following constraints. They follow because there can be at most
one copy-in and one copy-out per interval (see Constraint 6 and R2).

Constraint 10. ∀ Ik, k ∈ [0, Ni(t)−3], ∆L
k ≤

∑
τj∈Γ(Lkj +CLkj)·lj

Constraint 11. ∀ Ik, k ∈ [1, Ni(t)− 1], ∆U
k ≤

∑
τj 6=τi(Ukj · uj)

As mentioned earlier, the second-last copy-in and last execution
belong to the task under analysis. Also, the duration of the first copy-
out and last copy-in can be upper-bounded as follow.

Constraint 12. ∆C
Ni(t)−1 = Ci, ∆L

Ni(t)−2 = li, ∆L
Ni(t)−1 ≤

maxτj∈Γ (lj), and ∆U
0 ≤ maxτj∈Γ (uj).

Finally, by rule R6, it follows that the length of Ik is determined by
the length of the longest operation between DMA transfers and CPU
execution. Hence, it follows that ∆k = max(∆C

k,∆
L
k + ∆U

k), which
is encoded as a MILP constraint using the following inequalities.

Constraint 13. For each interval Ik, k ∈ [0, Ni(t)− 1],
• ∆k ≤ ∆C

k + αk · bigM
• ∆k ≤ (∆L

k + ∆U
k) + (1− αk) · bigM

where bigM is a sufficiently-large positive constant value, and αk ∈
{0, 1} is an auxiliary boolean variable.

B. MILP formulation if τi is LS

Consider now an arbitrary LS task τi ∈ ΓLS under analysis.
Building on Theorem 1, Corollary 1 bounds the number of intervals.

Corollary 1. The maximum number of intervals occurring between
the release of a latency-sensitive task τi ∈ ΓLS and the instant when
its execution phase completes is Ni(t) =

∑
τj∈hp(τi)(ηj(t)+1)+2.

Proof. The corollary follows from Theorem 1 and Property 4, by
noting that an LS task can be blocked by at most one task.

Due to the priority ordering and Property 4, it follows that blocking
may be experienced only in the first interval I0. Due to R4, the release
of τi∈ΓLS in interval I0 may result in τi being promoted to urgent.
This happens if a lower-priority task has a copy-in in I0 and τi is
the highest-priority task among the LS tasks released in I0. Then we
consider two cases that produce two different classes of schedules:
(a) τi is not promoted to urgent in interval I0, and (b) otherwise.
In case (a), there exist interfering tasks executing in at least one
interval Ik with k∈ [1, Ni(t)−2]. For this reason, and due to R3 and
R4, τi cannot be promoted to urgent in the following intervals, and it
executes in INi(t)−1 for at most Ci time units. In case (b), τi executes
in I1, occupying the processor for at most li + Ci time units. The
two cases require a slightly different formulation and are considered
separately, taking the maximum to find the worst-case delay.

1) Case (a): By considering the number of intervals Ni(t) in-
troduced in Corollary 1, Constraints 1-13 also apply to this case.
Lower-priority tasks are forced not to execute in the second interval
by the following constraint.

Constraint 14. For each τj ∈ lp(τi), L0
j = 0 and E1

j = LE1
j = 0.

2) Case (b): In this case the maximum number of intervals is
trivially Ni(t) = 2. In the first interval any task τj 6= τi may execute,
while a DMA-managed copy-in of a lower-priority task is canceled.
In the second interval, the processor sequentially performs the copy-
in and execution phases of τi. By properly replacing the new value
of Ni(t), the Constraints 2, 4, 5, 9, 10, 11, 13 and 14 can also be
used for this case. Additionally, the following constraint is enforced.

Constraint 15. ∆C
1 = li + Ci, ∆L

1 ≤ maxτj∈Γ(lj), and ∆U
0 ≤

maxτj∈Γ(uj).

Correctness of the MILP. The analysis provided by the above MILP
formulation aims at maximizing the delay suffered by the task under
analysis by maximizing Eq. (1). Hence, without any constraint, the
MILP yields a safe, but not useful bound equal to infinity. The MILP
constraints encode the rules of the proposed protocol proved above.
Each constraint added to the MILP excludes a class of impossible
schedules, thus reducing the pessimism in the delay bound. It follows
that, as long as each constraint is correct, the resulting MILP solution
still provides a safe delay bound.

VI. SCHEDULABILITY ANALYSIS

The WCRT of each task τi ∈ Γ can be bounded by solving the
MILP of Section V iteratively until convergence (convergence derives
from the result of the MILP being monotonically increasing with
respect to Ri as is typical of worst-case response time algorithms).
Upon termination, the MILP solution Ri converges to the WCRT
bound Ri that can be then used to check the task schedulability.

As highlighted in Properties 3 and 4, LS tasks may be blocked
by a smaller number of lower-priority tasks with respect to NLS
tasks. This may be an advantage for tasks with a tight deadline
for which a large blocking may easily compromise schedulability.
On the other hand, due to rules R4 and R5, LS tasks may increase
the interference on lower-priority tasks. Indeed, every time a task is
promoted to urgent, a copy-in phase is canceled (and hence it needs
to be performed again), thus potentially increasing the overall number
of copy-in phases to be performed by the DMA. Furthermore, every
time an LS task executes as urgent, its execution on core pk includes
a sequential copy-in phase, hence the maximum time it can occupy
pk is larger (i.e., bounded by li +Ci instead of Ci) than in the case
in which the DMA is used to hide the memory transfer delay of
the copy-in phase. Hence, it is important to carefully decide which
task is marked as LS. To this end, we suggest the usage of a greedy
algorithm. At the beginning, all tasks are NLS. Then, the WCRT
bound Ri is computed for each task τi ∈ Γ as discussed above. If
Ri > Di for some task τi, the algorithm checks whether τi is LS. If
τi is already marked as LS, the task set is deemed to be unschedulable
and the algorithm terminates. Otherwise, τi is marked as LS and all
the tasks are analyzed again. This procedure is iterated as long as
there exists an NLS task that misses its deadline (and is converted to
LS). If all tasks meet their deadlines, the algorithm terminates.

VII. EXPERIMENTAL RESULTS

This section presents the results of an experimental study that
has been conducted to evaluate the effectiveness of the proposed
approach. To this end, our approach has been compared against
standard non-preemptive scheduling [16] (NPS) and the protocol by
Wasly and Pellizzoni [3]. In the experimental evaluation, for each
task τi ∈ Γ, arrival curves follow a sporadic event model [17], where
each pair of job releases are separated by at least Ti units of time,
where Ti is the minimum inter-arrival time of τi. For each task,
Ti has been generated with log-uniform distribution in the interval
[10, 100]ms. Given a number of tasks n and an overall task set

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on June 18,2021 at 07:29:20 UTC from IEEE Xplore. Restrictions apply.

0.2 0.4 0.6 0.8 1
0

0.5

1

U

sc
he

d.
ra

tio
(a) n = 4, β = 1, γ = 0.1

0.2 0.4 0.6 0.8 1
0

0.5

1

U

sc
he

d.
ra

tio

(b) n = 4, β = 0.5, γ = 0.1

0.2 0.4 0.6 0.8 1
0

0.5

1

U

sc
he

d.
ra

tio

(c) n = 6, β = 1, γ = 0.25

0.2 0.4 0.6 0.8 1
0

0.5

1

U

sc
he

d.
ra

tio

(d) n = 8, β = 0.75, γ = 0.3

0.1 0.2 0.3 0.4 0.5
0

0.5

1

γ

sc
he

d.
ra

tio

(e) n = 5, β = 0.75, U = 0.5

0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

β

sc
he

d.
ra

tio

(f) n = 10, γ = 0.1, U = 0.5

This paper [3] NPS

Figure 2. Schedulability ratio achieved by comparing the proposed approach with the protocol in [3] and non-preemptive scheduling.

utilization U =
∑
τi∈Γ Ui, individual task utilizations Ui = Ci

Ti

have been generated with the UUnifast algorithm [18]. The WCET
of the execution phase has been obtained as Ci = Ti · Ui. Then, ui
and li have been derived as ui = li = γ · Ci, where γ ∈ [0.1, 0.5]
is a generation parameter that controls how much tasks are memory
intensive. The relative deadline Di is then randomly generated with
a uniform distribution in the interval [Ci + β(Ti − Ci), Ti]. The
experiments have been performed on a machine equipped with an
Intel Core i7-6700K @ 4.00GHz. The MILP presented in Section V
has been solved with IBM CPLEX. In all the tested configuration, the
proposed approach exhibited average and maximum running times in
the order of few hundreds of seconds and about one hour, respectively.
These measurements refer to the time required to analyze a task set
(including the time required for the greedy algorithm of Section VI,
which involves multiple executions of the analysis). Note that they
are compatible with the time-frame of an off-line analysis. Figure 2
shows six representative configurations, where the schedulability ratio
has been measured by varying the overall task set utilization (insets
(a)-(d)), and the parameters γ (inset (e)) and β (inset (f)). In all the
tested configurations, the proposed approach is able to schedule more
task sets than the protocol in [3] and non-preemptive scheduling,
with improvements up to 25% with respect to the protocol in [3]
(e.g., U = 0.8 in Figure 2(a)) and up to 60% with respect to non-
preemptive scheduling (e.g., U = 0.6 in Figure 2(c)). Thanks to a
reduced priority inversion, the proposed approach is able to perform
better than non-preemptive scheduling in all the tested configurations,
where there are several cases in which the protocol in [3] performs
worse (for instance, if γ = 0.1, as shown in Figure 2(a), (b)
and (e)) despite its advantage in executing parallel copy phases
using the DMA. Figure 2(e) shows that the advantage of using the
DMA increases as the time required to perform the memory phases
increases (varied by means of the parameter γ). Finally, Figure 2(f)
shows that the improvement achieved by using the proposed protocol
is higher when tasks have tight deadlines (i.e., a smaller β).

VIII. CONCLUSIONS

This paper presented a protocol to parallelize memory transfers
with a reduced priority inversion for latency-sensitive tasks. The cor-
responding timing analysis is formulated as an optimization problem,
which also allows improving the one in [3] for the specific case
in which no task is deemed latency sensitive. Experimental results
showed an improvement in terms of schedulable task sets up to 25%
with respect to prior work [3] and up to 60% with respect to non-

preemptive scheduling. Future research directions include the support
for parallel tasks and task chains.

REFERENCES

[1] G. Gracioli, A. Alhammad, R. Mancuso, A. A. Fröhlich, and R. Pel-
lizzoni, “A survey on cache management mechanisms for real-time
embedded systems,” ACM Comput. Surv., vol. 48, no. 2.

[2] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and
R. Kegley, “A predictable execution model for cots-based embedded
systems,” in 17th Real-Time and Embedded Technology and Applications
Symposium, 2011.

[3] S. Wasly and R. Pellizzoni, “Hiding memory latency using fixed priority
scheduling,” in 19th Real-Time and Embedded Technology and Applica-
tions Symposium (RTAS), 2014.

[4] R. Tabish, R. Mancuso, S. Wasly, A. Alhammad, S. S. Phatak, R. Pel-
lizzoni, and M. Caccamo, “A real-time scratchpad-centric os for multi-
core embedded systems,” in Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2016.

[5] R. Tabish, R. Mancuso, S. Wasly, R. Pellizzoni, and M. Caccamo, “A
real-time scratchpad-centric os with predictable inter/intra-core commu-
nication for multi-core embedded systems,” Real-Time Systems, 2019.

[6] NXP, QorIQ T1042 Reference Manual.
[7] M. Hassan and R. Pellizzoni, “Bounding dram interference in cots

heterogeneous mpsocs for mixed criticality systems,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 2018.

[8] D. Casini, A. Biondi, G. Nelissen, and G. Buttazzo, “A holistic mem-
ory contention analysis for parallel real-time tasks under partitioned
scheduling,” in Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2020.

[9] A. Alhammad and R. Pellizzoni, “Schedulability analysis of global
memory-predictable scheduling,” in Proceedings of the 14th Interna-
tional Conference on Embedded Software. ACM, 2014, p. 20.

[10] C. Maia, G. Nelissen, L. M. Nogueira, L. M. Pinho, and D. G. Prez,
“Schedulability analysis for global fixed-priority scheduling of the 3-
phase task model,” in 23rd International Conference on Embedded and
Real-Time Computing Systems and Applications, 2017.

[11] D. Casini, A. Biondi, G. Nelissen, and G. Buttazzo, “Memory feasibility
analysis of parallel tasks running on scratchpad-based architectures,” in
39th Real-Time Systems Symposium (RTSS), 2018.

[12] S. Wasly and R. Pellizzoni, “A dynamic scratchpad memory unit
for predictable real-time embedded systems,” in 2013 25th Euromicro
Conference on Real-Time Systems, 2013.

[13] A. Biondi and M. Di Natale, “Achieving predictable multicore execution
of automotive applications using the let paradigm,” in Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2018.

[14] G. Gracioli, R. Tabish, R. Mancuso, R. Mirosanlou, R. Pellizzoni, and
M. Caccamo, “Designing Mixed Criticality Applications on Modern
Heterogeneous MPSoC Platforms,” in 31st Euromicro Conference on
Real-Time Systems (ECRTS 2019), 2019.

[15] B. Rouxel, S. Skalistis, S. Derrien, and I. Puaut, “Hiding communication
delays in contention-free execution for spm-based multi-core architec-
tures,” in 31st Euromicro Conference on Real-Time Systems, 2019.

[16] G. C. Buttazzo, M. Bertogna, and G. Yao, “Limited preemptive schedul-
ing for real-time systems. a survey,” Feb 2013.

[17] K. Richter, “Compositional scheduling analysis using standard event
models: The SymTA/S approach.”

[18] E. Bini and G. Buttazzo, “Measuring the performance of schedulability
tests,” Real-Time Systems, vol. 30, no. 1, pp. 129 – 154, May 2005.

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on June 18,2021 at 07:29:20 UTC from IEEE Xplore. Restrictions apply.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32

 D:20170330081459
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryList_V1
 qi2base

