
78 IEEE EMBEDDED SYSTEMS LETTERS, VOL. 12, NO. 3, SEPTEMBER 2020

A Safe, Secure, and Predictable Software
Architecture for Deep Learning in

Safety-Critical Systems
Alessandro Biondi , Member, IEEE, Federico Nesti , Giorgiomaria Cicero ,

Daniel Casini, Student Member, IEEE, and Giorgio Buttazzo, Fellow, IEEE

Abstract—In the last decade, deep learning techniques reached
human-level performance in several specific tasks as image recog-
nition, object detection, and adaptive control. For this reason,
deep learning is being seriously considered by the industry to
address difficult perceptual and control problems in several
safety-critical applications (e.g., autonomous driving, robotics,
and space missions). However, at the moment, deep learning soft-
ware poses a number of issues related to safety, security, and
predictability, which prevent its usage in safety-critical systems.
This letter proposes a visionary software architecture that allows
embracing deep learning while guaranteeing safety, security,
and predictability by design. To achieve this goal, the architec-
ture integrates multiple and diverse technologies, as hypervisors,
run time monitoring, redundancy with diversity, predictive fault
detection, fault recovery, and predictable resource management.
Open challenges that stems from the proposed architecture are
finally discussed.

Index Terms—Deep learning, deep neural networks (DNNs),
fault-tolerance, machine learning, predictability, safety, safety-
critical systems, security.

I. INTRODUCTION

IN RECENT years, artificial intelligence (AI) made enor-
mous progresses thanks to the evolution of deep neural

networks (DNNs) and deep learning methodologies, which
reached human-level performance in several tasks, such as
image classification, object detection, and control. For these
reasons, several companies started considering the adoption
of DNNs as key components for increasing the perceptual
and control capabilities of autonomous systems, as advanced
robots and self-driving cars.

The software running in this type of systems must satisfy
several stringent requirements, especially, when humans are
involved in the loop. Among them, the following properties
are particularly crucial.

1) Certifiability: All safety-critical software components
must be written according to strict coding standards

Manuscript received July 5, 2019; revised September 27, 2019; accepted
October 31, 2019. Date of publication November 2, 2019; date of current
version August 27, 2020. This work was supported in part by the Department
of Excellence in Robotics and Artificial Intelligence at Scuola Superiore
Sant’Anna. This manuscript was recommended for publication by T. Mitra.
(Corresponding author: Alessandro Biondi.)

The authors are with TeCIP Institute, Scuola Superiore Sant’Anna, 56127
Pisa, Italy (e-mail: alessandro.biondi@sssup.it).

Digital Object Identifier 10.1109/LES.2019.2953253

(e.g., MISRA [1]) and certified by proper certification
authorities.

2) Safety and Fault-Tolerance: The system must prevent
catastrophic consequences on the user(s) and the envi-
ronment by proper mechanisms aimed at tolerating
faults and failures that could possibly occur in complex
software routines.

3) Time Predictability: These systems must react to events
in the environment within predefined time bounds, com-
puted at design time based on a set of performance
requirements. A control output delivered too late could
be useless or even dangerous (as an example, think of a
braking command in a self-driving car). This means that
such systems must be analyzable and verifiable not only
in the functional domain but also in the time domain.

4) Security: The software must be designed to protect the
system from cyber attacks that could exploit vulnerable
sections of the code to modify the software and take con-
trol of the system. For instance, in a self-driving vehicle,
a cyber attack could alter the control flow of some crit-
ical code to take control of the steering subsystem, with
potential catastrophic consequences.

Unfortunately, addressing such requirements is not straight-
forward when DNNs are used to process perceptual and
control functions, mainly for the following reasons.

1) DNNs are not 100% trustable. Although they proved
to achieve human-level performance in several tasks, as
image recognition and object detection, there can be
several unknown corner cases in which a DNN could
respond in a wrong way, especially, when the input is
quite different from the examples provided during train-
ing, due to particular circumstances, as occurred in the
Tesla accident [2]. In addition, there are still anomalous
behaviors that are not fully understood yet, as the case
of adversarial images [3], which are properly generated
from normal images by altering the values of some pix-
els to fool the network and cause a wrong desired output.
This technique could be used, for example, to attack an
autonomous vehicle by simply modifying a stop sign to
cause the DNN to fail in recognizing it.

2) DNN-based systems are commonly developed using
frameworks (e.g., TensorFlow and Caffe) that are not
compatible with the coding standards used for certify-
ing safety-critical software. In addition, when used for
object recognition and detection, DNNs process images
produced by cameras that are typically acquired by a
rich operating system (e.g., Linux or Android) that is
far from being certified.

1943-0671 c© 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on June 18,2021 at 07:46:14 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6625-9336
https://orcid.org/0000-0003-4338-9573
https://orcid.org/0000-0003-2795-8801

BIONDI et al.: SAFE, SECURE, AND PREDICTABLE SOFTWARE ARCHITECTURE FOR DEEP LEARNING IN SAFETY-CRITICAL SYSTEMS 79

3) Most of the inference engines used for executing DNNs
are designed to push the average performance, but they
introduce large and unpredictable delays in worst-case
scenarios, especially, when multiple DNNs need to be
executed concurrently on the same platform.

4) DDNs and their related inference engines are complex
and large software systems that increase the attack sur-
face, making the overall system more vulnerable to cyber
attacks. Furthermore, as the software infrastructure that
is typically required to infer DNNs is based on a rich
operating system, which may even be connected to the
Internet, the attack surface of a system can be even
larger.

A. This Letter

To address the problems presented above, this letter pro-
poses a visionary software architecture that allows embracing
DNNs to control safety-critical systems, while coping with
safety, security, and predictability issues, and enabling cer-
tification of the control software. To achieve this goal, the
proposed architecture combines the following technologies.

1) Hypervisor Technology: A hypervisor is used to isolate
components with different criticality and security levels,
hence allowing to protect the safety-critical components
from unexpected failures and cyber attacks by running
them in separated execution domains. In addition, the
hypervisor can be integrated with specific monitoring
units aimed at detecting crashes and anomalous behav-
iors of the rich operating system running the DNNs, thus
activating proper recovering procedures.

2) Redundancy and Diversity: Redundancy and diversity
is exploited to increase the robustness of deep learning
components and cope with possible faulty outputs of the
neural networks in corner-case situations.

3) Predictive Fault Detection: Digital-twin technology is
employed to simulate a virtual replica of the system
(digital-twin) in order to analyze the consequences of
control actions into the future, to detect possible faults
in advance.

4) Fault Recovery: A recovery mechanism is included to
exclude DNN-based controllers and switch to a sim-
pler but safer controller when a faulty control action
is detected or when the response of DNNs is judged to
be nonreliable.

5) Predictability: A predictable DNN inference engine is
provided to reduce and control the interference among
multiple concurrent DNNs running on the same platform
with different execution rates.

The remainder of this letter is organized as follows.
Section II briefly overviews the existing solutions. Section III
presents the proposed architecture. Section IV discusses the
open challenges.

II. EXISTING SOLUTIONS: BRIEF REVIEW

The literature on safe and secure software architectures is
quite vast: hence, due to lack of space, it is not possible to
report a detailed literature review in this letter. For this reason,
this section concentrates on previous work focused on DNNs
or autonomous systems.

In the past few years, several authors studied the robustness
and the safety of DNNs by addressing both testing and for-
mal verification issues. Testing mainly aims at finding corner

cases in which faulty outputs are produced, while verifica-
tion aims at determining whether a given property holds for
the DNN, providing a mathematical proof if this is the case,
or a counterexample if it is not. The interested reader can
refer to the survey by Huang et al. [4] for a detailed review
of the state-of-the-art of such techniques. Verification tech-
niques [5] suffer from severe scalability issues, which make
them not practically applicable to modern (complex) DNNs.
Testing techniques have been demonstrated to be applicable to
modern DNNs [4], [6]; however, they still require large-scale
computations, and it is still not clear how to generate suitable
test cases that can provide meaningful guarantees. In particu-
lar, it has been noted [7] that the classical notion of coverage in
software engineering does not directly apply to DNNs: how to
properly quantify the testing coverage of DNNs is still an open
problem, notwithstanding very interesting recent findings [8].

This letter adopts a very different approach with respect
to those surveyed in [4]: complex DNNs are assumed to be
untrustworthy for being directly involved in the control loop
of a safety-critical system. Therefore, the authors of this letter
argue that they should be coupled with a certifiable, safe con-
troller in a (so-called) simplex scheme [9] (also referred to as
safety executive pattern by other authors [10]), and deployed
by following redundancy paradigms with diversity. Note that
this does not mean that testing techniques for DNNs are not
useful in our approach, as they can help contain the faults
of DNNs anyway. Verification techniques may also be used
in our architecture to verify simpler neural components (see
Section IV).

Concerning timing predictability of DNNs, some authors
started addressing the problem by looking at the case of GPU-
based accelerators. Zhou et al. [11] proposed a fine-grained
pipelined scheduling of DNNs on GPUs with data fusion
for video streaming applications. Similarly, Yang et al. [12]
employed DNN decomposition and parallel pipelined execu-
tion to improve the throughput of multicamera detection tasks
for automated driving systems.

Limited attention has also been posed on system-level
and architectural aspects to leverage DNNs in safety-critical
systems while taking into account certification issues, appli-
cability to standards, and technical requirements, such as the
compatibility of software stacks with critical components. For
instance, Luo et al. [13] studied some of these issues in the
context of autonomous driving, targeting the ISO 26262 safety
standard, but not explicitly focusing on DNNs.

Overall, to the best of our records, no efforts have been spent
in designing a comprehensive software architecture that allows
embracing deep learning while ensuring safety, security, and
predictability by design.

III. PROPOSED ARCHITECTURE

The software architecture proposed in this letter is illus-
trated in Fig. 1 and is composed of five major components,
each described in one of the following sections. It is conceived
as a general design approach to develop next-generation con-
trol software that interacts with a physical plant by means of
actuators, and both legacy and modern high-performance (HP)
sensors (such as high-resolution 3-D cameras).

A. Hypervisor-Centric Multi-OS Infrastructure

The proposed architecture is built upon a bare-metal hyper-
visor that serves the execution of two execution domains: 1) a

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on June 18,2021 at 07:46:14 UTC from IEEE Xplore. Restrictions apply.

80 IEEE EMBEDDED SYSTEMS LETTERS, VOL. 12, NO. 3, SEPTEMBER 2020

Fig. 1. Illustration of the proposed architecture.

noncritical domain, which is managed by a rich operating
system such as Linux and 2) a critical domain, which is man-
aged by a real-time operating system (RTOS). The hypervisor
and the critical domain represent the trusted computing base
of the architecture and are the only software components that
are assumed to be certified. The entire system must be fail-
safe or fail-operational as long as these two components are
not compromised, whereas the noncritical domain can crash
or be subject to cyber attacks.

Most of the HP communication buses and network
interfaces, and in turn the corresponding HP sensors con-
nected via them, are only exposed to the noncritical domain.
The same holds for complex hardware accelerators offered by
the underlying computing platform (e.g., GPUs). This design
choice is driven by practical matters: in most of the cases,
the device drivers and the software stacks required to man-
age these components are only available for rich operating
systems. Conversely, legacy sensors are exposed to both the
execution domains, as they are typically connected via simpler
peripherals (such as analog-to-digital converters) that can be
managed without requiring complex software.

Finally, the actuators that enable physical actions on the
controlled plant are only exposed to the critical domain, as
they may have a direct impact on the safety properties of
the entire system. Interdomain communication channels are
offered by the hypervisor to implement safe, secure, and
predictable control loops.

B. Simplex Architecture With Redundancy

Two controllers are employed: an HP controller based on
DNNs, which executes in the noncritical domain, and a simpler
safe controller based on rigorous engineering, which executes
in the critical domain. To increase its robustness and deal
with corner-case scenarios that are difficult to detect during
testing, the HP controller is composed of diverse replicas of
DNN-based controllers. Each of such DNN-based controllers
may employ different DNNs built with different models and/or
trained with different data sets, provided that they take the
same inputs and produce the same kind of outputs. Note that
a DNN-based controller can either produce outputs directly
with a DNN or rely on DNNs to perform a specific task in
the control logic (e.g., perception). The outputs of the HP
controller are transmitted to the critical domain by means of

communication channels offered by the hypervisor, where they
are subject to voting and consolidation to produce the actual
commands for the actuators. The safe controller is developed
with well-established engineering techniques, such as model-
based design with hardware-in-the-loop or simulation-based
testing, and shall be able to keep the physical plant in fail-
safe or fail-operational conditions for any input produced by
the sensors.

A switching logic is employed in the critical domain to
provide the physical plant with either the control outputs pro-
duced by the HP controller or those produced by the safe
controller. This design is conceived in such a way that the
HP controller is used in regular operating conditions (hope-
fully, most of the time), while the system must switch to the
safe controller whenever the outputs produced by the HP con-
troller are judged not reliable or are not present (e.g., in the
presence of a crash or a denial-of-service attack in the noncrit-
ical domain). Note that, in this way, DNN-based controllers
can be totally excluded from the certification process.

The main component that controls the switching logic is the
functional monitor. It takes in input the sensors exposed to the
critical domain and the outputs produced by the HP controller
to decide whether the latter may be dangerous for the physi-
cal plant. It also implements a watchdog mechanism to detect
tardy (i.e., not delivered within control-dependent deadlines)
or missing outputs from the HP controller, to which it reacts by
switching to the safe controller. Finally, the functional monitor
must also be capable of deciding when it is possible to switch
back to the HP controller, paying attention at implementing
hysteresis mechanisms to avoid frequent switches and/or make
the system unstable [14]. The design of the functional mon-
itor is one of the major challenges in realizing the proposed
architecture—further details are provided in Section IV. The
switch to the safe controller can also be driven by a look-ahead
simulator and hypervisor-level monitors, which are discussed
in Sections III-C and III-D, respectively. All these compo-
nents that can trigger the switching logic are conceived to be
uncorrelated with each other, i.e., each of them is in charge
of independently detecting a certain class of faults with some
component-specific technique.

C. Look-Ahead Simulator

Digital-twin technology is employed as an additional com-
ponent of the architecture. It consists of a simulation of the
physical plant that is controlled by the same control logic used
for the real plant. The HP controller is replicated to be stim-
ulated by the inputs produced by the simulation. Indeed, a
different instance of the HP controller is required because
its internal state during simulations will be different from
the internal state maintained during the actual control of the
real plant. A replica of the voting and output consolidation
logic is also integrated within the simulator to process the
outputs produced by the replica of the HP controller. The
objective of this simulation environment is to predict the effect
of the outputs produced by the HP controller on the phys-
ical plant, with the purpose of detecting possible dangerous
control actions in advance. To do so, the simulator may also
need to test multiple possible evolutions of the system state
(corresponding to different future inputs). For these reasons,
this component is denoted as look-ahead simulator. When
a potentially dangerous control action is detected in simula-
tion, the simulator triggers the switch to the safe controller

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on June 18,2021 at 07:46:14 UTC from IEEE Xplore. Restrictions apply.

BIONDI et al.: SAFE, SECURE, AND PREDICTABLE SOFTWARE ARCHITECTURE FOR DEEP LEARNING IN SAFETY-CRITICAL SYSTEMS 81

to exclude the HP controller, hence preventing a potential
fault. Note that a late fault detection by the functional monitor
may allow the safe controller to bring the plant into a fail-
safe state only. Conversely, if a fault is detected in advance
by the look-ahead simulator, it is possible to enable earlier
switches to the safe controller (before the intervention of the
functional monitor) that may allow the safe controller to keep
the plant in a fail-operational state. This clearly improves the
system performance in the presence of faults and simplifies
fault recovery.

The look-ahead simulator is implemented in the noncritical
domain because it relies on a replica of the HP controller. Note
that it may generate a considerable increase of the computing
workload due to the replication of the HP controller, which
in turn increases the required amount of computing resources
and hence the cost and the energy consumption of the system.
Furthermore, disposing of an accurate physical model of the
plant may not be possible for some application scenarios. For
these reasons, the look-ahead simulator is considered as an
optional component.

D. Hypervisor-Level Monitoring

Two run time monitoring mechanisms are employed at
the hypervisor level to ensure safety and security guaran-
tees, namely, the security monitor and the health monitor.
The security monitor is in charge of detecting cyber attacks
and unauthorized intrusions in the system, with the purpose
of triggering recovery actions whenever one of such critical
events is identified. For instance, if control-flow integrity [15]
is enforced in the noncritical domain, the security monitor can
detect control-flow violations (i.e., illegal execution flows) and
react by forcing the switch to the safe controller in the critical
domain, independently of the functional monitor. The detected
attacks may also be logged by the security monitor by relying
on a secure storage. The health monitor supervises the exe-
cution of the software domains and the operating conditions
of the underlying computing platform. Similarly to the secu-
rity monitor, it triggers recovery actions whenever failures are
detected. The typical tasks performed by the health monitor
include: 1) the detection of software crashes in the noncriti-
cal domain, to which it reacts by handing over the control of
the system to the critical domain and 2) the diagnostic test of
peripheral devices and memories.

E. Predictable DNN Inference Engine

As pointed out in the introduction, existing DNN frame-
works introduce computation delays that are difficult to
predict, and leave room for several pathological scenarios
that lead to large delays compared to those exhibited in the
average case. When supporting the execution of multiple, con-
current DNNs, possibly running at different rates, the timing
performance of DNNs can be even worse, especially, when
the DNNs contend for hardware accelerators that do not sup-
port fine-grained pre-emptions of ongoing computations or a
user-controllable sharing of the computing resources. These
issues are further exacerbated in the context of the proposed
architecture, when the computing workload related to DNNs is
increased due to redundancy and replication for the look-ahead
simulator.

For these reasons, a predictable DNN inference engine
is employed in the nonsecure domain. It adopts princi-
pled scheduling schemes for the computing resources and

optimization-based mapping of the DNN layers to the com-
puting resources, with the purpose of guaranteeing worst-case
response-time bounds or provable long-tail latencies for infer-
ence tasks. The timing guarantees provided by this engine are
used to configure the watchdog mechanism of the functional
monitor (see Section III-B).

IV. OPEN CHALLENGES

Realizing the architecture proposed in the previous sec-
tion requires overcoming several challenges, ranging from the
investigation of unexplored (or limitedly explored) research
topics to the selection, composition, and configuration of
existing solutions. The authors of this letter believe that the
proposed architecture can serve as a research platform upon
which several problem-specific contributions can be proposed,
both in terms of theoretical/analytical results and system-level
mechanisms.

The design of the functional monitor is probably the most
challenging task. Existing solutions addressed the problem by
using pure control-theoretic approaches, such as the identi-
fication of a safe stability region of the plant [16], reacha-
bility analysis for hybrid systems [14], [17], or just reactive
approaches based on fault detection [18]. However, these solu-
tions may be either not applicable to complex plants, or lead
to poor performance (i.e., a too conservative behavior of the
functional monitor) such that DNN-based controllers become
ineffective. Therefore, the authors still consider this letter topic
widely open. In particular, an interesting direction may consist
in investigating the design of functional monitors with neu-
ral networks. Note that the task performed by the functional
monitor is intrinsically different from the one performed by
the DNN-based controllers, as its main objective is to detect
(or infer on the presence of) faulty outputs produced by DNN-
based controllers. The logic required to detect a faulty control
output may be far simpler than the one required to compute
a correct output. Therefore, simpler DNNs that are fully ver-
ifiable with formal techniques, or either testable with a very
high degree of coverage in a reasonable amount of time may
be devised to implement the functional monitor. Furthermore,
note that the inputs of DNN-based controllers are just addi-
tional data that may or may not be used by the functional
monitor depending on the specific application (see the connec-
tions at the top of Fig. 1). For instance, when the HP controller
includes DNNs used for image perception, the functional mon-
itor could not take such images as inputs, but just the control
outputs produced by the HP controller and other information
coming from noncamera sensors.

Concerning the realization of the look-ahead simulator, the
key challenge consists in achieving accurate simulations of the
plant. Indeed, for complex application environments, it may be
extremely difficult to dispose of accurate models. Research
efforts should be spent to assess whether the adoption of
less accurate, but tractable, models can lead to reasonable
performance for specific application scenarios. The most rel-
evant performance metrics for the look-ahead simulator are:
1) the ratio of false positives, which should clearly be as low
as possible and 2) the prediction time with which it is capa-
ble of detecting faults in advance, which should be shorter
than the one of the functional monitor. The look-ahead simu-
lator also originates challenges related to the efficiency of its
implementation. Indeed, it may necessitate to manage large
amounts of data (think of stereo high-resolution images and

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on June 18,2021 at 07:46:14 UTC from IEEE Xplore. Restrictions apply.

82 IEEE EMBEDDED SYSTEMS LETTERS, VOL. 12, NO. 3, SEPTEMBER 2020

point clouds) and multiple simulations (to cope with different
future inputs) in a limited amount of time. For these reasons,
it is either applicable in systems with highly powerful comput-
ing platforms (e.g., when cost constraints are not particularly
relevant) or in resource-constrained systems with loose timing
constraints, such as industrial machineries for manufacturing
automation.

Despite relevant achievements have been reached in opti-
mizing the inference of DNNs, very limited efforts have been
devoted to improving their execution predictability. Due to the
large availability of software stacks, e.g., as those offered by
Nvidia, most proposals focused on the case of hardware accel-
eration with GPUs. They however are known to suffer from
low predictability due to both the adopted scheduling policies
and the scarce information publicly available on their internal
structure. Future research should also assess whether other
technologies are more suited to predictably infer DNNs. In par-
ticular, the authors believe that the use of field-programmable
gate arrays (FPGAs), especially, those that support dynamic
partial reconfiguration [19], represent a very flexible solu-
tion to enable the predictable acceleration of DNNs. Indeed,
they allow deploying efficient and customized accelerators
that exhibit a very regular (and hence predictable) execution
behavior, while also offering the possibility of adopting a fine-
grained control of the memory traffic, which in the case of
DNNs tend to significantly affect the timing performance of
the accelerators due to the large amount of data involved in
modern DNN models.

Future research should also not ignore state-of-the-art
optimization techniques for inferring DNNs, such as the use of
integer weights and layer fusion, when designing predictable
inference engines. For instance, in the case of GPUs, efficient
tools such as TensorRT [20] should not be ignored.

The selection and the configuration of hypervisor-level mon-
itoring mechanisms, and their integration with the switching
logic, is another system-level problem to be solved. The
support for restart-based fault-tolerance mechanisms, such as
the one proposed by Abdi et al. [21], is another interesting
direction to be investigated.

Finally, interesting research can be carried out by applying
the proposed architecture to specific application scenarios to
demonstrate its effectiveness in practical settings.

REFERENCES

[1] MISRA. Accessed: Nov. 26, 2019. [Online]. Available:
https://www.misra.org.uk/

[2] “Collision between a car operating with automated vehicle con-
trol systems and a tractor-semitrailer truck near williston, Florida
May 7, 2016,” Nat. Transp. Safety Board, Washington, DC, USA, Rep.
NTSB/HAR-17/02, 2017.

[3] C. Szegedy et al., “Intriguing properties of neural networks,”
arXiv:1312.6199v4 [cs.CV], 2014. [Online]. Available:
https://arxiv.org/abs/1312.6199

[4] X. Huang et al., “Safety and trustworthiness of deep neural networks:
A survey,” arXiv:1812.08342v2 [cs.LG], 2018. [Online]. Available:
https://arxiv.org/abs/1812.08342v2

[5] S. W. X. Huang, M. Kwiatkowska, and M. Wu, “Safety verification
of deep neural networks,” in Proc. 29th Int. Conf. Comput.-Aided
Verification (CAV), 2017, pp. 3–29.

[6] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing of
deep-neural-network-driven autonomous cars,” in Proc. 40th Int. Conf.
Softw. Eng., 2018, pp. 303–314.

[7] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox
testing of deep learning systems,” in Proc. 26th Symp. Oper. Syst. Princ.,
2017, pp. 1–18.

[8] Y. Sun, X. Huang, D. Kroening, J. Sharp, M. Hill, and R. Ashmore,
“Testing deep neural networks,” arXiv:1803.04792 [cs.LG], 2019.
[Online]. Available: https://arxiv.org/abs/1803.04792

[9] L. Sha, “Using simplicity to control complexity,” IEEE Softw., vol. 18,
no. 4, pp. 20–28, Jul. 2001.

[10] B. P. Douglass, Real-Time Design Patterns: Robust Scalable
Architecture for Real-Time Systems. Boston, MA, USA: Addison-Wesley
Professional, 2002.

[11] H. Zhou, S. Bateni, and C. Liu, “S3DNN: Supervised streaming and
scheduling for GPU-accelerated real-time DNN workloads,” in Proc.
IEEE Real Time Embedded Technol. Appl. Symp. (RTAS), Apr. 2018,
pp. 190–201.

[12] M. Yang et al., “Re-thinking CNN frameworks for time-sensitive
autonomous-driving applications: Addressing an industrial challenge,”
in Proc. IEEE Real Time Embedded Technol. Appl. Symp. (RTAS),
Apr. 2019, pp. 305–317.

[13] Y. Luo, A. K. Saberi, T. Bijlsma, J. J. Lukkien, and M. van den Brand,
“An architecture pattern for safety critical automated driving appli-
cations: Design and analysis,” in Proc. Annu. IEEE Int. Syst. Conf.
(SysCon), Apr. 2017, pp. 1–7.

[14] S. Bak, T. T. Johnson, M. Caccamo, and L. Sha, “Real-time reachability
for verified simplex design,” in Proc. IEEE Real Time Syst. Symp., 2014,
pp. 138–148.

[15] N. Burow et al., “Control-flow integrity: Precision, security, and
performance,” ACM Comput. Surveys, vol. 50, no. 1, Apr. 2017,
Art. no. 16.

[16] D. Seto, B. Krogh, L. Sha, and A. Chutinan, “The simplex architecture
for safe online control system upgrades,” in Proc. Amer. Control Conf.,
Jun. 1998, pp. 3504–3508.

[17] S. Bak, K. Manamcheri, S. Mitra, and M. Caccamo, “Sandboxing con-
trollers for cyber-physical systems,” in Proc. IEEE/ACM 2nd Int. Conf.
Cyber Phys. Syst., 2011, pp. 3–12.

[18] K. Vivekanandan, G. Garcia, H. Yun, and S. Keshmiri, “A simplex
architecture for intelligent and safe unmanned aerial vehicles,” in Proc.
IEEE Int. Conf. Embedded Real Time Comput. Syst. Appl., 2016,
pp. 69–75.

[19] A. Biondi, A. Balsini, M. Pagani, E. Rossi, M. Marinoni, and
G. Buttazzo, “A framework for supporting real-time applications on
dynamic reconfigurable FPGAs,” in Proc. IEEE Real Time Syst. Symp.
(RTSS), Dec. 2016, pp. 1–12.

[20] Nvidia TensortRT. Accessed: Nov. 26, 2019. [Online]. Available:
https://developer.nvidia.com/tensorrt

[21] F. Abdi, C.-Y. Chen, M. Hasan, S. Liu, S. Mohan, and M. Caccamo,
“Guaranteed physical security with restart-based design for cyber-
physical systems,” in Proc. 9th ACM/IEEE Int. Conf. Cyber Phys. Syst.,
2018, pp. 10–21.

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on June 18,2021 at 07:46:14 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

