
Received: 20 December 2019 Revised: 4 March 2020 Accepted: 25 March 2020

DOI: 10.1002/spe.2840

R E S E A R C H A R T I C L E

Timing isolation and improved scheduling of deep neural
networks for real-time systems

Daniel Casini1,2 Alessandro Biondi1,2 Giorgio Buttazzo1,2

1Department of Excellence in Robotics &
AI, Scuola Superiore Sant'Anna, Pisa, Italy
2TeCIP Institute, Scuola Superiore
Sant'Anna, Pisa, Italy

Correspondence
Daniel Casini, Department of Excellence
in Robotics & AI, Scuola Superiore
Sant'Anna, Pisa, Italy.
Email: daniel.casini@santannapisa.it

Summary
In recent years, the performance of deep neural networks (DNNs) is signif-
icantly improved, making them suitable for many application fields, such as
autonomous driving, advanced robotics, and industrial control. Despite a lot
of research being devoted to improving the accuracy of DNNs, only limited
efforts have been spent to enhance their timing predictability, required in sev-
eral real-time applications. This paper proposes a software infrastructure based
on the Linux operating system to integrate DNNs within a real-time multicore
system. It has been realized by modifying both the internal scheduler of the pop-
ular TensorFlow framework and the SCHED_DEADLINE scheduling class of
Linux. The proposed infrastructure allows providing timing isolation of DNN
inference tasks, hence improving the determinism of the temporal interference
generated by TensorFlow. The proposal is finally evaluated with a case study
derived from a state-of-the-art benchmark inspired by an autonomous industrial
system. Extensive experiments demonstrate the effectiveness of the proposed
solution and show a significant reduction of both average and longest-observed
response times of TensorFlow tasks.

K E Y W O R D S

deep learning, neural networks, predictability, real-time systems, temporal isolation, tensorflow

1 INTRODUCTION

The huge performance improvement recently achieved by deep neural networks (DNNs) has motivated their use in a large
number of fields, such as autonomous driving,1 robotics,2 particles detection,3 and industrial control.4 A measure of such
an improvement is given by the results of a popular challenge for assessing the performance of DNNs:5 the error rate for
image classification tasks has been reduced from 28% in 2010 to 2.3% in 2017,6 surpassing human capabilities in a similar
context. A DNN is an information processing system inspired by the structure of a mammalian brain, hence consisting
of a network of nodes (or neurons) exchanging data through directed channels modulated by synaptic weights. Weights
are randomly initialized and then tuned by means of a learning algorithm. In a supervised learning paradigm, the neural
network is trained by examples to match specific inputs with expected outputs and the weights are modified as a function
of an error defined on the output neurons. DNNs are commonly developed and inferred by means of state-of-the-art
frameworks, such as Tensorflow, Caffe, and Torch, which ease the development of new DNN architectures.

Unfortunately, none of the current frameworks are specifically optimized for being used in real-time applications,
where computational activities (ie, tasks) are subject to timing constraints, and they are not supported by commercial

1760 © 2020 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/spe Softw: Pract Exper. 2020;50:1760–1777.

https://orcid.org/0000-0003-4719-3631
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fspe.2840&domain=pdf&date_stamp=2020-06-01

CASINI et al. 1761

real-time operating systems (eg, VxWorks, QNX). For instance, if adopted in automotive systems for image recog-
nition and autonomous driving, DNNs should have a highly predictable behavior not only with respect to their
functional aspects, but also in the time domain, responding within specific deadlines. With the aim of improving
space, weight, energy, and costs, DNNs will likely be executed on top of the same hardware platform used for other
real-time tasks (eg, image acquisition, actuation, etc.). As a consequence, DNN tasks may be subject to a variable inter-
task interference, generated by the concurrent execution of other critical tasks, which can jeopardize their temporal
correctness.

An effective solution to overcome this problem is to isolate the execution of time critical activities through a resource
reservation mechanism,7 which allocates and guarantees a fraction of the processor bandwidth to given task sets, thus
limiting the interference from other isolated tasks. The adoption of a reservation algorithm is also supported by the fact
that an accurate worst-case execution time (WCET) estimate is often not available for DNN tasks, especially when they are
executed by means of inference frameworks.

1.1 Contributions

This paper aims at providing support for enhancing the timing predictability of DNNs, managed by the popular Ten-
sorFlow framework, and running under Linux on top of a multicore platform shared with other real-time tasks. The
following contributions are provided. First, a deep code inspection has been performed and reported to understand how
TensorFlow dispatches DNN operations. Also, the parallel computational graph generated by Tensorflow when execut-
ing a complex state-of-the-art DNN has been profiled for understanding the peculiar features of such a workload. This
knowledge has been used to introduce a budget overrun mechanism in Linux, which enables overcoming to possible
performance degradation introduced by the usage of the SCHED_DEADLINE scheduling class of Linux for providing
temporal isolation for TensorFlow. Furthermore, the TensorFlow scheduler has been modified by introducing a localized
work-stealing policy, which aims at improving data locality during DNN inference tasks. The proposed techniques have
been evaluated by means of a case study inspired by an autonomous industrial system. Experiments show that adopt-
ing the proposed solution allows improving both the average-case and the longest-observed response times of DNNs
up to 30%, with respect to standard approaches. To the best of our knowledge, this is the first work addressing the
problem of scheduling DNNs in real-time systems under temporal isolation (achieved by resource reservation techniques).
In addition, as the DNN workload generated by TensorFlow can be modeled by parallel task graphs with prece-
dence constraints, this paper provides a practical and effective solution for handling such kind of tasks under resource
reservation.

2 TENSORFLOW INTERNALS AND BACKGROUND

TensorFlow is a machine learning framework developed by Google that is capable of both training and inferring DNNs,
currently released for Linux, Windows, and MacOS. Each DNN is represented by a directed acyclic dataflow graph,8
denoted in the following as TensorFlow graph (TFG), whose nodes represent the fundamental algorithmic and math-
ematical operations (eg, matrix multiplications and convolutions) needed to run the DNN. The core of TensorFlow is
developed in C++. To infer a DNN, TensorFlow uses a specific C++ object, denoted as Session, which is in charge of
executing the operations of the DNN by respecting the corresponding precedence constraints specified by the edges of the
TFG. Each DNN operation is partitioned on the available devices [ie, groups of Central Processing Units (CPUs), Graphics
Processing Unit (GPUs), etc.] and then internally dispatched by the selected device.

This work focuses on the case in which DNNs are inferred on a multicore CPU platform with m identical cores (ie,
no interdevice partitioning is needed). Under this configuration, TensorFlow (by default) exploits the Eigen9 mathemat-
ical library for implementing the DNN operations. To exploit multicore platforms, Eigen parallelizes the mathematical
operations creating a large set of small sequential execution units, referred to as elementary nodes, which are subject
to precedence constraints. Elementary nodes are non-preemptively scheduled by work-first scheduling10 (WFS) using a
thread pool. The specific implementation of WFS adopted in Eigen includes per-thread work queues. Elementary nodes
are dispatched to such work queues as follows: (i) if an elementary node n has been created by another elementary node
n′, then n is inserted in the work queue of the thread that executed n′; otherwise, (ii) n is inserted in a randomly selected
work queue. Then, each thread accesses its local queue in a first-in-first-out (FIFO) manner to select the next operation to

1762 CASINI et al.

execute. Eigen also employs a randomized work-stealing technique to ensure load balancing between the various threads
of the pool: whenever a thread finds its queue empty, it steals work from the work queues of other randomly selected
threads by accessing them in last-in-first-out order. The stolen work must correspond to nodes that are still waiting to be
selected for execution (ie, not already started to execute). Migration is not supported because the elementary nodes are
user-space entities (the work queues manage pointers to C++ functions).

Overall, note that TensorFlow generates two levels of concurrency: a first one to handle the operations of the TFG, and
a second one to serve the execution of the elementary nodes created by Eigen (ie, dealing with the inner parallelism present
in the mathematical operations). Each TensorFlow Session object instantiates two thread pools to handle such two
levels, denoted as inter-op and intra-op thread pools, respectively. The threads of both thread pools are finally scheduled by
the underlying operating system, which in our case is Linux. The TensorFlow runtime environment is shown in Figure 1,
where only a single thread pool is considered for simplicity. By default, each pool comprises a number of threads equal
to the number of available cores.

2.1 An example: the InceptionV3 DNN

To better understand the structure of a complex DNN workload, the TFG resulting from a state-of-the-art DNN, named
InceptionV3,11 has been profiled on a 8-core Intel i7-6700K machine running at 3.5GHz and equipped with 32GB of RAM
memory under TensorFlow v1.5. InceptionV3 is a popular image classifier DNN.

The resulting TFG is composed of 702 operations. At the Eigen level, the workload is further decomposed, reach-
ing more than 34 000 elementary nodes. Figure 2 shows the histogram of the execution times of the elementary
nodes of InceptionV3, which are very lightweight, as only about 400 of them (less than the 1.2% of the total nodes)
reported execution times larger than 100 microseconds. The operations involved in InceptionV3 are also particularly
memory-intensive: the amount of data exchanged (following a producer-consumer paradigm) between two nodes of
the TFG memory varies from 0 (a simple precedence constraint) to 8.2 MB, with an average of 334 kB computed
over 1806 TFG edges. Overall, the amount of data exchanged by the nodes of the TFG of InceptionV3 amounts
to 603 MB.

TensorFlow Run�me Environment

Core 0 Core 1 Core 2 Core 3

TensorFlow Dispatcher

OS Scheduler

Thread Pool
Thread 0 Thread 1 Thread 2 Thread 3

.

.

.

RunQueue
.
.
.

.

.

.

.

.

.

Work Stealing

Nodes

F I G U R E 1 Illustration of the
TensorFlow runtime environment with a
single thread pool. Each thread disposes
of a local queue. When the local queue is
empty, threads can steal work from other
queues. Threads are in turn scheduled
upon the available cores by the operating
system

F I G U R E 2 Histogram of the profiled node execution
times of the InceptionV3 DNN. They-axis has a logarithmic
scale [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com

CASINI et al. 1763

From the above results it is possible to derive two important observations.
Observation 1. Due to the large number of elementary operations dispatched by Eigen, state-of-the-art DNNs are

likely to originate a very complex parallel workload and hence scheduling decisions may have a significant impact on
their timing performance.

Observation 2. Due to the presence of memory-intensive workloads, scheduling decisions that privilege data locality
may improve the timing performance of DNNs (eg, by reducing the delays related to cache misses).

2.2 Linux and resource reservation

Since in the considered setting TensorFlow executes on Linux, it is important to briefly summarize the Linux scheduling
capabilities. By default, Linux uses the Completely Fair Scheduler (CFS), which has the aim of maximizing both the
overall CPU utilization and the performance of interactive tasks. Linux also includes other scheduling policies, such
as fixed-priority, named SCHED_FIFO and SCHED_RR, and earliest deadline first (EDF), which is implemented by the
SCHED_DEADLINE scheduling class.12 SCHED_DEADLINE also implements a resource reservation mechanism by means
of the Hard Constant Bandwidth Server (HCBS)13 algorithm, which allows reserving, in a periodic fashion, a time budget
of Q units every P units, to serve the execution of a given thread. In this way, threads are subject to timing isolation, in
the sense that the response time of a thread is not affected by the timing behavior of other threads, but only depends on
its own execution time and the amount of reserved budget. Such a scheduling mechanism is particularly useful to better
control the timing performance of real-time tasks and shield the system from possible misbehaviors. Parameters Q and P
are denoted as budget and period, respectively, and can be configured for each thread by means of a system call. Finally, it
is worth mentioning that the Linux real-time performance can also be improved by applying the PREEMPT_RT patch,14,15

a variant of Linux aimed at improving kernel latency by allowing the preemption of kernel functions.

3 RELATED WORK

To our records, no other works focused on supporting the temporal isolation for DNN inference frameworks nor on
extending their CPU scheduler to improve data locality.

The works related to this paper discussed in this section are classified in the following categories: (i) scheduling of
deep neural networks and (ii) techniques for handling budget exhaustion of dependent reservations.

3.1 Scheduling of DNN

Albaqsami et al16 targeted the problem of optimizing the mapping of TensorFlow operations to computing devices for
achieving a speed-up in the training phase. The authors used a genetic algorithm to determine whether to execute each
operation on a CPU or a GPU, using different fitness functions. The operation-to-device partitioning does not require
modifications to the TensorFlow internals, and it can be performed with the default Python API for TensorFlow. Zhou
et al17 proposed a pipeline scheduling solution aimed at optimizing the execution of DNN workload on GPUs, while Yang
et al18 identified a combination of techniques to support multiple cameras with an improved throughput in the context
of automated-driving systems. In the context of mobile devices, Lane et al19 proposed two runtime algorithms to decom-
pose a DNN model across available processors with the purpose of improving performance and energy-efficiency. Very
recently, a similar purpose has been pursued by Kang and Chung,20 and Bateni et al.21 Hong et al22 presented an extended
synchronous dataflow model aimed at explicitly expressing the parallelism of loop structures, allowing to model the com-
putational graph of a DNN during the training phase. Casini et al23 proposed approaches for bounding the worst-case
response time of parallel tasks implemented with thread pools, using a task model inspired by Tensorflow. Bateni and
Liu24 explored methods for reducing the execution costs of DNN layers at the expense of a reduced accuracy. Finally, it
is worth mentioning TensorRT,25 a framework provided by NVIDIA to improve the performance-inference of DNNs on
GPUs by implementing various optimizations, for example, quantizing floating-point numbers and merging successive
layers. TensorRT is a proprietary product and its internal behavior is not publicly disclosed. Recently, much research has
been devoted to improve performance and predictability when executing DNNs on GPU accelerators. For example, Fors-
berg et al26 presented a mechanism to control the memory traffic on GPU-based SoCs (a prototype implementation has

1764 CASINI et al.

been developed on the Tegra TX1 platform by Nvidia). Similar mechanisms have been proposed by Capodieci et al27 and
Ali and Yun.28 Capodieci et al29 implemented the constant bandwidth server (also used in this paper to provide timing
isolation of Tensorflow threads) for scheduling CUDA kernels on Nvidia GPUs. Unfortunately, their work is not publicly
available.

3.2 Techniques for handling budget exhaustion of dependent reservations

The problem of handling budget exhaustions for dependent reservations have been studied in the literature in the context
of shared resources protected by mutexes. To the best of our knowledge, this is the first work considering issues related
to budget exhaustion and precedence constraints in the context of DNN executed by pools of threads.

The budget overrun technique was first proposed by Ghalazie and Baker30 in the context of aperiodic task scheduling
with shared resources, and later analyzed by Davis and Burns31 under fixed-priority scheduling and by Behnam et al32,33

under EDF.
Davis and Burns31 proposed two different approaches for budget overrun, with and without payback: in the first one

if a reservation overruns by x units of time, its following instance is replenished by Q − x units of budget, whereas, in the
second approach, reservations are always replenished by Q. Due to its advantages in terms of system schedulability,31,33

this paper considers a budget overrun mechanism with a payback policy.
Other techniques have been designed to reduce the delay caused by reservations with exhausted budget holding the

lock of a shared resource. For instance, Lamastra et al34 and De Niz et al35 proposed budget inheritance mechanisms
(also called proxy execution) for uniprocessor systems, which allow the reservation managing a task blocked on a shared
resource to inherit the budget of another reservation that is waiting for the same resource. This mechanism has been
later extended to multiprocessor systems, for example, by Faggioli et al.36 Differently, the SIRAP37 protocol performs a
budget check every time a lock on a shared resource is requested: if the budget is enough to complete the critical section
the lock is given to the requesting reservation, otherwise the access is granted only at the next budget replenishment.
The BROE38,39 protocol performs a similar budget check at each lock request, but, if the current budget is not enough
to complete the execution of the critical section, the budget is replenished to the maximum value and the deadline is
postponed proportionally.

A detailed discussion about which of these mechanisms best suits to the specific case of deep neural networks
scheduled by pools of threads under reservation-based scheduling is postponed to Section 5.2.

4 PROPOSED INFRASTRUCTURE

This work considers the case in which DNN tasks are executed together with other real-time control tasks on the same
multicore platform. Real-time tasks are subject to firm real-time constraints (ie, no deadline miss should occur) and, to
improve their execution predictability, they are statically allocated to cores. DNN tasks are considered as computational
activities that generate a soft real-time workload: this is because TensorFlow is a very complex software that has not been
designed to be predictable nor to guarantee temporal requirements. Therefore, the system is assumed to be able to tolerate
deadline misses of DNN tasks, for example, if a deadline of a DNN task 𝜏 is violated, control tasks can use results computed
by previous instances of 𝜏 or take decisions that are independent of the results produced by 𝜏 (such as triggering a backup
control logic).

Nevertheless, DNN tasks may be requested to meet quality-of-service requirements, therefore they cannot be simply
relegated as low-priority workload with respect to the real-time control tasks. For this reason, this work considers the more
general case in which DNN tasks can generate temporal interference to real-time control tasks. Unfortunately, predicting
the temporal interference generated by each DNN thread under the TensorFlow scheduler (described in Section 2.1) is
very challenging, as the random dispatching and the stealing mechanism makes the load managed by each thread very
difficult to be quantified. Again, this issue is due to the fact that the TensorFlow scheduler and its inference engine are
not designed to be predictable.

A possible solution could consist of radically modifying TensorFlow and designing a suitable partitioning strategy for
each elementary node, possibly integrating a timing analysis model to optimize the partitioning as a function of the work-
load running in the system. However, after a deep inspection of the TensorFlow code, it emerged that this solution would
require an enormous effort, which can also introduce incompatibility issues with some class of usage of TensorFlow.

CASINI et al. 1765

Furthermore, due to the large number of elementary nodes generated by state-of-the-art DNNs, and their specific char-
acteristics, new models and optimization algorithms would also be required to efficiently support a predictable execution
of DNN tasks.

Conversely, the solution proposed in this paper aims at introducing simpler but effective modifications to TensorFlow
and leveraging the resource reservation mechanism offered by SCHED_DEADLINE to control the temporal interference
generated by the TensorFlow threads. Specifically, each TensorFlow thread is protected by a reservation server with bud-
get and period chosen at design time. Furthermore, to leverage the benefits offered by partitioned scheduling, with respect
to the pitfalls and the lower predictability provided by global schedulers,40-42 each TensorFlow thread is statically allo-
cated to one of the available cores. Unfortunately, due to the presence of precedence constraints in the parallel workload
originated by TensorFlow, the timing protection of the TensorFlow threads via resource reservation can originate perfor-
mance degradation: this problem is addressed in Section 5, where modifications to both the TensorFlow scheduler and
SCHED_DEADLINE are presented. Furthermore, when statically allocating TensorFlow threads to cores, it is also possi-
ble to improve the TensorFlow scheduler by modifying the work stealing policy in such a way that privileges data locality:
this aspect is addressed in Section 6.

5 TIMING ISOLATION FOR TENSORFLOW THREADS

5.1 Motivational example

This section reports examples to illustrate the possible performance degradation introduced by a resource reservation
mechanism that protects the threads of TensorFlow. Consider the directed graph illustrated in Figure 3 as an example of
graph of elementary nodes created by Eigen.

First, consider the example depicted in inset (A) of Figure 4, which targets a dual-core processor computing platform
where each core serves the execution of a thread of the intra-op pool. Figure 4A shows a possible execution trace for the
considered graph, also showing the reservation budget as a function of time. As it can be noted, at time 7, the budget of
thread th2 exhausts, thus leaving the execution of node v4 incomplete. Due to precedence constraints, the graph execution
cannot proceed until v4 is completed, hence it resumes its execution only when the budget of th2 is recharged. In this
case, the TensorFlow scheduler is not aware of the fact that a thread is suspended due to budget exhaustion, and the work
stealing mechanism does not help to make progress, it only steals work that did not start executing.

F I G U R E 3 Example of a parallel task graph

F I G U R E 4 Example of a schedule of the parallel task shown in Figure 3 and the corresponding budget evolution with and without
overrun [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com

1766 CASINI et al.

F I G U R E 5 A second example of a schedule of the parallel task shown in Figure 3 and the corresponding budget evolution with and
without overrun [Colour figure can be viewed at wileyonlinelibrary.com]

In general, this phenomenon originates a performance degradation, as multiple threads can be blocked by a single
thread suspended for budget exhaustion, although there exists budget available to make progress in the execution of the
graph.

A second example is shown in inset (A) of Figure 5, which targets a four-core processor platform, where again each
core serves the execution of a thread of the intra-op pool. In this case, the budget exhaustion of th1 prevents nodes v2, v3,
and v4 from being spawned, thus leaving the other threads (which all have available budget for executing) idle.

5.2 Proposed solution

This section discusses about possible solutions to solve this problem. For instance, we may let the elementary nodes that
remain incomplete due to budget exhaustion (v4 in the example) to be served by another thread of the pool. However,
this would require a migration of a C++ function that already started to execute, which is largely not supported by the
TensorFlow scheduler (that runs in user space), as discussed in Section 2.

Killing the execution of a node and restarting it from scratch in another thread is also not practically viable, as it would
pose additional constraints on the implementation of the operations performed by the nodes, which can make them
not compatible with the new scheduler. For instance, some elementary nodes also create new nodes: a kill-and-restart
behavior could hence generate duplicates.

Another alternative consists in allowing a suspended thread to inherit the budget from another reservation (pos-
sibly allocated in other cores). This solution is the one adopted by the so called proxy execution mechanism (see
Section 3 for a more detailed discussion). However, this method is not supported by SCHED_DEADLINE, since it
requires nontrivial efforts to be implemented, as noted in a recent discussion in the Linux Kernel Mailing List (LKML)43

and by Parri et al.44 Furthermore, the extension of proxy execution to handle the additional blocking due to prece-
dence constraints and budget exhaustion is not straightforward. Indeed, in the case of shared resources, a reservation
that exhausted its budget inside a critical section can inherit the budget of a dependent reservation that is blocked
waiting for the mutex protecting the same resource. As it emerges from the examples in Figure 5A, it is difficult
to determine the thread from which th1 should inherit the budget, since none of the others have a task actually
blocked by th1 yet and, due to the work stealing mechanism, it is hard to predict which threads will actually run
the nodes spawned by v1. Conversely, the adoption of the SIRAP and BROE protocols (recalled in Section 3) would
give rise to the need of checking whether the budget is sufficient to execute each node, hence requiring Tensor-
flow to know a priori the worst-case execution times of all the nodes, which are often not available when executing
complex DNNs.

http://wileyonlinelibrary.com

CASINI et al. 1767

For the reasons explained above, this paper considers a simpler but effective solution, consisting in allowing budget
overruns.31 That is, if the budget is exhausted when a thread of the pool is serving a node, the execution of that node is
continued until it is completed. In this way, the progress of the graph is not affected by the reservation mechanism. This
case is illustrated in Figures 4B and 5B, where it is possible to observe that the graph has a shorter completion time with
respect to the case without overrun illustrated in Figures 4A and 5A, respectively. For instance, Figure 5B shows how
allowing budget overruns enables v2, v3, and v4 to be spawned by v1 before the next replenishment. In this way, th2, th3,
and th4 do not remain idle while waiting for the next replenishment time of th1. Note that this solution does not prevent
pending work in a suspended thread to be served by other threads (via work-stealing), as it is always due to nodes that
did not start executing.

It is important to observe that an overrun violates the budget allocated to a thread. Nevertheless, as reported in
Section 5.4, it is still possible to provide analytical guarantees for the timing constraints of real-time tasks executing in
parallel with DNNs. Furthermore, it is worth noting that the longest amount of violation in a thread is equal to the exe-
cution time of the largest node served by it: fortunately (as reported in Section 2.1) a profiling of state-of-the-art DNNs
revealed that the duration of elementary nodes is typically very limited (in the order of a few microseconds on a mod-
ern processor), hence the impact of this issue is also limited. This key observation motivated the adoption of a modified
reservation scheduler that supports budget overruns by receiving signals from the TensorFlow scheduler to notify the
start and the completion of nodes. Clearly, to guarantee a bounded overrun independently of the behavior of Tensor-
Flow, the scheduler must also enforce a maximum overrun time, for example, to protect the system from a faulty node
that takes a very large time to execute, or to penalize Tensorflow threads only in the rare cases in which large nodes are
executed.

To the best of our knowledge this is the first work exploiting such techniques for improving the performance of DNNs
(and parallel task graphs in general) under reservation-based scheduling.

5.3 Implementation

In Linux, the budgeting mechanism for threads is implemented at the level of the operating system within the
SCHED_DEADLINE scheduling class. After configuring the budgets and periods for the reservation servers (see
Section 2.2), threads are subject to resource reservation and periodically de-scheduled by the operating system with-
out receiving specific signals about budget exhaustions. Therefore, new system calls need to be implemented to disable
and reenable the budgeting mechanism to allow budget overruns. For this reason, budget overruns could also intro-
duce considerable additional run-time overhead. In principle, for each elementary node, the code that controls the
work queues of the thread pools is required to invoke the operating system twice: one time to disable the budgeting
mechanism before starting the execution of the node and another time to reenable it when the node is completed.
To reduce such an overhead, this approach can be generalized by executing a certain number k of elementary nodes
between the two system calls. That is, after notifying the kernel to disable the budgeting mechanism, multiple elemen-
tary nodes are executed before notifying the kernel to reenable it. As the number k increases, the run-time overhead
decreases at the cost of increasing the overrun. The resulting logic is shown in the pseudocode reported in Algorithm 1,
which is representative of the behavior of the code that controls the work queue in each thread of the pools created by
TensorFlow.

Cyclically, each thread first tries to retrieve a function to execute from its own ready queue (line 6). If that queue
is empty, it checks whether it is possible to retrieve workload from the queue of another thread (line 8). In this case, it
disables the budget exhaustion, increments a variable c used for counting the number of elementary nodes consecutively
executed with budget exhaustion disabled, and execute the node (lines 13:17). When the variable c is equal to k, the budget
exhaustion is re-enabled (line 20).

At the Linux level, the sched_setattr system call has been modified by introducing an additional parameter to
notify the disabling and enabling of the budget exhaustion. On the kernel side, the logic to react to such notifications
has been implemented as follows: (i) when a budget exhaustion occurs, it takes effect only if the thread did not notify
the kernel to disable it; (ii) independently of the notifications sent by the served thread, the kernel enforces a maximum
budget overrun of 𝛿 time units, where 𝛿 is a configuration parameter of the kernel; (iii) when a thread notifies to reenable
the budgeting mechanism, if the budget of the server is negative (ie, it was overrunning) then it is descheduled as for a
regular budget exhaustion.

1768 CASINI et al.

Algorithm 1. Pseudocode of the code that controls the work queues of the thread pools

1: procedure WorkerLoop(k)
2: c ← 0
3: while DNN inference not terminated do
4: f ← NULL
5: if work_queue is not empty then
6: f ← Pop_front(work_queue)
7: else
8: f ← Work_stealing()
9: end if

10: if f == NULL then
11: Suspend thread waiting for work
12: else
13: if c == 0 then
14: Disable budget exhaustion
15: end if
16: c ← c + 1
17: Execute f
18: if c == k then
19: c ← 0
20: Enable budget exhaustion
21: end if
22: end if
23: end while
24: end procedure

5.4 Guaranteeing the schedulability of real-time tasks

Thanks to Hard Constant Bandwidth Server (H-CBS) implemented by SCHED_DEADLINE, the proposed infrastructure
allows providing analytical guarantees for the timing constraints of hard real-time tasks while isolating them from DNNs.
In this way, both real-time tasks and DNNs are allocated to a reservation server with a period P and a budget Q.

For the sake of simplicity, this section assumes that task deadlines are equal to the corresponding period, and that
real-time tasks execute synchronously with the corresponding reservations.1. Furthermore, we assume that real-time
tasks do not self-suspend and do not share resources. Given a core p under analysis, the set of reservation servers assigned
to real-time tasks and allocated to core p is denoted as RT, and the set of reservations assigned to DNNs and allocated to
core p is denoted as DNN. For notational convenience, we omit the dependency of sets RT and DNN from the core p,
and we refer for the entire section to a single core p under analysis.

Reservation servers scheduled under partitioned-EDF can be analyzed by means of the processor demand criterion45

extended to handle budget overrun with payback.33 According to this approach, the workload of a H-CBS reservation server
can be modeled with a demand-bound function dbfi(t):

dbfi(t) =
⌈

t
Pi

⌉
⋅ Qi + Oi(t), (1)

where Oi(t) is a term related to the effect of the budget overrun. In Reference 33 O(t) is defined as:

Oi(t) =

{
H if t ≥ Pi

0 otherwise,
(2)

1Both assumptions can easily be released: deadlines smaller than periods can naturally be handled by the processor-demand criterion45 whereas tasks
executing asynchronously with respect their reservation can be analyzed using approaches based on supply-bound functions.46,47

CASINI et al. 1769

where H is the maximum budget overrun.
In this paper, the analysis proposed in Reference 33 is extended to consider the peculiarities of the proposed software

infrastructure. First, note that only reservations rj ∈ DNN can overrun, that is, ∀ri ∈ RT ⇒ Oi(t) = 0. Consequently, the
demand bound function of a real-time task 𝜏i can simply be expressed as dbfRT

i (t) =
⌈

t
Pi

⌉
⋅ Qi. Conversely, reservations

rj ∈ DNN can overrun, and the maximum budget overrun value depends on the parameter k reported in Algorithm 1.
The maximum overrun H reported in Equation (2) is bounded by the minimum of (i) the duration of the k longest

nodes of the deep neural network, and (ii) the maximum budget overrun 𝛿 configured in the kernel, that is,

Hi(k) = min

(
𝛿,

k∑
c=1

ei,c

)
, (3)

where E = {ei,1, ei,2,…} is a sequence that contains the worst-case execution times of each node of the jth DNN, ordered
by decreasing values. The demand bound function dbfDNN

i (t) of each reservation associated with a DNN thread is then
expressed as in Equation (1).

With the definition of dbfRT
i (t) and dbfDNN

i (t) in place, each real-time task is guaranteed to complete within its deadline
if:

∀t ∈ ,
∑

ri∈ DNN

dbfDNN
i (t) +

∑
ri∈ RT

dbf RT
i (t) ≤ t, (4)

where = ∪ri∈ DNN ∪ RT{t = f Pi ∶ t < L∗ ∧ f ∈ N≥0} and L∗ is the length of the analysis interval, which can be com-
puted2 as in Reference 48.

To check the schedulability of all the real-time tasks allocated in the system, the test needs to be performed for each
core p = 1,… ,m.

6 IMPROVING THE TENSORFLOW SCHEDULER

As emerged by profiling the InceptionV3 neural network (see Section 2.1), state-of-the-art DNNs are characterized by
a memory-intensive workload. Nevertheless, the current TensorFlow scheduler employs a randomized work stealing to
perform load balancing, taking decisions that may easily disrupt data locality, hence increasing the delays due to cache
misses or communications between remote memories. These facts motivated us to modify the TensorFlow scheduler to
improve the timing performance of DNN tasks by taking scheduling decisions that privilege data locality.

Under the proposed infrastructure, which statically allocates the TensorFlow threads to the available cores, it is pos-
sible to realize an improved work stealing policy by properly modifying the Tensorflow scheduler. The key idea consists
of privileging work stealing from the work queues of threads that execute on “close” processors in the memory hierarchy,
for example, a thread tends to privilege work stealing from the thread running upon the processor with which it shares
the highest level of cache.

To this end, the TensorFlow scheduler has been enhanced by introducing the concept of prioritized CPU groups, which
is represented by an ordered list CG of NG sets of groups of cores. Formally, the i-th element of the list is a set {Gi

1,… ,Gi
Ni
},

where each element Gi
j represents a group of cores such that ∩Ni

j=iG
i
j = ∅ (ie, a core can belong to at most one group),

and ∪Ni
j=iG

i
j = , with being the set of all cores on which the threads execute. By definition, the last set includes all the

available cores, that is, GNG

1 = and NNG = 1.
Leveraging CPU groups, TensorFlow has been modified to integrate a localized work stealing strategy, which is reported

in Algorithm 2. Consider a thread running on core c that intends to perform work stealing. It explores the ordered list
CG from i = 1 to i = NG, and, for each priority level i, it tries to steal work from the threads associated to the cores
into the group to which c belongs (lines 2 and 3). If this step succeeds, then the algorithm terminates (line 7); oth-
erwise, if none of them has pending work to be stolen, then the algorithm advances the index i moving to the next
set of groups. Like the original work stealing approach, this algorithm fails when no thread has work to be stolen
(line 11).

2The only modification required consists in inflating the budget of each reservation rj ∈ DNN of Hj(k) units of time to account for the overrun.

1770 CASINI et al.

Algorithm 2. Pseudocode for localized stealing

1: procedure LocalizedStealing(c)
2: for i = 1,… ,NG do
3: cpu_group← {Gi

j ∶ c ∈ Gi
j ∧ j ∈ [1,NG]}

4: for each core k ∈ cpu_group do
5: f ← Pop_back(work_queue(k))
6: if f ≠ NULL then
7: return f
8: end if
9: end for

10: end for
11: return NULL
12: end procedure

The configuration of CPU groups is architecture-dependent and must reflect a priority list of cores from which it is
convenient to steal work, given the memory hierarchy of the underlying platform. For instance, for a eight-core plat-
form with (i) private per-core L1 caches, (ii) two shared L2 caches for the first and second four cores, respectively, and
(iii) a common shared L3 cache, a natural configuration of CPU groups would be composed of two sets: priority i = 1,
{G1

1 = {0, 1, 2, 3},G1
2 = {4, 5, 6, 7}}, and priority i = 2, G2

1 = {0, 1, 2, 3, 4, 5, 6, 7}3. This configuration prioritizes stealing
between processors that share the same L2 cache. In the realized implementation, CPU groups can be configured for each
TensorFlow Session object.

7 EXPERIMENTAL RESULTS

This section reports an experimental study that has been conducted for evaluating the performance improvement that can
be achieved by adopting the proposed infrastructure. The experimental study is divided in two parts both targeting two
state-of-the-art DNN, namely MobileNetV249 and InceptionV3.11 In the former, DNNs have been executed in isolation to
test the effectiveness of the proposed techniques in improving the response times, while varying reservation budgets and
periods. The latter focuses on a case-study consisting of the aforementioned DNNs and a set of real-time tasks selected
from the TACLe benchmark.50

The experiments have been carried out on an 8-core Intel i7 machine running at 3.5GHz running Ubuntu Linux
16.04.4 LTS, and the proposed approaches have been implemented by modifying Tensorflow version 1.5.

For each DNN, the inter-op and intra-op thread pools have been configured with 8 threads each for both DNNs, pin-
ning the ith thread of each pool to the ith CPU. For simplicity, all reservations have been assigned the same period P. A
preliminary experimental study we conducted showed that the observed response time are less sensitive to the amount of
budget assigned to threads in the inter-op pool; hence, we set a budget of Q = 0.1 ⋅ P in all the tested configurations. All
the threads in the intra-op pool have been provided with the same budget, which is reported in the caption below each
chart. Periods have been set to 2 seconds for both DNN activities. Note that the results in different charts are not directly
comparable as they correspond to different runs.

Localized stealing CPU groups have been configured by grouping the cores according to the shared levels of caches
of the adopted i7 processor, and resulted as follow: priority i = 1, {{0, 1}, {2, 3}, {4, 5}, {6, 7}}, and priority i = 2, G2

1 =
{0, 1, 2, 3, 4, 5, 6, 7}. In each configuration, the system has been run for 30 minutes, collecting the response times.

7.1 Exploring period and budget assignments for DNN threads

In the first part of the experimental study, each DNN has been run in isolation while varying the period and budget
assigned to each reservation. Figure 6 shows the cumulative distribution function (CDF) of the collected response times

3The numbers in the sets indicate the core identifiers.

CASINI et al. 1771

(A) (B)

(C) (D)

F I G U R E 6 Cumulative distribution function of InceptionV3 (insets (A) and (B)) and MobileNetV2 (insets (C) and (D)) when the
reservation period P varies. The budget assignment for threads in the intra-op pool is reported in the caption below each chart [Colour figure
can be viewed at wileyonlinelibrary.com]

(normalized to the reservation periods) when the baseline approach is adopted (ie, SCHED_DEADLINE without budget
overrun and localized stealing), showing the dependency from the reservation period. Figure 6 shows that a smaller period
provides a faster response time, due to a more frequent budget provisioning, targeting InceptionV3 (insets (A) and (B))
and MobileNetV2 (insets (C) and (D)).

Figure 7 shows the improvement that can be obtained by adopting the proposed techniques. Budget overrun and local-
ized stealing have been tested under different configurations by varying parameter k of Algorithm 1 in the set {1, 2, 3, 4, 5}.
The maximum duration of any budget overrun 𝛿 has been set to 1 ms.

Figure 7A targets MobileNetV2 and illustrates that adopting localized stealing and budget overrun improves both
average-case and worst-observed response times. Insets (B) and (E) target the same DNN with the same budget and period
configuration, showing that setting k = 5 provides a bigger improvement. The improvement comes at the cost of having
a higher overrun, which is anyway bounded by the maximum budget overrun 𝛿. Figure 7C, D and F targets InceptionV3,
showing similar results.

Next, we show the performance of the proposed approaches when executing the DNNs concurrently with a set of
real-time tasks.

http://wileyonlinelibrary.com

1772 CASINI et al.

(A) (B)

(C) (D)

(E) (F)

F I G U R E 7 Cumulative distribution functions and maximum observed response times of InceptionV3 (insets (A), (B), and (E)) and
MobileNetV2 (insets (C), (D), and (F)) when localized stealing (denoted as ”LS”) and budget overrun (denoted as ”O'') are adopted. The label
”LS, O” denotes the case in which localized stealing and budget overrun are adopted in conjunction. The budget and period is reported in the
caption below each chart [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com

CASINI et al. 1773

T A B L E 1 Real-time tasks
selected from the TaCLe benchmark

Name Description Budgets (ms) Periods (ms) CPU

cjpeg_transupp JPEG routines 20 110 0

mpeg2 Motion estimation 40 110 1

susan Image processing 40 110 2

pm Pattern match 25 110 3

st Statistics 30 80 4

gsm_dec GSM decoder 30 80 5

gsm_enc GSM encoder 30 80 6

ammunition Arithmetics 100 300 7

7.2 Case study

This section reports the results of running InceptionV3 and MobileNetV2 concurrently with a set of real-time tasks chosen
from the TACLe benchmark50 for being representative of the workload of an industrial autonomous system (summarized
in Table 1). Unfortunately, the benchmark did not report periods and deadlines for the real-time tasks. Hence, periods have
been set as follows: (i) all the computations related to pattern matching and image processing (ie, tasks cjpeg_transupp,
susan, mpeg, pm) are triggered every 110 ms, which corresponds to a frame rate of 9 fps (ie, the same rate used in the
vision-based defect inspection system proposed by Zhou et al51), (ii) statistical data (ie, st task) are collected every 80 ms,
and sent through a communication network at the same rate (ie, gsm_enc and gsm_dec tasks), and (iii) the industrial
control system performs mathematical computation (eg, related to a control algorithm used to move an object in cor-
respondence of a camera for image acquisition) every 300 ms. Real-time tasks have been statically allocated to cores as
reported in Table 1, and their deadlines have been set equal to their periods. Each real-time task is periodically released
and protected by a SCHED_DEADLINE reservation. Budgets (reported in Table 1) have been configured according to a
preliminary experimental study aimed at evaluating the execution requirement of each task, while the reservation peri-
ods have been set equal to task periods. As in Section 7.1, the DNNs periods and deadlines have been set to 2 seconds, the
maximum length of any budget overrun 𝛿 has been set to 1 ms.

Figure 8 reports the CDF of InceptionV3 when executed concurrently with the real-time tasks reported in Table 1.
Inset (A) shows that both average-case performance and worst-observed response times are improved with respect to the
case in which baseline approach is adopted, that is,SCHED_DEADLINEwithout budget overrun and localized stealing, up
to 24% and 23% by adopting the proposed techniques, respectively. Insets (B), (C), and (D) report the CDF of the real-time
tasks, showing that their average-case and worst-case observed performance are not considerably affected by the proposed
approach. Similar results have been obtained for the other real-time tasks, which always completed within the deadline.
Figure 9A reports the CDF on MobileNetV2, when executed concurrently with the real-time tasks reported in Table 1.
Finally, Figure 9B compares the improvement in the worst observed response time of InceptionV3 and MobileNetV2
(called I and M in the column caption, respectively), which amounts to 22% and 30%, respectively.

Overhead introduced by the proposed approach.

The most computationally demanding part of our approach consists of calling the sched_setattr system call, which is
required to enable and disable budget overrun (lines 13 and 20 in Algorithm 1). We measured the time required to execute
such a system call by using the perf52 tool of Linux. The measurements have been performed over a sample of 400,000
calls to sched_setattr. Each call required 0.503 microseconds on average and up to 18 microseconds (maximum
observed value). 4 Despite these are relatively small values, reducing the overhead related to this system call may be a
desirable option in some cases because the sched_setattr system call may be called several times. As mentioned in
Section 5.3, this is the reason for which Algorithm 1 takes an integer k as a parameter (remember that it denotes the

4Note that the measurements performed by the perf tool may include possible interference due to interrupts: to the best of our knowledge, this is
very difficult to avoid by using standard measurement tools.

1774 CASINI et al.

(A) (B)

(C) (D)

F I G U R E 8 Cumulative distribution functions of InceptionV3 and real-time tasks when executed concurrently. The label ”LS, O''
denotes the case in which localized stealing and budget overrun are adopted in conjunction. The budget and period is reported in the caption
below the graph [Colour figure can be viewed at wileyonlinelibrary.com]

(A) (B)

F I G U R E 9 Inset (A) shows the cumulative distribution function of MobileNetV2 while inset (B) reports the maximum observed
response times for InceptionV3, when each DNN executes concurrently with the real-time tasks. The label ”LS, O'' denotes the case in which
localized stealing and budget overrun are adopted in conjuction [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

CASINI et al. 1775

number of nodes to execute between two system call invocations in the main loop of the algorithm). Given a DNN with
n elementary nodes, the overhead introduced by the proposed approach due to the sched_setattr system call as a
function of the parameter k can be estimated as

OV(k) =
⌈n

k

⌉
⋅ x ⋅ 2, (5)

where x is the time required to perform a single call to sched_setattr. For example, as discussed in Section 2.1,
the InceptionV3 DNN is composed of 34 000 nodes, that is, n = 34 000. Considering the average execution time of
sched_setattr of 0.5 microseconds, for k = 1 it follows that OV(1) ≃ 34 ms, while for k = 5 it holds OV(5) ≃ 6.8 ms.
In the case study discussed above, these values imply an additional CPU utilization equal to 1.7% for k = 1 and 0.34% for
k = 5. These measurements corroborate the choice of grouping the execution of multiple nodes between a pairs of calls to
sched_setattr by controlling the parameter k in Algorithm 1 with the purpose of reducing the introduced overhead.

8 CONCLUSIONS

This paper presented a scheduling infrastructure to support the execution of DNNs together with real-time tasks upon
Linux. New mechanisms have been designed and implemented in TensorFlow and the Linux scheduler to ensure a proper
temporal isolation of DNNs and improve data locality during the inference of DNNs. A case study based on a real imple-
mentation demonstrated improvements on both average-case (up to 24%) and longest-observed (up to 30%) response times
of DNNs, with respect to the adoption of standard approaches. Possible future research directions target the design of pre-
dictable mechanisms for scheduling DNN on heterogeneous platforms, such as GPUs29 and reprogrammable FPGAs,53

and the extension of other protocols (eg, proxy execution34,35 and BROE38,39) to handle budget exhaustion inside critical
sections to parallel workloads scheduled by reservation servers.

ACKNOWLEDGEMENTS
The authors would like to thank Daniel Bristot De Oliveira and Luca Abeni for their advice in configuring and modifying
the SCHED_DEADLINE scheduling class of Linux and in performing the overhead measurements. This work has been
partially supported by the Department of Excellence in Robotics and Artificial Intelligence of Scuola Superiore Sant'Anna,
Pisa, Italy.

ORCID
Daniel Casini https://orcid.org/0000-0003-4719-3631

REFERENCES
1. Chen C, Seff A, Kornhauser A, Xiao J. DeepDriving: learning affordance for direct perception in autonomous driving. Paper prresented at:

Proceedings of the IEEE International Conference on Computer Vision (ICCV 2015). December 2-6, 2015; Araucano Park, Las Condes,
Chile.

2. Lenz I, Lee H, Saxena A. Deep learning for detecting robotic grasps. Int J Robot Res. 2015;34(4-5):705-724.
3. Lenssen JE, Toma A, Seebold A, et al. Real-time low snr signal processing for nanoparticle analysis with deep neural networks. Paper

presented at: Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC
2018). January 19-21, 2018; Funchal, Portugal.

4. Lin W, Ren X, Zhou T, Cheng X, Tong M. A novel robust algorithm for position and orientation detection based on cascaded deep neural
network. Neurocomputing. 2018;308:138-146.

5. Russakovsky O, Deng J, Su H, et al. ImageNet large scale visual recognition challenge. Int J Comput Vis (IJCV). 2015;115(3):211-252.
6. http://blog.paralleldots.com/data-science/must-read-path-breaking-papers-about-image-classification/.
7. Buttazzo GC. Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Applications. 3rd ed. New York, NY: Springer;

2011.
8. Abadi M, Agarwal A, Barham P, et al. TensorFlow: large-scale machine learning on heterogeneous distributed systems; 2015. http://

download.tensorflow.org/paper/whitepaper2015.pdf.
9. Eigen Library. http://eigen.tuxfamily.org/index.php?title=Main_Page.

10. Min SJ, Iancu C, Yelick K. Hierarchical work stealing on manycore clusters. Paper presented at: Proceedings of the 5th Conference on
Partitioned Global Address Space Programming Models (PGAS 2011); October 15-18, 2011; Tremont House, Galveston Island, TX.

11. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. Paper presented at: Pro-
ceedings of the IEEE/CVF 29th Conference on Computer Vision and Pattern Recognition (CVPR 2016); June 26-July 1, 2016; Las Vegas,
NV, United States.

https://orcid.org/0000-0003-4719-3631
https://orcid.org/0000-0003-4719-3631
http://blog.paralleldots.com/data-science/must-read-path-breaking-papers-%20about-image-classification/
http://download.tensorflow.org/paper/whitepaper2015.pdf
http://download.tensorflow.org/paper/whitepaper2015.pdf
http://eigen.tuxfamily.org/index.php?title=Main_Page

1776 CASINI et al.

12. Lelli J, Scordino C, Abeni L, Faggioli D. Deadline scheduling in the linux kernel. Softw Pract Exp. 2016;46(6):821-839.
13. Biondi A, Melani A, Bertogna M. Hard constant bandwidth server: comprehensive formulation and critical scenarios. Paper presented at:

Proceedings of the 9th IEEE International Symposium on Industrial Embedded Systems (SIES 2014); June 18-20, 2014; Pisa, Italy.
14. de Oliveira DB, de Oliveira RS. Timing analysis of the PREEMPT_RT linux kernel. Softw Pract Exp. 2016;46(6):789-819.
15. de Oliveira DB, de Oliveira RS, Cucinotta T. A thread synchronization model for the PREEMPT_RT linux kernel. J Syst Arch. 2020;107.

https://www.sciencedirect.com/science/article/abs/pii/S1383762120300230?via=ihub.
16. Albaqsami A, Hosseini MS, Bagherzadeh N. HTF-MPR: a heterogeneous tensorflow mapper targeting performance using genetic algo-

rithms and gradient boosting regressors. Paper presented at: Proceedings of the Design, Automation Test in Europe Conference Exhibition
(DATE 2018); March 19-23, 2018; Florence, Italy.

17. Zhou H, Bateni S, Liu C. S3DNN: supervised streaming and scheduling for GPU-accelerated real-time DNN workloads. Paper presented
at: Proceedings of the 24th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS 2018); April 11-13, 2018;
Porto, Portugal.

18. M. Yang SW, Bakita J, Vu T, Smith FD, Anderson JH, Frahm J. Re-thinking CNN frameworks for time-sensitive autonomous-driving
applications: addressing an industrial challenge. Paper presented at: Proceedings of the 25th IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS 2019); April 16-18, 2019; Montreal, QC, Canada.

19. Lane ND, Bhattacharya S, Georgiev P, et al. DeepX: a software accelerator for low-power deep learning inference on mobile devices. Paper
presented at: Proceedings of the 15th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN 2016);
April 11-14, 2016; Vienna, Austria.

20. Kang W, Chung J. DeepRT: predictable deep learning inference for cyber-physical systems. Real-Time Syst. 2019;55(1):106-135.
21. Bateni S, Zhou H, Zhu Y, Liu C. PredJoule: a timing-predictable energy optimization framework for deep neural networks. Paper presented

at: Proceedings of the 39th IEEE Real-Time Systems Symposium (RTSS 2018); December 11-14, 2018; Nashville, TN.
22. Hong H, Oh H, Ha S. Hierarchical dataflow modeling of iterative applications. Paper presented at: Proceedings of the 54th Annual Design

Automation Conference (DAC 2017); June 18-22, 2017; Austin, TX, USA.
23. Casini D, Biondi A, Buttazzo G. Analyzing parallel real-time tasks implemented with thread pools. Paper presented at: Proceedings of the

56th Annual Design Automation Conference (DAC 2019); June 2-6, 2019; Las Vegas, NV.
24. Bateni S, Liu C. ApNet: approximation-aware real-time neural network. Paper presented at: Proceedings of the 39th IEEE Real-Time

Systems Symposium (RTSS 2018); December 11-14, 2018; Nashville, TN.
25. TensortRT. https://developer.nvidia.com/tensorrt.
26. Forsberg B, Marongiu A, Benini L. GPUguard: towards supporting a predictable execution model for heterogeneous SoC. Paper presented

at: Proceedings of the Design, Automation Test in Europe Conference Exhibition (DATE 2017); March 27-31, 2017; Lausanne, Switzerland.
27. Capodieci N, Cavicchioli R, Valente P, Bertogna M. SiGAMMA: server based integrated GPU arbitration mechanism for memory accesses.

Paper presented at: Proceedings of the 25th ACM International Conference on Real-Time Networks and Systems (RTNS 2017); October
4-6, 2017; Grenoble, France.

28. Ali W, Yun H. Protecting real-time GPU kernels on integrated CPU-GPU SoC platforms. Paper presented at: Proceedings of the Euromicro
Conference on Real-Time Systems (ECRTS 2018); July 3-6, 2018; Barcelona, Spain.

29. Capodieci N, Cavicchioli R, Bertogna M, Paramakuru A. Deadline-based scheduling for GPU with preemption support. Paper presented
at: Proceedings of the 39th IEEE Real-Time Systems Symposium (RTSS 2018); December 11-14, 2018; Nashville, TN.

30. Ghazalie TM, Baker TP. Aperiodic servers in a deadline scheduling environment. Real-Time Syst. 1995;9(1):31-67.
31. Davis RI, Burns A. Resource sharing in hierarchical fixed priority pre-emptive systems. Paper presented at: Proceedings of the 27th IEEE

International Real-Time Systems Symposium (RTSS 2006); December 5-8, 2006; Rio de Janeiro, Brazil.
32. Behnam M, Shin I, Nolte T, Nolin M. Scheduling of semi-independent real-time components: overrun methods and resource holding

times. Paper presented at: Proceedings of the 2008 IEEE International Conference on Emerging Technologies and Factory Automation
(ETFA 2008); September 15-18, 2008; Hamburg, Germany.

33. Behnam M, Nolte T, Sjodin M, Shin I. Overrun methods and resource holding times for hierarchical scheduling of semi-independent
real-time systems. IEEE Trans Ind Inf . 2010;6(1):93-104.

34. Lamastra G, Lipari G, Abeni L. A bandwidth inheritance algorithm for real-time task synchronization in open systems. Paper presented
at: Proceedings 22nd IEEE Real-Time Systems Symposium (RTSS 2001); December 3-6, 2001; London, UK.

35. de Niz D, Abeni L, Saewong S, Rajkumar R. Resource sharing in reservation-based systems. Paper presented at: Proceedings 22nd IEEE
Real-Time Systems Symposium (RTSS 2001); December 3-6, 2001; London, UK.

36. Faggioli D, Lipari G, Cucinotta T. The multiprocessor bandwidth inheritance protocol. Paper presented at: Proceedings of the 22nd
Euromicro Conference on Real-Time Systems (ECRTS 2010); July 6-9, 2010; Brussels, Belgium.

37. Behnam M, Shin I, Nolte T, Nolin M. SIRAP: a synchronization protocol for hierarchical resource sharing in real-time open systems.
Paper presented at: Proceedings of the 7th ACM & IEEE International Conference on Embedded Software (EMSOFT 2007); September
30-October 3, 2007; Salzburg, Austria.

38. Bertogna M, Fisher N, Baruah S. Resource-sharing servers for open environments. IEEE Trans Ind Inform. 2009;5(3):202-219.
39. Biondi A, Buttazzo GC, Bertogna M. Schedulability analysis of hierarchical real-time systems under shared resources. IEEE Trans Comput.

2016;65(5):1593-1605.
40. Brandenburg B, Gül M. Global scheduling not required: simple, near-optimal multiprocessor real-time scheduling with semi-partitioned

reservations. Paper presented at: Proceedings of the 37th IEEE Real-Time Systems Symposium (RTSS 2016); November 29-December 2,
2016; Porto, Portugal.

https://www.sciencedirect.com/science/article/abs/pii/S1383762120300230?via=ihub
https://developer.nvidia.com/tensorrt

CASINI et al. 1777

41. Casini D, Biondi A, Buttazzo G. Semi-partitioned scheduling of dynamic real-time workload: a practical approach based on analysis-driven
load balancing. Paper presented at: Proceedings of the 29th Euromicro Conference on Real-Time Systems (ECRTS 2017); June 27-30, 2017;
Dubrovnik, Croatia.

42. Biondi A, Sun Y. On the Ineffectiveness of 1/m-based interference bounds in the analysis of global EDF and FIFO scheduling. Real-Time
Syst. 2018;54(3):515-536.

43. Linux kernel mailing list: towards implementing proxy execution. https://lkml.org/lkml/2018/10/9/431.
44. Parri A, Marinoni M, Lelli J, Lipari G. An implementation of a multiprocessor bandwidth reservation mechanism for groups of tasks.

Paper presented at: Proceedings of the 16th Real Time Linux Workshop (RTLWS 2014); October 12-13, 2014; Dusseldorf, Germany.
45. Baruah SK, Rosier LE, Howell RR. Algorithms and complexity concerning the preemptive scheduling of periodic, real-time tasks on one

processor. Real-Time Syst. 1990;2(4):301-324.
46. Shin I, Lee I. Periodic resource model for compositional real-time guarantees. Paper presented at: Proceedings of the 24th IEEE Real-Time

Systems Symposium (RTSS 2003); December 3-5, 2003; Cancun, Mexico.
47. Casini D, Abeni L, Biondi A, Cucinotta T, Buttazzo G. Constant bandwidth servers with constrained deadlines. Paper presented at: Pro-

ceedings of the 25th ACM International Conference on Real-Time Networks and Systems (RTNS 2017); October 4-6, 2017; Grenoble,
France.

48. Zhang F, Burns A. Schedulability analysis for real-time systems with EDF scheduling. IEEE Trans Comput. 2009;58(9):1250-1258.
49. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L. MobileNetV2: inverted residuals and linear bottlenecks. Paper presented at: Pro-

ceedings of the IEEE/CVF 31th Conference on Computer Vision and Pattern Recognition (CVPR 2018); June 18-23, 2018; Salt Lake City,
UT.

50. Falk H, Altmeyer S, Hellinckx P, et al. TACLeBench: a benchmark collection to support worst-case execution time research. Paper pre-
sented at: Proceedings of the 16th International Workshop on Worst-Case Execution Time Analysis (WCET 2016); July 5, 2016; Toulouse,
France.

51. Zhou Q, Chen R, Huang B, Liu C, Yu J, Yu X. An automatic surface defect inspection system for automobiles using machine vision
methods. Sensors. 2019;19(3):644.

52. Linux kernel profiling with perf. https://perf.wiki.kernel.org/index.php/Tutorial.
53. Biondi A, Balsini A, Pagani M, Rossi E, Marinoni M, Buttazzo G. A framework for supporting real-time applications on dynamic recon-

figurable FPGAs. Paper presented at: Proceedings of the 37th IEEE Real-Time Systems Symposium (RTSS 2016); November 29-December
2, 2016; Porto, Portugal.

How to cite this article: Casini D, Biondi A, Buttazzo G. Timing isolation and improved scheduling of deep
neural networks for real-time systems. Softw Pract Exper. 2020;50:1760–1777. https://doi.org/10.1002/spe.2840

https://lkml.org/lkml/2018/10/9/431
https://perf.wiki.kernel.org/index.php/Tutorial

