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Abstract—As widely known, machine learning has been thriv-
ing during the last two decades on the strength of two key
factors: significant and continuous improvements in hardware
performance and the possibility to produce large datasets through
automated procedures. However, it has been shown that datasets
often contain biases that can significantly affect the performance
and resilience of machine learning models, e.g., when deployed to
realize functionality for cyber-physical systems. For this reason,
a lot of research has been devoted to methodologies and tools for
detecting biases in the dataset.

This paper presents X-BaD, a tool for bias detection de-
signed to inject and discover biases in a neural network. It
is implemented as an open-source Python library that extends
the Spectral Relevance Analysis methodology. It allows data
reusability and user customization by parameter configurations,
and offers built-in functions to inject artificial biases into popular
image datasets such as CIFAR-10, Pascal VOC, and ImageNet, for
test purposes. This tool is compatible and extensible with features
that are commonly used in machine learning frameworks, such
as PyTorch and Pytorch Lightning datasets and models, Captum
attributions, and Sci-kit Learn clustering algorithms and cluster-
ing performance evaluation methods. It also includes functions
to interpret and assess the processed data. A set of experiments
is finally presented to evaluate the effectiveness of the proposed
tool.

I. INTRODUCTION

In recent years, machine learning algorithms achieved un-
precedented performance in complex tasks such as computer
vision [1], natural language processing [2], or game playing
(31, [4], [5].

Thanks to these developments, machine learning models are
being deployed on more and more cyber-physical systems,
such as autonomous vehicles and advanced robots, originating
new and different challenges in terms of resilience.

The success of machine learning is mainly due to the
evolution of deep neural networks (DNNs) [6] trained on
big datasets and executed on high-performance hardware
accelerators, which helped boosting model performance and
reduce computation times. Automated dataset augmentation
techniques also helped increase the dataset size, further im-
proving the performance.

However, datasets often include samples containing recur-
ring patterns that may introduce a bias into the trained model.
Such a bias can lead to wrong predictions. This phenomenon
is sometimes referred to as Clever Hans behavior [7].

Identifying such behavior will lead to improvements in
trustworthiness, resilience, and performance of cyber-physical
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systems. For instance, a bias in the perception system of
an autonomous vehicle could lead to fatal consequences.
Furthermore, systems based on biased DNNs are prone to
security issues: an attacker could inappropriately interact with
the system exploiting the bias. For instance, when a face
recognition system is biased towards recognizing an individual
using watermarks, the attacker could disguise himself only by
adding a watermark to his photo.

Since detecting such a bias is quite hard for a human
supervisor, a lot of work has been devoted to automatically
detect such a bias using explainable Al (XAI) methodologies
[8].

In particular, Lapuschkin et al. [9] have developed a
methodology, called Spectral Relevance Analysis (SpRAy), to
automate the discovery of fixed-position bias learned by a
neural network. Here, fixed-position bias refers to a recurring
pattern frequently found in the samples of a dataset at the
same location (or, in general, on the same features). Figure 1
shows a few examples of a fixed-position bias (top images)
and non-fixed-position bias (bottom images). SpRAy defines
the following pipeline: first, a neural network is trained on
a training set selected from the dataset; it then creates local
explanations through some XAI method [8], selecting inputs
from a test set extracted from the dataset; these explanations
are post-processed by rescaling; finally, a clustering technique
is used to process the newly obtained dataset. If more than one
significant cluster is detected, SpRAy indicates the potential
presence of fixed-position bias in the dataset.

Fig. 1. Top: Sample images of the goldfish class from ImageNet augmented
with fixed-position bias. Bottom: The same images augmented with non-
fixed-position bias.

The original SpRAy implementation has shown compelling
results, but it only considers one XAI method, namely Layer-
wise Relevance Propagation (LRP) [10], and one clustering
algorithm, namely spectral clustering [11]. However, it would
be of great value to extend such a methodology to make
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it applicable to different datasets, models, explainers, and
clustering methods. Furthermore, a more general methodology
would allow investigating how dataset transformations affect
training and explanations methods and it would enable the
assessment of different explainers in their ability to detect bias.

For the reasons discussed above, this paper presents a
tool, called eXplanation-based Bias Detector (X-BaD), which
extends the SpRAy methodology to integrate the most popular
Python ML frameworks, such as PyTorch [12] and PyTorch
Lightning [13] for neural network training, Sci-kit Learn [14]
for clustering techniques, and Captum [15] for neural network
explanations. It is implemented as a light-weight Python
library to be modular, easily extensible, and customizable.
In fact, X-BaD can digest user-provided datasets and inject
into them artificial bias, such as padding, watermarks, and
custom patches. The neural network architecture, the explainer,
the rescale factor, and the clustering algorithm can also be
customized.

The tool also provides pre-constructed pipeline steps to
improve experiment traceability and visualization. It enforces
data reusability since, when repeating similar experiments, the
tool fetches the useful data generated in the previous run,
saving time and memory, which can be crucial while running
multiple distinct pipelines with some shared parameters.

To summarize, this paper presents the following contribu-
tions:

o It presents a generalization of the SpRAy methodology
to allow using different explainers, saliency maps post-
processing, and clustering methods;

o It presents the functionalities of X-BaD, a Python tool
designed to implement such a generalized methodology;

o It reports a set of experiments to validate the function-
alities of the tool, by injecting artificial bias, and evalu-
ating the detection capabilities of the methodology with
different models, datasets, explainers, post-processing al-
gorithms, and clustering methods.

The remainder of the paper is organized as follows: Section II
presents the background and related work, Section III details
the functionalities and implementation of the tool, Section
IV provides experimental validation of those functionalities,
Section V states the conclusions and future work.

II. BACKGROUND AND RELATED WORK

The trustworthiness and resilience of DNN-based systems
mainly depend on the quality of the training dataset. Since
training an efficient DNN requires a large number of samples,
data collection is often automated, but automation is prone
to introducing undesired and recurring patterns in the data.
Training a DNN on those biased datasets may lead to the
before-mentioned Clever Hans phenomenon [7], undermining
the trustworthiness and resilience of the entire system.

To tackle this issue, Nadeem et al. [16] and Giloni et
al. [17] proposed automated techniques to detect bias in
scenarios dealing with text and tabular data. The literature
on automated bias detection in computer vision scenarios is
still limited: Tong et al. [18] use XAI methods to explore test

data and search for undesired bias in image datasets; the same
methodology is applied and automated by Lapuschkin et al.
[9], and further extended in the presented paper.

XAI methods are heterogeneous, but the type of explana-
tions provided can be categorized into two main categories:
local and global explanations.

Local explanations focus on highlighting the features of the
input (e.g., the pixels of an image or the words in a sentence)
that are responsible for the corresponding output. Some of the
most popular local explanations methods are Saliency maps
[19], Occlusion [20], Integrated Gradients (IG) [21], and LIME
[22]. Saliency maps are based on the computation of the
gradient of the chosen output with respect to the input, and
it was the first of a series of gradient-based explanations that
were proposed in the literature. IG is based on the averaging
of several gradients, computed with respect to perturbed ver-
sions of the original input. LIME (Local Interpretable Model-
Agnostic Explanations) approximates the black-box model
locally to the specific input that requires explanations. Many
other explainers were presented in the literature and are not
included in this section for space limitations. The interested
reader can refer to Bodria et al. [8] for a detailed survey of
XAI methods.

Conversely, global explanations try to visualize what inter-
nal neurons learned from the entire training set. For example,
Mahendran et al. [23] proposed a method for reconstructing
images from internal neural representations by searching for
patterns that maximize the output for a given class. Bias
discovery through global explanations is not considered in this
paper and it will be part of a future work.

Both local and global explanations present limitations:
global explanations rely on stochastic optimization methods
and different initializations may bring completely different ex-
planations; this means that finding bias is not always possible.
On the other hand, local explanations are specific for a certain
input. This makes a human-supervised search unfeasible for
large datasets, such as ImageNet, but enables automation with
algorithms.

To solve these problems, Lapuschkin et al. [9] proposed the
SpRAy methodology, which processes a set of inputs through
LRP [10] to produce explanations and then applies spectral
clustering [11] to search for particular recurring patterns that
form clusters of explanations.

Although SpRAy showed to be quite effective to detect
biases, it only considers a single XAI method (LRP) and
a single clustering algorithm (spectral clustering). Having a
more general framework capable of handling different XAI
and clustering methods would allow assessing them to improve
the overall system performance.

For this reason, this paper presents a general tool that
extends the SpRAy pipeline to consider different XAI methods
and clustering algorithms.

III. FRAMEWORK DESCRIPTION

This section presents the X-BaD framework, which extends
the SpRAy pipeline by making each module fully customiz-
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able. Figure 2 illustrates the data flow diagram used in X-BaD
and shows some examples of the results obtained at the output
of specific stages.

First, an image dataset, such as CIFAR-10, Pascal VOC
[24], or ImageNet [25], is loaded in the tool and can be
augmented by adding artificial bias in the form of boxes,
watermarks, or padding, as those shown in Figure 3. From
now on, both the loaded and the artificially biased dataset will
be referred to as the dataset.

At the second stage, a neural network architecture is selected
by the user. The tool provides some preset options, such
as AlexNet [1], VGGI16 [19], ResNet [26], with appropriate
optimizers, learning rate, and learning-rate schedulers. The
network is then trained on the training set of the selected
dataset using PyTorch Lightning [13], producing a model as
an output.

At the third stage, a local explainer has to be selected to
generate explanations (e.g., heatmaps for image datasets) for

the predictions obtained on the corresponding test set. These :
explainers are implemented within the Captum framework °

[15], which is a collection of XAI methods, including Saliency

maps [19], Occlusion [20], Integrated Gradients (IG) [21],
LIME [22], Gradient SHAP [27], Guided GradCAM [28],
Layer GradCAM, DeepLift [29], and Guided Backpropagation
[30]. Please note that Layer Relevance Propagation (LRP [10])
is not currently available in Captum, and, at the time of
writing, a stable implementation with PyTorch has not been
publicly implemented yet.

The entire set of explanations obtained as output can op-

tionally be post-processed through rescaling (through max-
pooling) or principal component analysis (PCA) [31] to reduce
the dimension of the explanation space.

Finally, at the last stage, the user has to select a clustering -
algorithm to process the explanations for possibly separating ’

those containing a bias. Clustering algorithms are implemented
in the Sci-kit Learn toolkit. Available algorithms are spectral
clustering [11] or OPTICS [32]. Many different clustering
algorithms are available in the toolkit, and X-BaD is flexible
enough to include any other method.

The assessment of the clustering quality is performed
through the Adjusted Rand Index (ARI) formula [33], which is
already implemented in the Sci-kit Learn toolkit, and offers in-
terpretability, bounded range', and requires no assumption on
the cluster structure, in contrast to other assessment methods,
such as the Rand Index [33]. On the other hand, it requires the
true labels of the clusters, which, in the case of an artificial bias
injected, are known. Other assessment score techniques based
on ground truth, such as Mutual Information based scores [34],
will be considered in a future implementation of the library.

Listing 1 shows an example of script running a full ex-
periment in X-BaD. The library relies on the XBad core
class, which provides methods for training the chosen network,
creating explanations, and clustering the explanations; all these

I'The ARI takes values in the range (-1, 1), where 1 indicates perfect match
between predicted and true labels, and -1 indicates big mismatch.

1 o

11

methods are wrapped and executed in the correct order by the
run method. Finally, the user can visualize the results using
the tsne [35] method, which provides an interpretable 2D
visualization of the obtained clusters. For those cases in which
an artificial bias is added by the user, ground truth clusters
can be shown as well. By comparing the two scatterplots with
some clustering similarity metric, the user is able to assess the
efficiency of the entire pipeline, as shown in Figure 4.

Note that X-BaD is implemented to enforce data reuse,
meaning that, each time it runs, it tries to fetch the reusable
data generated in the previous runs. For instance, if the user
wants to compare the capability of two different explainers to
detect the same bias on the same model, in the second run the
bias addition and the model training stages are not run again,
but rather reused from the previous experiment. The library
is available on the GitHub repository in the following URL:
https://github.com/pacinigit/xbad.

from sklearn.cluster import OPTICS
from xbad import XBad

pipeline = XBad(
base_folder = ’'folder’,
dataset = ’'CIFAR10’,

bias_probability 0.2,

bias_method "box’,

biased_class = 6,

model "alexnet’,

explainer "saliency’,

rescale = 2,

pca True,

clustering_method OPTICS (
min_samples = 20,
x1i 0.05,
min_cluster_size

0.05

)

pipeline.run ()
pipeline.tsne ()

Listing 1. Code snippet: as soon as the object of type XBad is instantiated,
the entire pipeline is run, then the output can be visualized using ¢-SNE.

1V. EXPERIMENTAL RESULTS

This section reports a set of experiments carried out to
validate the capabilities of the X-BaD framework. Please note
that the experiments are not aimed at searching for the best
combination of the algorithms used at the different stages of
the pipeline, but rather at validating the main features of the
tool.

The explainers considered in the tests include Saliency, IG
and Gradient SHAP, which are those that have shown the
best performance. Following the same principle, the clustering
algorithm used in the final stage is Spectral Clustering.

Experimental results are summarized in Tables I & II,
where the clustering performance score (ARI) is shown when
using different explainers, different rescale kernels and with
or without the application of PCA.

The first experiments were carried out on the CIFAR-10
dataset, which was augmented by injecting a box bias on
50% of randomly chosen elements in deer class. This allowed
providing a simple visual benchmark to assess the performance
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ADD BIAS

(OPTIONAL) TRAIN NETWORK

ORIGINAL
DATASET

BIASED
'DATASET

Select a network architecture
and frain it on the chosen dataset

Add artifacts to images such
as boxes, padding or watermarks

PARAMETERS: PARAMETERS:
Class to modify with bias Architecture
Percentage of biased images Number of epochs

within the altered class
Type of bias (box, padding,
label)

Base dataset: ImageNet,
CIFAR10, Pascal VOC

Optimizer and its parameters
Learning-rate scheduler
Batch-size

MODEL

XAl SYSTEM CLUSTERING
CLUSTERS
EXPLANATION OF
IMAGES
Choose a particular local Choose a clustering method such as
explanation method spectral clustering or OPTICS.
PARAMETERS: PARAMETERS:

Explainer model Clustering algorithm

Typical parameters of the Parameters typical for the

selected explainer chosen algorithm such as
number of clusters or graph
construction parameters
Clustering performance
evaluation

i Xow ol

Fig. 2. The X-BaD pipeline.

Fig. 3. A sample image of the goldfish class from ImageNet augmented using
different artifacts: box, padding, and watermark, respectively.

Fig. 4. t-SNE embedding produced by the X-BaD implementation shown in
Table II performing IG without PCA. White and light blue points represent
points belonging to the different clusters produced. Red-edged points are
misclassified with respect to ground truth.

of the proposed tool. The neural network architecture selected
was AlexNet, whose output layer was modified to accept the
correct number of classes. It was trained for 6 epochs with
an Adam optimizer with learning rate 0.001 and batch size

256. This setup resulted in about 76% of accuracy, which
is lower with respect to the state-of-the-art result, but it can
be acceptable for the purposes of this evaluation. All the
experiments were performed on a single Tesla-V100 GPU of
a DGX station.

TABLE I
ALEXNET ON AUGMENTED CIFAR-10: ARI & ARI wWiTH PCA
Rescale

1 2 3 5 10
Salienc 0 0.95 | 0.96 | 0.96 | 0.96
y 0 0.95 | 0.95 | 0.96 | 0.96
G 091 | 0.92 | 092 | 0.92 | 0.91
0.91 | 091 | 0.91 | 0.92 | 0.91
0 0.02 | 0.03 | 0.03 | 0.11
GradSHAP | 5| .02 | 0.06 | 0.08 | 0.08

Table I reports the quality of the clusters obtained from
AlexNet under the setting discussed above, measured by the
ARI metrics. Heatmaps have been generated from CIFAR-10
test set with same alterations used in the training set. Heatmap
dimension was reduced by first applying rescaling (whose
factor is reported in the table) and then applying PCA, where
the number of selected principal components has been set to
the minimum between the number of heatmaps (equal to the
number of test samples of the deer class) and 80% of the
rescaled heatmap features. The two numbers reported in each
cell of the table correspond to the ARI using only rescaling
and the ARI with rescaling followed by PCA, respectively.

As clear from the results, the explainer that showed the
best performance, in this context, resulted to be the Saliency
method, followed by IG, while Gradient SHAP did not pro-

560

Authorized licensed use limited to: Scuola Superio Sant'/Anna di Pisa. Downloaded on May 31,2022 at 15:09:50 UTC from IEEE Xplore. Restrictions apply.



duce significant results for automated bias detection. Also note
that, when using the Saliency method, a rescale factor of at
least two is necessary for detecting the bias automatically.
This suggests that automatic bias detection procedures based
on clustering evaluation need to execute an explainer multi-
ple times, under different parameter configurations, and then
integrate the results (e.g., using majority voting).

As a final remark, the low ARI values obtained using
Gradient SHAP should not be interpreted as a poor perfor-
mance of the explainer. In fact, from the heatmaps illustrated
in Figure 5, it is clear that all the explainers used in this
experiment were able to visualize the introduced bias and
provide an meaningful explanation to humans. This suggests
that the problem lies in the automated detection method based
on clustering evaluation. Therefore, further investigation is
required to make this technique suitable for different types
of explainers.

Fig. 5. First image: Input image from CIFAR-10 with box bias on the
upper-left corner. Second image: Corresponding explanation of the output
from a biased AlexNet, generated by Saliency and rescaled by a factor 2.
Third image: Explanation obtained by IG in the same setting. Fourth image:
Explanation obtained by Gradient SHAP in the same setting.

The second batch of experiments was carried out on the
ImageNet dataset with a ResNetl8 model. The training set
was augmented with a box bias on 50% of randomly chosen
elements in goldfish class. The network was trained from
scratch for 70 epochs by stochastic gradient descent, learning
rate 0.1, momentum 0.9, weight decay 0.0001, and batch size
256, using four NVIDIA A100 GPUs. The final model reached
72% Top-1 accuracy on the ImageNet test set augmented in
the same way as the training set.

TABLE II
RESNET18 ON AUGMENTED IMAGENET: ARI & ARI wiTH PCA
Rescale
T 2 3 5 0 | 40 )
Sl 029 | 0.06 | 0.03 | 0 0 0 | 014
anency 1 0.35 | 0.06 | 0.03 | 0.18 | 0 0 | o017
G 0.77 | 0.87 | 0.92 | 0.01 | 0.80 | 0.84 | 0.81
0.75 | 0.92 | 0.93 | 0.91 | 0.89 | 0.84 | 0.81
034 | 050 | 0.45 | 0.44 | 0.37 | 0.32 | 0.29
GradSHAP 1 g 33 | 051 | 0.45 | 0.40 | 0.37 | 0.32 | 0.29

Table II reports the obtained results. Heatmaps have been
generated from the first 500 images in the goldfish class of the
training set; 60% of these images is augmented with box bias.
As in the previous experiment, the heatmap dimension was
reduced by first applying rescaling (whose factor is reported
in the table) and then applying PCA, where the number of
selected principal components has been set to the minimum
between the number of heatmaps (equal to the number of test

samples of the goldfish class) and 1% of the rescaled heatmap
features.

In this test, carried out by training ResNetl18 on the bias-
augmented ImageNet, the explainer that exhibited the best
performance was IG, using a rescale factor of three, whereas
the others were not so effective in automatically detecting the
bias.

The results obtained in the second test confirm the impor-
tance of running the detection procedure multiple times on dif-
ferent explainers and under different parameter configurations.
This also justifies the availability of a flexible tool, like the
one proposed in this paper, which can automate the detection
procedure, allowing the user to easily configure and carry out
a large number of experiments.

As noted in the previous test, the low ARI values obtained
using Saliency and Gradient SHAP should not be interpreted
as a poor performance of the explainers. In fact, from the
heatmaps illustrated in Figure 6, all the explainers were able
to visualize the bias in the the upper-left corner and provide
an meaningful explanation to humans. This confirms that the
problem lies in the high sensitivity of the clustering evaluation
method to the specific explainer, data set, and, configuration
parameters.

Fig. 6. Top-left: Input image from ImageNet with box bias on the upper-left
corner. Top-right: Corresponding explanation of the output from a biased
ResNet18, generated by Saliency and rescaled by a factor 3. Bottom-left:
Explanation obtained by IG in the same setting. Bottom-right: Explanation
obtained by Gradient SHAP in the same setting.

V. CONCLUSIONS

This paper presented X-BaD, a flexible tool for automating
bias-detection procedures making use of explainers and clus-
tering techniques. The tool implements and extends the SpRAy
methodology [9] by allowing the user to inject different types
of fixed-position biases in common datasets and then verify
whether a specific neural network has learned such a bias.
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A set of experiments has been carried out to validate the

[13]

proposed tool on different neural networks, datasets, and con-

figuration parameters. The obtained results consistently show

[14]

that current automatic detection methods based on clustering

evaluation are extremely sensitive to the specific explainer,

[15]

dataset, and parameters used in the test (e.g., heatmap rescaling
factor and number of principal components, if PCA is used for

compressing the heatmap).

[16]

Such results suggest that, to increase the probability of

automatically identifying a bias in the model, the detection

[17]

procedure has to be executed multiple times, using different

explainers and different parameter configurations, integrating

[18]

all the obtained results by majority voting or other similar

methods. Hence, the availability of a flexible tool that can

[19]

automate the detection procedure, like the one proposed in
this paper, represents a valuable support for users that intend

setting up a large number of experiments.

[20]

The obtained results also show that, although all the used
explainers provide an interpretable explanation where the bias

is clearly visible to humans, only some of them produce

(21]

correct results using the clustering evaluation technique. This

suggests that further investigation on clustering methodologies

[22]

is required to make them less sensitive to the different types

of explainers.

(23]

As a future work, we plan to extend the tool for managing
different types of XAl systems (including global explainers)

and different types of dataset augmentation.

(1]

(2]

31

(41

(5]

(6]

(71
(8]

[91
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