
Task Splitting and Load Balancing of Dynamic
Real-Time Workloads for Semi-Partitioned EDF
Daniel Casini ,Member, IEEE, Alessandro Biondi ,Member, IEEE, and Giorgio Buttazzo, Fellow, IEEE

Abstract—Many real-time software systems, such as those commonly found in the context of multimedia, cloud computing, robotics,

and real-time databases, are characterized by a dynamic workload, where applications can join and leave the system at runtime. Global

schedulers can transparently support dynamic workload without requiring any off-line task-allocation phase, thus providing advantages

to the system designer. Nevertheless, such schedulers exhibit poor worst-case performance when compared to semi-partitioned

schedulers, which instead can achieve near-optimal schedulability performance when used in conjunction with smart task splitting and

partitioning techniques, and they are also lighter in terms of run-time overhead. This article proposes an approach to efficiently

schedule dynamic real-time workloads on multiprocessor systems by means of semi-partitioned scheduling. A linear-time

approximation scheme for the C=D splitting algorithm under partitioned EDF scheduling is proposed. Then, a load-balancing algorithm

is presented to admit new real-time workloads with a limited number of re-allocations. The article finally reports on a large-scale

experimental study showing that (i) the linear-time approximation is characterized by a very limited utilization loss compared with the

corresponding exact approach (that has a much higher complexity), and that (ii) the whole approach allows achieving considerable

improvements with respect to global and partitioned EDF scheduling.

Index Terms—Real-time systems, dynamic workloads, semi-partitioned scheduling, schedulability analysis, load balancing, partitioning

Ç

1 INTRODUCTION

SEVERAL time-sensitive applications include computa-
tional activities (tasks) that may join and leave the

system at runtime, for instance, to respond to specific
events in their operating environment. This is common
in multimedia software systems [1] (including those
widely available in smartphones and tablets), cloud com-
puting [2], real-time databases, robotics systems, and
open environments, in which some components may
change while the rest of the system continue to operate.
To name a concrete example, the applications developed
for the Robotic Operating System (ROS) [3], a popular
middleware layer for the rapid prototyping, develop-
ment, and deployment of robots, are software systems in
which the workload can be dynamic. Indeed, ROS allows
reacting to the occurrence of specific environmental con-
ditions (e.g., the sudden occurrence of an obstacle in
front of the robot) by creating or killing computational
nodes, while the other nodes remain operational [4].

Furthermore, the most popular real-time operating sys-
tems, e.g., VxWorks, QNX and Linux (with the SCHED_

DEADLINE scheduling class), provide specific system
calls (e.g., taskSpawn() in VxWorks) to create and acti-
vate tasks at runtime. Most commonly, these systems

implement global scheduling policies such as global fixed-
priority (G-FP) and global earliest-deadline first (G-EDF),
which have the benefit of providing automatic and appli-
cation-transparent load balancing across the available pro-
cessors. This benefit likely determined the popularity of
such schedulers; however, they have been demonstrated
to be not optimal and to exhibit poor worst-case perfor-
mance due to several issues that have been identified
in the literature [5]. Optimal multiprocessor scheduling
algorithms, such as RUN [6], U-EDF [7], QPS [8], and
LLREF [9], have been proposed, but they are generally
more complex (and hence more difficult to implement)
and more expensive in terms of run-time overhead when
compared to G-FP and G-EDF.

Partitioned and semi-partitioned scheduling represent
effective alternatives to global schedulers. Partitioned
scheduling relies on a static task-to-processor mapping,
which for static workloads is typically determined with
an off-line design phase. Notably, Sun and Di Natale [10]
and Biondi and Sun [11] proved that the most popular
analysis techniques for global schedulers such as G-FP
and G-EDF can deem schedulable only task sets that are
also schedulable under partitioned scheduling, hence
recommending the use of the latter. However, in the
presence of dynamic workloads, partitioned scheduling
requires facing with on-line task allocation issues that
may not be easy to solve if a “good” schedulability per-
formance is desired. Furthermore, partitioned scheduling
tend to lead to poor schedulability performance in the
presence of high-utilization tasks.

Semi-partitioned scheduling builds upon partitioned
scheduling by allowing some of the tasks to be split
among multiple processors, i.e., being subject to a con-
trolled (and limited) migration at specific time instants

� Daniel Casini, Alessandro Biondi, and Giorgio Buttazzo are with the
TeCIP Institute and the Department of Excellence in Robotics & AI of the
Scuola Superiore Sant’Anna, 56124 Pisa, Italy. E-mail: {daniel.casini,
alessandro.biondi, giorgio.buttazzo}@santannapisa.it.

Manuscript received 1 Sept. 2020; revised 4 Nov. 2020; accepted 10 Nov.
2020. Date of publication 16 Nov. 2020; date of current version 8 Nov. 2021.
(Corresponding author: Daniel Casini.)
Recommended for acceptance by B. Parhami.
Digital Object Identifier no. 10.1109/TC.2020.3038286

2168 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 12, DECEMBER 2021

0018-9340� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on May 31,2022 at 15:16:10 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-4719-3631
https://orcid.org/0000-0003-4719-3631
https://orcid.org/0000-0003-4719-3631
https://orcid.org/0000-0003-4719-3631
https://orcid.org/0000-0003-4719-3631
https://orcid.org/0000-0002-6625-9336
https://orcid.org/0000-0002-6625-9336
https://orcid.org/0000-0002-6625-9336
https://orcid.org/0000-0002-6625-9336
https://orcid.org/0000-0002-6625-9336
mailto:daniel.casini@santannapisa.it
mailto:alessandro.biondi@santannapisa.it
mailto:giorgio.buttazzo@santannapisa.it


during their execution. In this way, the performance of
partitioned scheduling is improved by distributing the
load generated by some tasks across multiple processors.
As in the case of partitioned scheduling, semi-partitioned
scheduling algorithms typically come with an off-line
task allocation strategy, and are hence not suitable to be
used on-line with the purpose of supporting dynamic work-
loads. Nevertheless, Brandenburg and G€ul [12] showed
how semi-partitioned EDF scheduling via the C=D splitting
algorithm [13], when used in conjunction with smart task
partitioning techniques, can guarantee near-optimal perfor-
mance, while being a much simpler and lighter (in terms of
run-time overhead) approach with respect to global schedu-
lers. As most of the papers targeting multiprocessor real-
time scheduling, their work focused on static task sets only.
However, the relevance of such a result suggests that also
dynamic workloads may benefit of semi-partitioned
scheduling.

Nonetheless, supporting C=D semi-partitioning schedul-
ing of dynamic workloads gives rise to some non-trivial
challenges. Specifically, the C=D splitting algorithm has a
high computational complexity, which would lead to high
overheads if executed on-line, thus resulting being not suit-
able for dynamic workloads. Furthermore, load-balancing
algorithms are needed to support the dynamic allocation
and splitting of incoming workloads.

Contribution. This paper makes the following three con-
tributions. First, it proposes a linear-time approximate algo-
rithm for efficiently splitting workload under C=D semi-
partitioned scheduling, which enables making practically
viable online scheduling decisions. Second, it presents load-
balancing algorithms to admit new workload while per-
forming limited re-allocations to facilitate the admission of
future workloads. Third, it reports on two large-scale exper-
imental studies that have been conducted to assess the per-
formance of the proposed methods.

Paper Structure.The rest of the paper is organized as follows.
Section 2 introduces the system model, reviews the essential
background, and presents the adopted notation. Section 3 pro-
poses a linear-time algorithm for performing the C=D split-
ting. Section 4 presents a set of load-balancing algorithms for
admitting new workload and performing limited workload
re-allocations. Section 5 reports on the experimental results.
Section 6 discusses the related work. Finally, Section 7 con-
cludes the paper and illustrates some futurework.

This paper extends a preliminary conference version of
this work [14] by: (i) proposing a new mathematical formu-
lation of the linear-time method for C=D splitting, which
extends the previous one adopted in [14] allowing to split
constrained-deadline reservations instead of considering
implicit deadlines only as in [14], (ii) simplifying and clari-
fying the load balancing strategies, (Section 4), (iii) discus-
sing how to handle scheduling transients under semi-
partitioned scheduling (Section 4.4), and (iv) reporting new
experimental results to explore the empirical performance
of the new contributions of this paper.

2 SYSTEM MODEL AND BACKGROUND

This work addresses the problem of scheduling a dynamic
workload composed of reservation servers upon m identical

processors. A reservation ri is characterized by a tuple (Ci,
Di, Ti), where Ci is the execution time budget, Ti is the mini-
mum inter-replenishment time of the budget, and Di is the
relative constrained deadline1 Di � Ti. Reservations may
dynamically require to join and leave the system. Upon
each join request, a schedulability-based acceptance test
(detailed later) is performed to determine whether the reser-
vation can be accepted. Reservations that do not pass the
test are rejected (i.e., ignored). At any point in time, R
denotes the set of currently admitted reservations. Reserva-
tions are considered to be independent (i.e., they do not
share resources other than the processors). Each reservation
can be used for manifold purposes, including (i) serving the
execution of a single periodic/sporadic real-time task; (ii)
implementing a hierarchical scheduling framework [16], i.e.,
managing a local scheduler upon the reservation that in
turn manages a set of real-time tasks; and (iii) serving the
execution of non-real-time (i.e., best-effort) workload.

Each reservation server ri 2 R releases a potentially-infinite
number of instances. During each instance, the server executes
for at most Ci time units and then is descheduled. An instance
of the server starts when the budget is refilled and ri has pend-
ingworkload to execute. An instance terminates either (i) when
the budget is exhausted or (ii) the server does not have any-
more pending workload to execute. Note that the release times
of the instances follow a sporadic pattern.

The results presented in this work are not limited to a
specific reservation algorithm, but the server behavior has
to comply with the runtime requirements discussed in
Section 2.1.

A reservation ri is said to be schedulable if it can execute
its entire budget Ci before its relative deadline for any
instance of ri. The acceptance test must guarantee that all
the reservations in R are always schedulable. In this work,
the acceptance test adopts an on-line load balancing algo-
rithm that allocates the reservations to the processors, which
is later presented in Section 4.

The adoption of reservation servers allows guaranteeing
temporal isolation of the workload, thus providing a protec-
tion mechanism against tasks’ overruns or processor-eager,
best-effort computational activities. This feature is parti-
cularly suited for systems running dynamic workloads,
for which—conversely to static, safety-critical real-time
systems—accurate estimates of the tasks’ worst-case execu-
tion time (WCET) are often not available. Such a computa-
tional model is also of practical relevance, as it is analogous
to the one supported by the SCHED_DEADLINE scheduling
class of Linux, today available in the main distribution of
the kernel and hence present in billions of machines and
devices around the world.

In this paper, reservations are assumed to be managed
under semi-partitioned EDF scheduling with the C=D splitting
scheme [12], [13], which is briefly reviewed in the next section.

1. Although most of the algorithms for implementing reservation
servers consider an implicit deadline, the interest toward deadline-con-
strained reservations recently arose in the context of ongoing develop-
ments of the SCHED_DEADLINE scheduling class of the Linux kernel
(see https://lkml.org/lkml/2017/2/10/611), also finding responses
from the scientific community [15].

CASINI ETAL.: TASK SPLITTING AND LOAD BALANCING OF DYNAMIC REAL-TIME WORKLOADS FOR SEMI-PARTITIONED EDF 2169

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on May 31,2022 at 15:16:10 UTC from IEEE Xplore.  Restrictions apply. 

https://lkml.org/lkml/2017/2/10/611


2.1 C=D Semi-Partitioned Scheduling
of Reservations

Semi-partitioned scheduling improves the schedulability
performance of partitioned scheduling when valid static
reservation-to-processor allocations cannot be found or sim-
ply do not exist. This is done by allowing some reservations
to be split across multiple processors, thus involving the
migration of the workload executing in such reservations.
More specifically, the budget of semi-partitioned reserva-
tions is divided into multiple portions (i.e., time chunks)
that are executed on different processors with precedence
constraints.

The C=D scheme proposed by Burns et al. [13] has been
found to be a particularly effective method to split the bud-
get. According to this approach, the budget is split into n �
2 chunks, each to be executed on a different processor. That
is, each instance of a reservation with split budget starts exe-
cuting the first chunk of budget on a processor, then
migrates to another processor to executed the second chunk
of budget, and so on until the budget is finished. When exe-
cuting the first n� 1 chunks, the reservation is scheduled
with C=D, i.e., with a relative deadline equal to the corre-
sponding duration of the portion. In this way, such chunks
have always zero laxity. Conversely, when executing the
last chunk of budget, the reservation is scheduled with a
deadline greater than or equal to the duration of the chunk
(D � C). Brandenburg and G€ul [12] proposed an extension
of the original Burns et al.’s approach where the deadline
assignment is reversed. This approach allows taking advan-
tage of slack reclamation, which in turn provides the benefit
of reducing the number of migrations in the average case.
The latter scheme is the one considered in this paper as the
run-time scheduling mechanism.

Run-Time Scheduling Mechanism. As soon as a server is
admitted, its budget is immediately replenished tomaximum
valueCi. If an instance of a server ri starts at a time t, the next
budget replenishment is set at time tþ Ti. Each instance of ri
beginning at time t is scheduled with absolute deadline tþ
Di. The servers execute without self-suspensions: i.e., the
budget is discharged if the server has pending workload that
is not ready to execute and is depleted when the server stops
having pending workload. For each processor P , at each
point in time the reservation allocated toP that has (i) a pend-
ing instance and (ii) the earliest absolute deadline is selected
for being executed.

Under semi-partitioned scheduling, some reservations
servers never migrates across processors, i.e., they are stati-
cally partitioned. Such reservations are referred to as parti-
tioned reservations, while the others are referred to as semi-
partitioned reservations.

Given a semi-partitioned reservation ri whose budget Ci

is split into two portions, say Ct and Ch such that Ci ¼
Ct þ Ch, the first portion of budget is scheduled on a proces-
sor P 0 with relative deadline Dh ¼ Di � Ct and minimum
inter-replenishment time Ti, while the second one is sched-
uled on a different processor P 00 6¼ P 0 with relative deadline
Dt ¼ Ct and minimum inter-replenishment time Ti. This
split gives rise to two sub-reservations, denoted as head res-
ervation and tail reservation, respectively.

At run-time, the execution of the workload executing
upon a semi-partitioned reservation ri is subject to the

following rules. Consider an instance of ri released at time t
and suppose that the server has always pending workload
to execute. The first Ch units of budget of ri are served by its
head reservation, i.e., on processor P 0. Then, every time the
budget Ch is exhausted, the workload executing upon ri is
migrated to processor P 00, where it will be served by the tail
reservation of ri. If the head reservation is schedulable
within its relative deadline Dh, this event is guaranteed to
happen at a time t0 � tþDh. The head reservation is de-
scheduled and its budget will be replenished at time tþ Ti.

If the tail reservation is schedulable within its relative
deadline Dt ¼ Ct, the C=D approach [12] ensures that Ct

units of time are served before time tþDi, thus guarantee-
ing the schedulability of ri. Once the budget of the tail reser-
vation is exhausted, also this server is de-scheduled and its
budget will be replenished at time t00 þ Ti, where t00 is the
starting time of its last instance. The pending workload
upon ri will then be able to restart the execution from pro-
cessor P 0 (thus involving another migration) at time tþ Ti.
Note that, although the two sub-reservations have the same
minimum inter-replenishment time, their replenishment
times are generally not synchronized.

The approach generalizes to the case in which the budget
is divided in more than two parts by splitting a reservation
into one head reservation and multiple tail reservations.

Example. Consider a reservation ri with Ci ¼ 10 and Ti ¼
Di ¼ 20 that is split into: (i) one head reservation configured
with Ch ¼ 5 and Dh ¼ 15; (ii) one tail reservation configu-
red with Ct ¼ 5, Dt ¼ 5. A possible schedule of such sub-
reservations is illustrated in Fig. 1, together with the evolu-
tion of their budgets over time (indicated by functions
cheadðtÞ and ctailðtÞ, respectively).

It is worth observing that the C=D approach implicitly
poses the limitation that no more than one tail reservation can
be allocated on each processor.

How to Split and Allocate the Reservations?The two main
issues with semi-partitioned scheduling consists in (i) deci-
ding how to size the budget portions of semi-partitioned
reservations, i.e., selecting a splitting algorithm, and, (ii)
determining how to allocate reservation, e.g., by means of
bin-packing heuristics (such as variants of first-fit and
worst-fit). Previous work assumed a static workload and
leveraged an off-line design phase to solve this problem.

Fig. 1. Example of semi-partitioned scheduling of a reservation ri
(Ci ¼ 10; Di ¼ Ti ¼ 20) under C=D splitting. The budget of ri is split into
two budget chunk of 5 time units each, to be executed on two process-
ors. Up-arrows denote the beginning of an instance of the servers.
Down-arrows denote the absolute deadlines of each instance. Dotted
arrows denote the migration of the workload executing upon ri across
the two processors.

2170 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 12, DECEMBER 2021

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on May 31,2022 at 15:16:10 UTC from IEEE Xplore.  Restrictions apply. 



The next section briefly reviews the C=D splitting algorithm
proposed by Burns et al. [13], which has also been adopted
by Brandenburg and G€ul in [12].

2.2 Burns et al.’s C=D Splitting Algorithm

Whenever a reservation ri cannot be statically allocated to a
single processor, Burns et al. [13] proposed to accomplish
the splitting with the following two-phase approach:

i) Given a processor Pk, an algorithm is used to compute
themaximumCt < Ci for which a tail reservationwith
budget Ct, deadline Dt ¼ Ct, and minimum inter-
replenishment time Ti can be allocated to Pk such that
all the reservations running onPk are schedulable.

ii) The remaining portion of budget Ch ¼ Ci � Ct is
then allocated to another processor Px 6¼ Pk follow-
ing a bin-packing heuristic (or is in turn selected for
being split).

The core of their proposal consists in the algorithm
adopted in phase (i). Such an algorithm starts from the
value of C00

i for which the selected processor Pk is fully uti-
lized (i.e., such that

P
ri2Rk

Ci=Ti ¼ 1) after allocating the
tail reservation; then, it allocates the tail reservation to Pk

and applies the following steps:

1) Perform the Quick convergence Processor-demand
Analysis (QPA) [17] to determine whether the set of
reservations allocated to Pk is schedulable.

2) If not, recompute a reduced value of Ct by means of
a fixed-point iteration based on the failure point of the
QPA (please refer to [13] for further details). Then,
re-iterate the procedure from step 1 until the QPA
does not fail.

3) If, at any iteration, the computed value of Ct reduces
to 0, then the tail reservation cannot be allocated to
processor Pk.

This algorithm is optimal, in the sense that it finds the
maximum value of Ct for which a tail reservation can be
safely allocated to processor Pk. However, it suffers from a
high computational complexity. The QPA has a pseudo-
polynomial time complexity when the utilization of the ana-
lyzed processor is strictly lower than one, while has expo-
nential complexity in the case of a fully-utilized processor.
Note that the latter case corresponds to the starting condi-
tion of the algorithm and that the QPA is applied multiple
times. In addition, it requires the execution of fixed-point
iterations that further increase the algorithm complexity. To
the best of our knowledge, the actual complexity of this
algorithm is unknown: anyway, it is clearly unsuitable for
performing on-line decisions concerning the splitting of the
reservations, especially if multiple alternatives for the split-
ting must be evaluated by a load balancing algorithm—
which is the primary objective of this work.

2.3 Notation and Table of Symbols

The m processors are referred to as P1; P2; . . . ; Pm. The set of
nk reservations allocated to processor Pk (both statically or
resulting from a split) is denoted by Rk, with

Tm
k¼1 Rk ¼ ;.

The utilization of a reservation ri is denoted as Ui ¼ Ci=Ti.
Two functions tailðPkÞ ¼ ftrue; falseg and headðPkÞ ¼
ftrue; falseg are used to indicate whether a tail and a head

reservation is allocated to Pk, respectively. If tailðPkÞ ¼ true,
then rt;k denotes the (only) tail reservation allocated to Pk.
Similarly, if headðPkÞ ¼ true, then rh;k denotes the head res-
ervation allocated to Pk with the largest utilization. For the
sake of simplicity, the subscript k is omitted when referring
to an arbitrary processor or it is clear from the context.

The set of nP
k partitioned reservations allocated to Pk is

denoted as RP
k � Rk. Given a tail reservation rt;k (resp.,

head reservation rh;k), the father reservation that has been
split is denoted as Fðrk;tÞ (resp., Fðrk;hÞ). Finally, PðriÞ
denotes the processor to which reservation ri is allocated to.
The main notation adopted throughout the paper is summa-
rized in Table 1.

3 AN APPROXIMATE ALGORITHM FOR C=D
SPLITTING

This section proposes a new algorithm for computing a
lower-bound to the maximum zero-laxity (C=D) portion of
budget that can be allocated to a processor, thus allowing to
compute an approximate solution to the C=D splitting dis-
cussed in Section 2.2. The algorithm has been designed to
have a linear time complexity in order to be efficiently
applied for on-line load balancing.

First, an approximate sensitivity analysis is presented in
Section 3.1. Then, Section 3.2 shows how the sensitivity
analysis can be leveraged to design an algorithm that splits
the budget of a reservation. Finally, Section 3.3 discusses
some implementation issues and the algorithm complexity.

3.1 Approximate Sensitivity Analysis

The method proposed in this paper is based on the processor-
demand criterion (PDC) proposed by Baruah et al. [18]. The
PDC analysis is based on the notion of demand bound func-
tion and provides an exact schedulability test for a set of
constrained-deadline sporadic tasks executing upon a single
processor under EDF scheduling. Since the reservation serv-
ers considered in this work behave as sporadic tasks [12],
the schedulability of the reservations allocated to a given
processor Pk can be verified by checking the PDC as 8t �

TABLE 1
Main Notation Adopted Throughout the Article

Symbol Description

R set of reservations admitted into the system
Pk k-th processor
Rk set of reservations allocated to processor Pk

RP
k set of partitioned reservations allocated to processorPk

nk number of reservations allocated to processor Pk

nP
k number of partitioned reservations allocated to

processor Pk

ri ith reservation
Ci budget of ri
Ti minimum inter-replenishment time of ri
Di relative deadline of ri
Ui utilization of ri

rh;k head reservation allocated to Pk

rt;k tail reservation allocated to Pk

FðriÞ father reservation of a tail or head reservation ri
PðriÞ processor in which ri is allocated

CASINI ETAL.: TASK SPLITTING AND LOAD BALANCING OF DYNAMIC REAL-TIME WORKLOADS FOR SEMI-PARTITIONED EDF 2171

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on May 31,2022 at 15:16:10 UTC from IEEE Xplore.  Restrictions apply. 



0;
P

ri2Rk
dbfiðtÞ � t, where dbfiðtÞ is the demand bound

function of ri and is defined as

dbfiðtÞ ¼ tþ Ti �Di

Ti

� �
Ci: (1)

To design the approximate splitting algorithm, the
demand bound function of each reservation is first approxi-
mated by an upper bound. Following the results in [19], the
demand bound function of any reservation ri 2 Rk is
upper-bounded by

dbfiðtÞ ¼ dbfiðtÞ if t < niTi þDi

Ci þ Uiðt�DiÞ otherwise.

�
(2)

where the parameter ni � 0 denotes the number of steps of
the original demand bound function that are retained in the
approximation. Such a function is illustrated in Fig. 2a.
Leveraging this bound, it is possible to formulate a suffi-
cient PDC-based condition to verify the schedulability of
the reservations allocated to a processor, which is provided
by the following theorem.

Theorem 1 (From [19]). A set of reservations Rk is EDF-
schedulable on a single processor if

P
ri2Rk

Ui � 1 and

8t 2
[

ri2Rk
�ðriÞ;

X
ri2Rk

dbfiðtÞ � t (3)

where

�ðriÞ ¼ fsTi þDig; s ¼ 0; . . . ; ni (4)

With the above theorem in place, it is possible to formu-
late the following optimization problem.

Problem Definition. Consider a set of reservations Rk allo-
cated to a processor Pk that does not already include a tail
reservation. By Theorem 1, a safe budget Ct for a tail reser-
vation rt with minimum inter-replenishment time Tt, such
that rt can be safely allocated to Pk, can be computed by
solving the following optimization problem:

maximizeCt

subject to
X
ri2Rk

Ci

Ti
þ Ct

Tt
� 1

X
ri2Rk

dbfiðtÞ þ dbftðtÞ � t;

8t 2
[

ri2 Rk[rtf g�ðriÞ:

This optimization problem can be manipulated to obtain
a sub-optimal solution in a closed form. Given a lower-bound

CLB
t � 0 to the zero-laxity budget of rt, the problem is

rewritten by means of J þ 1 constraints of the form Ct �
VjðRk; Tt; C

LB
t Þ (with j ¼ 0; . . . ; J), whose left-hand side

terms are independent of Ct, so that the solution can be eas-
ily computed as Ct ¼ minj¼0;...;J fVjðRk; Tt; C

LB
t Þg. In other

words, given the parameters of the reservations in set Rk

and the minimum inter-replenishment time Tt of the tail
reservation, the expressions VjðRk; Tt; C

LB
t Þ must be con-

stant terms.
First of all, note that the constraint

P
ri2Rk

Ci
Ti
þ Ct

Tt
� 1 (corre-

sponding to a very simple necessary condition for feasibility)
originates a trivial upper bound on the value ofCt, that is

Ct � CMAX
t ¼ 1�

X
ri2Rk

Ui

 !
Tt: (5)

Leveraging the bound CMAX
t , the terms VjðR; Tt; C

LB
t Þ can

be derived by considering the constraints originated by the
PDC check-points in the set

S
ri2 Rk[rtf g�ðriÞ. First, note that

functions dbfiðtÞ are piece-wise defined in intervals that
depend on the check-point t. Also, by looking at Equation 4,
observe that the check-points of the tail reservation depend
on the optimization variable Ct ¼ Dt.

Therefore, when considering any of the check-points t of
the tail reservations (i.e., those in the set �ðrtÞ), the value of
functions dbfiðtÞ for the other reservations cannot be
expressed in a closed form as their value depend on Ct,
which is unknown. This issue introduces a sort of circular
dependency in the equations that is solved via approxima-
tions by the following lemma.

Lemma 1. If the conditions

Ct � minri2Rk
fDig � � ðaÞP

ri2Rk
dbfiðjTt þ CMAX

t Þ þ ðjþ 1ÞCt � jTt þDt;

for j ¼ 1; . . . ; ni ðbÞ

8<
:

(6)

hold (with � > 0 arbitrary small), then

8t 2 �ðrtÞ;
X
ri2Rk

dbfiðtÞ þ dbftðtÞ � t: (7)

Proof. Each of the conditions above corresponds to one ele-
ment of the set �ðrtÞ. Condition (a) verifies the constraintP

ri2Rk
dbfiðDtÞ þ dbftðDtÞ � Dt. If the tail reservation

(configured with Ct ¼ Dt) does not have the smallest
deadline among the reservations allocated to Pk, then it
may be preempted, thus inevitably missing its deadline.
Therefore, a solution exists only if Ct ¼ Dt < minri2Rk

ðDiÞ, which then gives
P

ri2Rk
dbfiðDtÞ ¼ 0 and the con-

straint for point Dt is implicitly verified. Condition (b)

verifies the constraint
P

ri2Rk
dbfiðtÞ þ dbftðtÞ � t for

points t ¼ jTt þDt with j ¼ 1; . . . ; ni. Since functions

dbfiðtÞ are monotonic non-decreasing in t and Ct � CMAX
t ,

then dbfiðjTt þDtÞ � dbfiðjTt þ CMAX
t Þ. The lemma fol-

lows by noting that, for points t ¼ jTt þDt, the value of

dbftðtÞ corresponds to ðjþ 1ÞCt. tu
Before proceeding with the constraints originated by the

check-points of the head and partitioned reservations, it is

Fig. 2. Illustrations of the demand bound functions introduced in Sec-
tion 3 (solid lines) with ni ¼ 1. The dashed lines in inset (a) depict the
functions dbfiðtÞ, while the dashed line in inset (b) depicts function

dbfiðtÞ. Inset (b) considers function dbfiðt; CLB
t Þ with CLB

t ¼ 0.

2172 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 12, DECEMBER 2021

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on May 31,2022 at 15:16:10 UTC from IEEE Xplore.  Restrictions apply. 



necessary to introduce a new demand bound function

dbftðtÞ, which is explicitly conceived to deal with the contri-
bution originated by the tail reservation. This function is
illustrated in Fig. 2b and allows removing the circular
dependency that would have been introduced by the use of

dbftðtÞ, which again depends on the value of the (unknown)
optimization variableDt ¼ Ct.

Lemma 2. It holds

8t � 0; dbftðt; CLB
t Þ � dbftðtÞ;

where

dbftðt; CLB
t Þ ¼

0 if t < CLB
t

ðjþ 1ÞCt if t � CLB
t þ jTt ^

t < CLB
t þ ðjþ 1ÞTt

Ct þ Utðt� CLB
t Þ if t � ntTt þ CLB

t ;

8>>><
>>>:

(8)

for j ¼ 0; . . . ; nt � 1, and CLB
t is a lower bound to Ct.

Proof. Let us separately consider the three cases in which
dbftðt; CLB

t Þ is defined.
Case t < CLB

t . As dbftðtÞ ¼ 0 for t < Ct ¼ Dt, being
CLB

t � Ct, then also dbftðt; CLB
t Þ ¼ 0.

Case CLB
t þ jTt � t < CLB

t þ ðjþ 1ÞTt, (j ¼ 0; . . . ;
nt � 1). Being CLB

t � Ct ¼ Dt, in this case dbftðtÞ can be
either equal to jCt, when t < Dt þ jTt, or ðjþ 1ÞCt,
when t � Dt þ jTt. Hence, dbftðtÞ is always upper-
bounded by ðjþ 1ÞCt.

Case t � ntTt þ CLB
t . Analogously as for the previous

case, in this one dbftðtÞ can be either equal to (i) ntCt,
when t < ntTt þDt, or (ii) Ct þ Utðt�DtÞ, when t �
ntTt þDt. Note that in both the sub-cases dbftðtÞ is
upper-bounded by Ct þ Utðt�DtÞ. Being, CLB

t � Ct ¼
Dt, it holds Ct þ Utðt� CLB

t Þ � Ct þ Utðt�DtÞ.
Hence the lemma follows. tu

Thanks to this upper bound, it is now possible to remove
the circular dependency in the constraints originated by the
check-points of the head and partitioned reservations.

Lemma 3. If the inequality

X
ri2Rk

dbfiðtÞ þ dbftðt; CLB
t Þ � t; (9)

holds 8t 2 f S ri2Rk
�ðriÞg, thenX

ri2Rk

dbfiðtÞ þ dbftðtÞ � t;

also holds 8t 2 f S ri2Rk
�ðriÞg.

Proof. The lemma directly follows from Lemma 2 and the
definition of the set �ðriÞ. tu
Finally, the results of Lemma 1 and Lemma 3 are com-

bined in the following theorem, which provides a closed-
form expression for computing a safe bound on Ct.

Theorem 2. A set of reservations fRk [ rtg composed of nk par-
titioned and/or head reservations, and one tail reservation rt
with minimum inter-replenishment time Tt, can be safely EDF-
scheduled on a single processor Pk if

Ct ¼ Dt ¼ minj¼0;...;J VjðRk; Tt; C
LB
t Þ� �

;

where V0ðRk; Tt; C
LB
t Þ; . . . ; VJðRk; Tt; C

LB
t Þ are defined as in

Table 2, and 0 � CLB
t � Ct.

Proof. The set of reservations fRk [ rtg is schedulable if the
conditions of Theorem 1 hold. Note that Lemma 1 and
Lemma 3 can be combined to obtain sufficient conditions
for which Theorem 1 holds. The terms in Table 2 are
obtained by simple algebraic transformations of the condi-
tions of such lemmas, which have been reformulated in the
form 8j ¼ 0; . . . ; J; Ct � VjðRk; Tt; C

LB
t Þ. Specifically, each

check-point in the set
S

ri2fRk[rtg�ðriÞ originates a con-
straint VjðRk; Tt; C

LB
t Þ. All of such constraints are verified if

Ct ¼ minj¼0;...;JfVjðRk; Tt; C
LB
t Þg. The algebraic transfor-

mations to obtain such constraints are the following.
Constraint for Point t ¼ Dt.It directly follows from

Equation (5) and condition (a) in Lemma 1.
Constraints for Points t ¼ sTt þDt: Following condition

(b) of Lemma 1, the inequality

X
ri2Rk

dbfiðsTt þ CMAX
t Þ þ ðsþ 1ÞCt � sTt þDt

needs to be satisfied. Recalling that Ct ¼ Dt and solving
with respect to Ct, the inequality can be rewritten as

sCt � �
X
ri2Rk

dbfiðsTt þ CMAX
t Þ þ sTt;

TABLE 2
List of Terms VjðRk; Tt; C

LB
t Þ (j ¼ 0; . . . ; J) for Theorem 2, Where J ¼ j S fri2Rk

�ðriÞj þ j�ðrtjÞ

CASINI ETAL.: TASK SPLITTING AND LOAD BALANCING OF DYNAMIC REAL-TIME WORKLOADS FOR SEMI-PARTITIONED EDF 2173

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on May 31,2022 at 15:16:10 UTC from IEEE Xplore.  Restrictions apply. 



and then as,

Ct � Tt � 1

s

X
ri2Rk

dbfiðsTt þ CMAX
t Þ:

Constraints for Points t ¼ sTi þDi.By Lemma 3, the fol-
lowing inequality needs to be satisfied:

X
ri2Rk

dbfiðtÞ þ dbftðtÞ � t:

The three cases in which dbftðt; CLB
t Þ is defined are indi-

vidually discussed next.
Case t < CLB

t . Since dbftðt; CLB
t Þ ¼ 0, no constraint is

needed in this interval.
Case

jTt þ CLB
t � t < ðjþ 1ÞTt þ CLB

t ; j ¼ 0; . . . ; nt � 1. Since
dbftðt; CLB

t Þ ¼ ðjþ 1ÞCt, the inequality becomes

X
ri2Rk

dbfiðtÞ þ ðjþ 1ÞCt � t;

which by solvingwith respect toCt ¼ Dt can be rewritten as

Dt � 1

jþ 1
t�

X
ri2Rk

dbfiðtÞ
 !

:

Case t � ntTt þ CLB
t . Since dbftðt; CLB

t Þ ¼ Ct þ Utðt�
CLB

t Þ, the inequality becomes

X
ri2Rk

dbfiðtÞ þ Ct þ Utðt� CLB
t Þ � t:

Recalling that Ut ¼ Ct=Tt and by solving with respect to
Ct, the inequality can be rewritten as

Ct
Tt þ t� CLB

t

Tt

� �
� t�

X
ri2Rk

dbfiðtÞ;

and then as

Ct � Tt

Tt þ t� CLB
t

t�
X
ri2Rk

dbfiðtÞ
 !

:

The right-hand sides of such inequalities are the terms
reported in Table 2. Hence the theorem follows. tu
With Theorem 2 in place, an algorithm to compute a

refined bound for the zero-laxity budget Ct is proposed next.

3.2 Algorithm for Approximate C=D

The results of Theorem 2 can be used to implement an algo-
rithm that efficiently computes a safe value for Ct via itera-
tive refinements, which is is reported in Fig. 3.

The algorithm inputs the set Rk of reservations already
allocated to processor Pk, the period Tt of the tail reservation
to be allocated on Pk, and a number � of refinement iterations.
As a first step, the lower bound CLB

t is initialized to zero,
which is clearly a safe value. Then, at each iteration, the con-
straints VjðRk; Tt; C

LB
t Þ of Table 2 are computed and a new

lower bound forCt is obtained by leveraging Theorem 2. This
lower bound can then be used as a new value for CLB

t to fur-
ther refine the bound provided by Theorem 2, which is mono-
tone non-decreasing with CLB

t . Hence, the algorithm also
generates a non-decreasing sequence of lower bounds for Ct.
Surprisingly, the experiments reported in Section 5.1 show
that just two refinement iterations (� ¼ 2) provide a signifi-
cant improvement with respect to the adoption of Theorem 2
withCLB

t ¼ 0 (� ¼ 0, no bound refinement).

3.3 Implementation and Complexity

In this work, the methods proposed in the previous sections
were derived to be used on-line for admitting a new reserva-
tion by means of C=D splitting. Therefore, considering the
case in which a set of reservations Rk is already allocated to
Pk, the value of Ct has to be computed for evaluating the
possibility of allocating a tail reservation to Pk. In this case,
the approach presented in Section 3.1 allows implementing
a linear-time algorithm for computing the C=D splitting. In
fact, all the terms in the constraints Ct � VjðRk; Tt; C

LB
t Þ (see

Table 2) that do not depend on Tt can be pre-computed and
stored in a table each time a reservation (partitioned or
head) is allocated to Pk (e.g., as using dynamic program-
ming): this operation can be done in OðPri2 Rk[rtf gðni þ
1ÞÞ ¼ OðnkÞ time, which is linear in the number of tasks
as soon ni is constant 8ri 2 Rk [ rtf g. Then, to implement
Theorem 2, it is required to compute (i) the upper boundCMAX

t ,
which can be done in constant time, (ii) the sum of demand
bound functions in V1ðRk; Tt;C

LB
t Þ; . . . ; VntðRk; Tt; C

LB
t Þ, which

can be done in OðnkÞ time, and (iii) the minimum among the
constraints, which can be done inOðnkÞ time.

The APPROXIMATEC=D algorithm computes the bound of
Theorem 2 for �þ 1 times. Hence, the algorithm has complex-
ityOðð�þ 1ÞnkÞ, which is again linear until � is constant.

4 LOAD BALANCING

This section presents a load balancing algorithm for managing
the allocation and the splitting of the reservations under C=D
semi-partitioned scheduling. The algorithmhas been designed
to be as simple as possible (to be practically used online) and
employs a limited number of re-allocations of the reservations.
At a high level, the algorithm reacts to two events: (i) the arrival
of a new reservation, where its admissionmust be evaluated by
finding a proper allocation; and (ii) the exit of a reservation,
which consists in performing some re-allocations in order to
favor the admission of future reservations.

The following two sections discuss how to handle the
arrival and the exit of a reservation. Then, Section 4.3 dis-
cusses how it is possible to increase the performance of the
load balancing algorithm, at the cost of performing a single

Fig. 3. Pseudo-code for computing a lower bound for Ct with iterative
refinement.

2174 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 12, DECEMBER 2021

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on May 31,2022 at 15:16:10 UTC from IEEE Xplore.  Restrictions apply. 



reallocation of an already-partitioned reservation. Finally,
Section 4.4 discusses how to handle the scheduling transi-
ents originated by a reservation that leaves the system or
that is reconfigured.

4.1 Admission of a New Reservation

Whenever the system receives a request for admitting a new
reservation ri ¼ ðCi;Di; TiÞ, the following operations are
performed:

1) First, the algorithm tries to find a static allocation of ri
to a processor (i.e., as with standard partitioned sched-
uling) by using a partitioning heuristic. In particular,
according to our experiments, the best-fit heuristic has
been found to perform best. If a valid allocation is
found, then ri is admitted into the system.

2) If step 1) fails, then ri is split into a head reservation
rh and a number tail reservations r1t ; . . . ; r

x
t , with x <

m, by the algorithm reported in Fig. 4. The algorithm
works as follows. First, for each processor Pk, a safe
bound on the maximum budget of a tail reservation
allocated to Pk is computed by means of the APPROXI-

MATEC=D algorithm (line 4). The pairs ðSk:C; Sk:P Þ of
budgets and processors are recorded in an ordered
list S. Then, S is sorted in descending order with
respect to the budget of each pair. Then, the maxi-
mum index x is computed such that the sum of the
largest x elements in S does not exceed the budget
Ci of the reservation to be split. Subsequently, for
each of the x first elements in S, a tail reservation rjt
is defined with budget and deadline Sj:C, period Ti

(line 9), and allocated to processor Sj:P (line 10),
with j ¼ 1; . . . ; x. The same partitioning heuristic
used in step 1) is then applied to allocate the head
reservation rh: if the allocation succeeds, then the
algorithm also succeeds; otherwise the algorithm
fails and the reservation ri is rejected.

Note that both the steps require evaluating whether a
reservation can be safely allocated to a processor, which can
be performed by leveraging Theorem 1 with computational
cost OðnkÞ. As discussed in Section 3.3, algorithm APPROX-
IMATEC=D has OðnkÞ complexity. Hence, the overall
computational cost of the above operations is Oðm � nMAXÞ,
where nMAX ¼ maxk¼1;...;mfnkg. Note that this is the same
complexity of the approach described in [14].

4.2 Handling the Exit of a Reservation

Whenever a partitioned reservation ri 2 RP
k (i.e., allocated

to processor Pk) leaves the system, if tailðPkÞ ¼ true let rt;k
be the (only) tail reservation allocated on Pk, and let rj ¼
Fðrt;kÞ. Then, the algorithm tries to allocate rj to Pk after
removing all head and tail reservations related to rj from
the corresponding processors. That is, the algorithm tries to
re-assemble the semi-partitioned reservation rj by allocat-
ing it as a partitioned reservation of Pk. Conversely, if
tailðPkÞ ¼ false but headðPkÞ ¼ true, let rh;k be head reserva-
tion with the highest utilization allocated on Pk. Then, the
algorithm tries to re-assemble rj ¼ Fðrh;kÞ on Pk as above.
Whenever a semi-partitioned reservation ri 2 R n RP

k leaves
the system, let PðriÞ be the set of processors in which at least
a tail or head reservation of ri was allocated. Then, for each
processor Pk 2 PðriÞ, the same procedure described above
for the exit of a partitioned reservation is performed. These
operations require checking at most m times (the maximum
number of splits) whether a reservation can be allocated to
a processor, which can be performed in Oðm � nMAXÞ time.

4.3 Re-Allocate Partitioned Reservations

Whenever the algorithm does not find a valid allocation for
a new reservation ri, the chances of admitting ri can be
increased by trying to re-allocate a previously-allocated par-
titioned reservation. In particular, the following heuristic
has been found to be effective while employing minimal re-
allocations limited to a single reservation.

For each processor Pk (k ¼ 1; . . . ;m), check if after de-
allocating the partitioned reservation rj 2 RP

k that has the
highest utilization (i.e., rj 2 RP

k j Uj ¼ maxrx2RP
k
Ux) it is

possible to allocate ri to Pk. If yes, then try to re-allocate rj
by following steps 1 and 2 in Section 4.1. When the first
valid re-allocation is found, rj is re-allocated, ri is allocated
to Pk, and the algorithm terminates. The computational
complexity of this extension is Oðm2 � nMAXÞ complexity.

4.4 Handling Scheduling Transients

It is worth observing that the admission of a new reserva-
tion may not be immediately performed when another res-
ervation leaves the system or it is reconfigured during a re-
allocation (so freeing some utilization bandwidth). This is
because the leaving (or modified) reservation may have
already affected the execution of the other reservations, and
hence the system is subject to a transient (also referred to as
mode-change by some authors). However, note that this
issue is not specifically related to semi-partitioned schedul-
ing, as it also occurs in uniprocessor systems [20], [21] (and
hence under partitioned scheduling) and under global
scheduling [22], [23]. Several solutions are available for ana-
lyzing such transients [20], [22], [24] by deriving a safe

Fig. 4. Pseudo-code of the algorithm for splitting and allocating
reservations.

CASINI ETAL.: TASK SPLITTING AND LOAD BALANCING OF DYNAMIC REAL-TIME WORKLOADS FOR SEMI-PARTITIONED EDF 2175

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on May 31,2022 at 15:16:10 UTC from IEEE Xplore.  Restrictions apply. 



bound on the time that must be waited before admitting a
new reservation or let re-allocations to take effect.

The design of efficient methods to handle scheduling
transients that are tailored to C=D semi-partitioned sched-
uling is out of the scope of this paper and is left as future
work. This section illustrates how to apply state-of-the-art
results for partitioned scheduling to handle scheduling
transients in the setting considered in this work.

When deadline misses cannot be tolerated, it is necessary to
ensure that a newly admitted (or re-allocated) reservation is sub-
ject to an admission delay. For example, in the case of partitioned
reservations, the AADT algorithm [24] (and the related protocol)
maybeused to compute such an admissiondelay in polynomial
time. Nevertheless, it is designed for uniprocessor (or multipro-
cessor partitioned) scheduling, and hence it cannot be directly
applied to semi-partitioned reservations. To fill this gap,
Lemma 4 establishes a safe time to admit a semi-partitioned res-
ervationwithout incurring scheduling transients.

Lemma 4. Let ri be a semi-partitioned reservation that has been
admitted in the system at time t and split into x < m sub-res-
ervations r1i ; . . . r

x
i . Also, let B be the set of processors in which

the sub-reservations of ri are allocated to, i.e., B ¼ fPk j 9rji
2 Rk s.t. j ¼ 1; . . . ; x ^ k ¼ 1; . . . ;mg.

Then, ri can be admitted without incurring scheduling
transients at time

tþ max
j¼1;...;x

fdjig; (10)

where dij is a safe admission delay for sub-reservation rji .

Proof. Reservation ri does not incur in scheduling transi-
ents if each sub-reservation waits for its corresponding
admission delay. By definition, each delay dij is a safe
time for admitting the sub-reservation rji in the corre-
sponding processor. Hence, waiting for the maximum
admission delay among all sub-reservation provides a
safe condition for admitting ri. tu
Lemma 4 provides a simple and safe way to extend state-

of-the-art results for dealing with scheduling transients to

admit reservations that require to be split. Note that
Lemma 4 can also be used in conjunction with other meth-
ods providing safe admission delays for each of the sub-
reservations (i.e., working under partitioned scheduling).

Nonetheless, waiting for an admission delay may not be
always acceptable. In these circumstances, a simple and
effective strategy consists in allowing the allocation of a res-
ervation ri only if the corresponding admission delay is
zero. For example, this method may be suitable for reserva-
tions that need to be re-allocated in a different processor to
favor the admission of new workloads.

5 EXPERIMENTAL RESULTS

This section presents the results of two large-scale experi-
mental studies that have been conducted to evaluate the
approach presented in this paper. The first study, dis-
cussed in Section 5.1, has been carried out to assess the
performance of the approximate C=D splitting algorithm
presented in Section 3 with respect to the exact algorithm
proposed by Burns et al. in [13]. Furthermore, the space of
parameters ni and � (see Section 3) has been explored to
determine suitable configurations to be used at run time.
The second study, discussed in Section 5.2, has been car-
ried out to evaluate the performance of the load balancing
algorithms presented in Section 4 (adopted in conjunction
with the C=D splitting algorithm of Section 3), comparing
them to G-EDF and partitioned EDF scheduling under dif-
ferent settings.

5.1 C=D Splitting: Approximate Versus Exact

The objective of this experimental study is to evaluate the
utilization loss introduced by the approximate C=D split-
ting algorithm presented in Section 3 with respect to the
exact Burns et al.’s [13] method. Specifically, the study con-
siders a single processor on which a set of reservations is
already allocated and is based on computing with the two
methods the maximum zero-laxity budget of a tail reserva-
tion to be allocated on the considered processor.

Fig. 5. Average utilization loss introduced by the approximate algorithms for C=D splitting (presented in Section 3) as a function of the task-set utiliza-
tion (insets (a) and (b)), the parameters b and � (insets (c) and (d)), the number of reservations n (insets (e) and (f)). Insets (g) and (h) evaluates the
running times of the proposed methods against the one of the exact C=D splitting algorithm.

2176 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 12, DECEMBER 2021

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on May 31,2022 at 15:16:10 UTC from IEEE Xplore.  Restrictions apply. 



Reservation Set Generation. Given n reservations and a
target utilization U ¼Pn

i¼1 Ui, the individual utilizations
Ui of the n reservations are generated with the UUnifast
algorithm [25]. For each reservation, the minimum inter-
replenishment time Ti is randomly generated in the range
[1, 1000] ms with uniform distribution and the budget is
then computed as Ci ¼ UiTi. The relative deadline of each
reservation ri is then randomly generated with uniform dis-
tribution in the interval ½Ci þ bðTi � CiÞ; Ti�, with b 2 ½0; 1�.
Intuitively, the use of larger values for b tend to generate
deadlines closer to the corresponding periods, where b ¼ 1
impliesDi ¼ Ti.

Experiments. The utilization U has been varied in the
range ½0:05; 0:95� with step 0.05, and the number n of reser-
vations has been varied from 2 to 20.2The number of addi-
tional steps ni of the approximate demand bound function
of each task and the parameter � (see Algorithm 3) have
been varied in the interval ½0; 9� with step one. For the
sake of simplicity, the parameter ni is set to the same value n
for all the tasks. The parameter b, which controls the relative
deadline of the tasks, has been varied in the set f0:5; 0:75; 1g.
For each combination of these parameters, 5000 reservation
sets have been tested, for a total of almost 600 million reser-
vation sets. For each reservation set R, the period Tt of a tail
reservation rt has been randomly generated in the range [1,
1000] ms with uniform distribution. Then, the value of Ct

such that the set of reservations frt [Rg can be safely EDF-
scheduled on a single processor has been computed by both
the exact method from [13] and the approximate method
proposed in this paper. The two methods have been com-
pared in terms of utilization loss: that is, given the exact
value CEXA

t (by [13]) and an approximate value CAPP
t �

CEXA
t , the utilization loss introduced by the approximate

method is defined as CEXA
t =Tt

	 
� CAPP
t =Tt

	 

.

The experimental results for six representative configura-
tions are reported in Fig. 5. Figs. 5a and 5b, show that the
improvement provided by increasing the value of n

becomes very small for n � 2, and that the utilization loss
decreases as the utilization U increases. Fig. 5c shows that
utilization loss slightly decreases as the parameter b

increases, and Figs. 5e and 5f illustrate the dependency of
the utilization loss on the number of tasks n, which
improves as n increases. As for parameter n, also the
improvement achieved by increasing the number of refine-
ment iterations � becomes smaller for � � 2. Overall, the
results show that configuring the approximate C=D algo-
rithm with n ¼ � ¼ 2 provides an empirical utilization loss
always below 3 percent. This is an important result because
such low values for parameters n and � determine very
short running times of the approximate C=D algorithm.

Running Times.Another experiment has been carried out
to evaluate the running times of the proposed methods
against the one of the exact C=D splitting algorithm. The
tests have been executed on a machine equipped with an

Intel Core i7-6700K @ 4.00 GHz. The Microsoft VC++2015
compiler has been used to compile literal implementations
(i.e., not designed for being extremely efficient) of the algo-
rithms. The approximate C=D algorithm has been config-
ured with n ¼ � ¼ 2. The running times of both methods
have been collected using the Windows API for measuring
the wall clock. Despite the experiments having been per-
formed on a dedicated processor, measurements may
include some additional overhead (e.g., execution of serv-
ices of the operating system). A preliminary experiment
excluded the possibility of using the API that measures the
execution time of the process only, as the offered precision
is comparable with the running time of Algorithm 3. As
showed in Figs. 5g and 5h, the exact C=D splitting algo-
rithm exhibited maximum running times in the order of a
few seconds, with an increasing trend as a function of the
utilization and the number of reservations, whereas the run-
ning time of the approximate algorithm always resulted
below 30 microseconds. The maximum running times of
Algorithm 3 showed a slightly increasing trend with respect
to the number of tasks, ranging from 16 ms for n ¼ 2 tasks,
to 29 ms for n ¼ 20 tasks.

5.2 Proposed Approach Versus G-EDF and P-EDF

A second experimental study has been performed to evalu-
ate the performance of C=D semi-partitioned schedu-
ling managed by the load balancing algorithms presented
in Section 4 (that make use of the approximate splitting
algorithm of Section 3) against G-EDF and partitioned EDF
(P-EDF) scheduling. For G-EDF scheduling, a relatively
favorable condition has been considered in which the accep-
tance test is performed by combining four state-of-the-art
polynomial-time tests (suitable for being executed on-line),
which are: GFB [26], BAK [27], a polynomial-time approxi-
mation of LOAD [28], [29], and I-BCL [30] (configured with
3 iterations, as suggested by the authors). In other words, if
any of these tests is passed, then a new reservation is admit-
ted. For P-EDF, three common partitioning heuristics have
been tested: first-fit, best-fit, and worst-fit (the latter with
respect to the utilizations of the reservations). The study is
based on synthetic dynamic workloads, which have been
generated as follows.

Generation of Dynamic Workload. A sequence of NE events
is generated, where each event can be of type ARRIVAL or
EXIT. An ARRIVAL event consists in a new reservation ri
that is tried to be admitted into the system. The beta distribu-
tion [31] has been adopted to control the statistical validity

Fig. 6. Analysis of the workload generated with m ¼ 8; UAVG ¼ 0:5; Us ¼
0:3; and c ¼ 0:9. Inset (a) reports Uopt as a function of the number of
occurred events, whereas inset (b) shows the empirical probability distri-
bution function of the generated utilizations.

2. In the special case of a single reservation (n ¼ 1), the computation
of the exact maximum zero-laxity budget that can be safely allocated to
a processor can be computed by solving a simple equation (the details
are available in Appendix A). The number of tasks has been limited to
20 because the results show that the error introduced by the proposed
approximation decreases as the number of tasks increases, approaching
very low values for more than 20 tasks.

CASINI ETAL.: TASK SPLITTING AND LOAD BALANCING OF DYNAMIC REAL-TIME WORKLOADS FOR SEMI-PARTITIONED EDF 2177

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on May 31,2022 at 15:16:10 UTC from IEEE Xplore.  Restrictions apply. 



of the utilizations of the reservations, generating the utiliza-
tion values in a fixed range ½Umin; Umax� ¼ ½0:01; 0:9�. In each
experiment, the beta distribution has been configured with
two parameters UAVG and Us , controlling the average and
the variance of the generation, respectively. The minimum
inter-replenishment time Ti of each reservation was gener-
ated in the range [1, 1000] ms with uniform distribution,
and the budget was then computed as Ci ¼ UiTi. As in
Section 5.1, the relative deadline of each reservation ri has
been randomly generated with uniform distribution in the
interval ½Ci þ bðTi � CiÞ; Ti�, with b 2 ½0; 1�.

The EXIT event corresponds to the exit of a reservation
that is randomly selected among those that are currently
admitted in the system. Each sequence s of events is gener-
ated as follows: a random real number x 2 ½0; 1� is generated
NE times with uniform distribution; each time, if x 2 ½0;L�,
an ARRIVAL event is generated and enqueued to s, else an
EXIT event is generated and enqueued to s. The term L is a
variable threshold that controls the generation and has been
set to L ¼ ð1� Uopt=mÞ þ cðUopt=mÞ with the following
interpretation. The parameter Uopt is the current utilization
that the system would have if an optimal scheduling algo-
rithm would have been used to process the previously-
generated events. The first term in the definition of L is pro-
vided to increase the probability of generating an ARRIVAL

event when the system load is low. The second term
depends on a parameter c 2 ½0; 1�, which is used to control
the tendency of a sequence to load the processors; i.e., the
larger c the larger the average load demanded by a
sequence. Fig. 6 reports some details about the generated
workload. Inset (a) shows the utilization Uopt provided by
the generator as a function of the number of occurred
events, when the generator is configured with m ¼
8; UAVG ¼ 0:5; Us ¼ 0:3; and c ¼ 0:9. Under this configura-
tion, the generator is able to maintain a fairly high Uopt, and
hence is capable of properly loading the system to stimulate
the tested methods. Inset (b) corroborates the statistical

validity of the generated utilizations by showing the empiri-
cal probability distribution function of the generated utiliza-
tions in a sequence of 10000 events.

Experiments. The average utilization UAVG of the gener-
ated reservations has been varied in the range [0.2, 0.7] with
step 0.05, whereas the variance Us has been varied in the
range [0.10, 0.50], with step 0.05. The parameter b, which
regulates the relative deadlines, has been varied in the set
f0:5; 0:75; 1g. The number of processors m has been varied
in the set {4, 8, 16, 32} and the parameter c in the set {0.6,
0.7, 0.8, 0.9}. For each combination of the varied parameters,
1000 sequences of 10000 events have been generated. Each
generated sequence has been tested with G-EDF, P-EDF,
and the approaches proposed in this paper, measuring the
average load accepted by each algorithm across the whole
sequence. This measure is subsequently normalized to the
hypothetical average load that would have been accepted
by an optimal scheduling algorithm. This index expresses
the quality of an algorithm in terms of acceptance rate (the
higher the better and 100 percent corresponds to the perfor-
mance of an optimal algorithm).3

Fig. 7 reports the results for eight representative configu-
rations with c ¼ 0:9. The labels P-EDF-FF, P-EDF-WF, and
P-EDF-BF in the legend indicate first-fit, worst-fit, and
best-fit partitioning, respectively; C=D-LB indicates the pro-
posed approach based on load balancing presented in
Section 4 configured with n ¼ � ¼ 2. As it can be observed
from Figs. 7a, 7b, 7c, 7d, 7e, 7f, 7g, the performance of the
algorithms is significantly affected by the utilization of the
tested reservations (as also previously observed in other

Fig. 7. Average accepted load obtained by different scheduling approaches as a function of the average utilization UAVG (insets (a), (b), (c), (e), (f)
and (g)), Us (inset (d)), and b (inset (h)). The results are related to eight representative configurations identified by the fixed parameters reported in
the caption above the graphs.

3. Note that the typical schedulability ratio metric makes little sense
in the presence of dynamic workload, as the behavior of the different
algorithms may significantly differ depending on the previous work-
load. For instance, an algorithm may reject a lot of “small” (low utiliza-
tion) reservations because it previously accepted a “heavy” (high
utilization) reservation.

2178 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 12, DECEMBER 2021

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on May 31,2022 at 15:16:10 UTC from IEEE Xplore.  Restrictions apply. 



works). The proposed approach allows achieving high per-
formance, keeping the average accepted load above the
87 percent when Di ¼ Ti (i.e., b ¼ 1), even in the presence
of several reservations with high utilization. In particular, it
allows achieving a performance improvement up to 40
and 30 percent over G-EDF and P-EDF, respectively. In the
case of constrained deadlines (b ¼ 0:5; 0:75), the perfor-
mance of all the various approaches decreases: nevertheless,
C=D-LB still allows keeping the average accepted load
above 84 percent. The algorithms based on P-EDF show rel-
atively good performance up to values of UAVG that are
close to 0.5. Basic partitioned scheduling with simple heu-
ristics has been found to always outperform G-EDF. Fig. 7d
shows the dependency on the variance Us of the utiliza-
tions: the average accepted load slightly decreases as Us

increases. Finally, Fig. 7h shows the dependency on the
parameter b: for all the tested approaches, the average
accepted load decreases as b decreases.

It is worth observing that the curves tend to show a non-
monotonic behavior for the following reason. Under large
values for UAVG, the acceptance or the rejection of a reserva-
tion corresponds to a significant difference in terms of
instantaneous accepted load. Since this phenomenon also
occurs in the case of an optimal scheduling algorithm (to
which the performance is normalized to), the processors
tend to be less loaded across a sequence, independently of
the tested algorithm, which is a situation that favors non-
optimal algorithms. The non-monotonic behavior of the per-
formance of G-EDF has been found to also depend on the
combination of multiple acceptance tests; in particular, the
I-BCL test tends to perform better than the others for larger
values of UAVG. Fig. 8 compares different approaches to per-
form semi-partitioned scheduling of dynamic workloads:
C=D-BASELINE, i.e., the approaches of Sections 4.1 and 4.2
but limiting semi-partitioned reservations to be split in at
most two chunks and without leveraging the re-allocate par-
titioned reservation extensions discussed in Section 4.3, as in
the baseline load-balancing approach of [14]; C=D-MS,
which extends C=D-BASELINE allowing semi-partitioned
reservations to be split into multiple chunks (at most m);
C=D-LB, the complete approach proposed in this paper also
considered in Fig. 7. These three approaches represent three
different configurations a system designer may want to
explore as a trade-off to balance complexity and perfor-
mance (in terms of average-accepted load). C=D-BASELINE
and C=D-MS have both Oðm � nMAXÞ complexity for admit-
ting a new reservation, but C=D-BASELINE may have a
lower run-time overhead due to a lower number of

migrations (the lower the number of chunks, the lower the
maximum number of migrations), whereas C=D-LB has
Oðm2 � nMAXÞ complexity. As expected, C=D-LB reports the
highest average accepted load, but also C=D-MS shows a
good performance, thus representing an interesting compro-
mise when an approach with lower complexity is required.

6 RELATED WORK

The problem of scheduling real-time workload on a multi-
core platform has been extensively investigated. A detailed
discussion of all the results proposed in the literature is too
vast to fit in the space available in this paper and readers
interested in the topic can refer to the survey written by
Davis and Burns [5]. For this reason, this section focuses on
techniques based on semi-partitioned scheduling, which are
more relevant to the proposed approach. Semi-partitioned
scheduling has been first introduced by Anderson et al. [32]
in 2005. Later, numerous semi-partitioned scheduling algo-
rithms have been presented, including the proposals of
Andersson et al. [33] and Kato et al. [34], [35], [36].

The idea of having split tasks (i.e., reservations) execut-
ing at zero-laxity has been originally proposed by Kato and
Yamasaki [36] in the context of fixed-priority scheduling,
and later extended by Burns et al. [13] to EDF, who pro-
posed the C=D scheme on which this paper builds upon.
Kato and Yamasaki [36] ensured split reservations to be exe-
cuted with the highest priority on each processor, thus
guaranteeing their budget C to be always consumed within
D ¼ C time units from their release time.

In 2011, Bastoni et al. [37] presented a thorough comparison
of several semi-partitioned scheduling algorithms, illustrating
their benefits with respect to other scheduling approaches.
The method described in this paper has been motivated by a
recent development due to Brandenburg and G€ul [12], who
showed that, by adopting clever task-allocation heuristics, the
C=D splitting algorithm proposed by Burns et al. [13] allows
achieving a near-optimal performance in the presence of static
real-time workload. As in [12], the proposed approach also
combines C=D scheduling with processor reservations, but in
a more dynamic environment where reservations can be cre-
ated and destroyed at runtime. Brandenburg and G€ul also
reports on a solid evaluation of the overhead introduced by
C=D scheduling demonstrating its practical effectiveness. An
overhead-aware analysis for semi-partitioned scheduling
algorithms has been also proposed by Souto et al. [38]. Maia
et al. [39] considered the problem of applying semi-partitioned
scheduling to fork-join tasks on a multicore platform. George
et al. [40] considered a different approach of semi-partitioned
scheduling, where different jobs of the same task can be
released on different processors, but each job executes on a
single processor only. Very recently, Hobbs et al. [41] pre-
sented approaches for semi-partitioned scheduling in the con-
text of soft real-time systems, aimed at guaranteeing a
bounded tardiness.

The problem of taking online scheduling decisions for
real-time workload has been investigated in many works.
In particular, the difficulty of the problem has been dis-
cussed in the seminal work of Dertouzos and Mok [42] and
by Fisher et al. [43]. Lee and Shin [23] and Nelis et al. [22]
proposed techniques for analyzing the effect of system

Fig. 8. Average accepted utilization obtained by different semi-parti-
tioned scheduling methods as a function of the average task utilization.

CASINI ETAL.: TASK SPLITTING AND LOAD BALANCING OF DYNAMIC REAL-TIME WORKLOADS FOR SEMI-PARTITIONED EDF 2179

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on May 31,2022 at 15:16:10 UTC from IEEE Xplore.  Restrictions apply. 



transients under global scheduling. Block and Anderson [44]
and Block et al. [45] addressed dynamic workload in the
context of task reweighting under partitioned and P-Fair
scheduling, respectively.

To the best of our knowledge, this work proposes the first
method to perform online admission control under semi-
partitioned scheduling and hard deadline constraints.

7 CONCLUSION AND FUTURE WORK

This paper proposedmethods to enable C=Dsemi-partitioned
scheduling for dynamic workloads consisting of reservation
servers. Reservation servers can arbitrarily join and leave the
system, but each of them is subject to an admission test before
being admitted into the system.

The presented approach allows performing C=D splitting
in linear-time, thus drastically reducing the computational
complexity with respect to prior (but exact) methods [13]
characterized by very high computational complexity.

The approximate C=D splitting method has been then
leveraged to design a load balancing algorithm, which
allows dynamically allocating and splitting incoming reser-
vations at runtime. A method for extending state-of-art
results on scheduling transients to semi-partitioned sched-
uling has also been discussed.

The contributions have been evaluated with large-scale
experimental studies. In particular, the linear-time approxi-
mation proposed to split reservations has been shown to
originate a very limited (below the 3 percent) utilization
loss with respect to the exact technique proposed by Burns
et al. [13]. The adoption of task splitting and load balancing
algorithms to manage dynamic workloads showed a nota-
ble schedulability performance, with improvements over
global and partitioned EDF up to 40 and 30 percent, respec-
tively. In most of the tested cases, the proposed method
allows keeping the average system load above 87 percent,
also in the presence of reservations with very high utiliza-
tions, which would result difficult to allocate using standard
partitioned scheduling.

These results suggest the usage of semi-partitioned C=D
scheduling also to handle dynamic workloads.

Interesting research lines for future research include the
extension of the proposed approaches to parallel real-time
tasks and elastic reservations [20]. Furthermore, developing
new protocols (and extending the existing ones) for supp-
orting lock-protected shared resources under C=D semi-
partitioned scheduling is also a relevant direction for future
work. In particular, the extension of protocols based on band-
width inheritance among dependent reservations seems to
be particularly promising. Another important direction for
future extensions is the consideration of heterogeneous pro-
cessors, where the splitting algorithm is required to account
for multiple execution profiles related to different types of
processors. Furthermore, additional load-balancing strategies
may further improve schedulability.

REFERENCES

[1] T. Cucinotta, L. Abeni, L. Palopoli, and G. Lipari, “A robust mech-
anism for adaptive scheduling of multimedia applications,” J.
ACM Trans. Embedded Comput. Syst., vol. 10, no. 4, pp. 1–24,
Nov. 2011.

[2] K. Konstanteli, T. Cucinotta, K. Psychas, and T. Varvarigou,
“Admission control for elastic cloud services,” in Proc. 5th Int.
Conf. Cloud Comput., 2012, pp. 41–48.

[3] “ROSWebsite,” 2020. [Online]. Available: http://www.ros.org/
[4] D. Casini, T. Blaß, I. L€utkebohle, and B. B. Brandenburg,

“Response-time analysis of ROS 2 processing chains under reser-
vation-based scheduling,” in Proc. 31th Euromicro Conf. Real-Time
Syst., 2019, pp. 6:1–6:23.

[5] R. Davis and A. Burns, “A survey of hard real-time scheduling for
multiprocessor systems,” ACM Comput. Surv., vol. 43, no. 4,
pp. 35:1–35:44, Oct. 2011.

[6] P. Regnier, G. Lima, E. Massa, G. Levin, and S. Brandt,
“Multiprocessor scheduling by reduction to uniprocessor: An orig-
inal optimal approach,” Real-Time Syst., vol. 49, no. 4, pp. 436–474,
Nov. 2013.

[7] G. Nelissen, V. Berten, V. Nelis, J. Goossens, and D. Milojevic, “U-
EDF: An unfair but optimal multiprocessor scheduling algorithm
for sporadic tasks,” in Proc. 24th Euromicro Conf. Real-Time Syst.,
2012, pp. 13–23,.

[8] E. Massa, G. Lima, P. Regnier, G. Levin, andS. Brandt,“Quasi-
partitioned scheduling: Optimality and adaptation in multiproces-
sor real-time systems,” Real-Time Syst., vol. 52, no. 5, pp. 566–597,
2016.

[9] H. Cho, B. Ravindran, and E. D. Jensen, “An optimal real-time
scheduling algorithm for multiprocessors,” in Proc. 27th Real-Time
Syst. Symp., 2006, pp. 101–110.

[10] Y. Sun and M. Di Natale, “Pessimism in multicore global schedul-
ability analysis,” J. Syst. Archit., vol. 97, pp. 142–152, Aug. 2019.

[11] A. Biondi and Y. Sun, “On the ineffectiveness of 1/m-based inter-
ference bounds in the analysis of global EDF and FIFO sched-
uling,” Real-Time Syst., vol. 54, no. 3, pp. 515–536, Jul. 2018.

[12] B. Brandenburg and M. G€ul, “Global scheduling not required:
Simple, near-optimal multiprocessor real-time scheduling with
semi-partitioned reservations,” in Proc. 37th Real-Time Syst. Symp.,
2016, pp. 99–110.

[13] A. Burns, R. Davis, P. Wang, and F. Zhang, “Partitioned EDF
scheduling for multiprocessors using a C=D task splitting
scheme,” Real-Time Syst., vol. 48, pp. 3–33, Jan. 2012.

[14] D. Casini, A. Biondi, and G. Buttazzo, “Semi-partitioned schedul-
ing of dynamic real-time workload: A practical approach based
on analysis-driven load balancing,” in Proc. 29th Euromicro Conf.
Real-Time Syst., 2017, 13:1–13:23.

[15] D. Casini, L. Abeni, A. Biondi, T. Cucinotta, and G. Buttazzo,
“Constant bandwidth servers with constrained deadlines,” in
Proc. 25th Int. Conf. Real-Time Netw. Syst., 2017, pp. 68–77.

[16] I. Shin and I. Lee, “Compositional real-time scheduling frame-
work with periodic model,” J. ACM Trans. Embedded Comput.
Syst., vol. 7, no. 3, Apr. 2008, Art. no. 1–39.

[17] F. Zhang and A. Burns, “Schedulability analysis for real-time sys-
tems with EDF scheduling,” IEEE Trans. Comput., vol. 58, no. 9,
pp. 1250–1258, Apr. 2009.

[18] S. K. Baruah, L. E. Rosier, and R. R. Howell, “Algorithms and
complexity concerning the preemptive scheduling of periodic,
real-time tasks on one processor,” Real-Time Syst., vol. 2, no. 4,
pp. 301–324, Oct. 1990.

[19] N. Fisher, T. P. Baker, and S. Baruah, “Algorithms for deter-
mining the demand-based load of a sporadic task system,” in
Proc. 12th Int. Conf. Embedded Real-Time Comput. Syst. Appl.,
2006, pp. 135–146.

[20] G. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni, “Elastic sched-
uling for flexible workload management,” IEEE Trans. Comput.,
vol. 51, no. 3, pp. 289–302, Mar. 2002.

[21] J. Real and A. Crespo, “Mode change protocols for real-time sys-
tems: A survey and a new proposal,” Real-Time Syst., vol. 26,
no. 2, pp. 161–197, Mar. 2004.

[22] V. N�elis, J. Marinho, B. Andersson, and S. M. Petters, “Global-EDF
scheduling of multimode real-time systems considering mode
independent tasks,” in Proc. 23rd Euromicro Conf. Real-Time Syst.,
2011, pp. 205–214.

[23] J. Lee and K. Shin, “Schedulability analysis for a mode transition
in real-time multi-core systems,” in Proc. IEEE 34th Real-Time Syst.
Symp., 2013, pp. 11–20.

[24] D. Casini, A. Biondi, and G. Buttazzo, “Handling transients of
dynamic real-time workload under EDF scheduling,” IEEE Trans.
Comput., vol. 68, no. 6, pp. 820–835, Jun. 2019.

[25] E. Bini and G. Buttazzo, “Measuring the performance of schedul-
ability tests,” Real-Time Syst., vol. 30, no. 1, pp. 129–154, May
2005.

2180 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 12, DECEMBER 2021

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on May 31,2022 at 15:16:10 UTC from IEEE Xplore.  Restrictions apply. 

http://www.ros.org/


[26] J. Goossens, S. Funk, and S. Baruah, “Priority-driven scheduling of
periodic task systems on multiprocessors,” Real-Time Syst., vol. 25,
no. 2, pp. 187–205, Sep. 2003.

[27] T. Baker, “Multiprocessor EDF and deadline monotonic schedul-
ability analysis,” in Proc. 24th Int. Real-Time Syst. Symp., 2003,
pp. 120–129.

[28] S. Baruah and T. Baker, “Global EDF schedulability analysis of
arbitrary sporadic task systems,” in Proc. 20th Euromicro Conf.
Real-Time Syst., 2008, pp. 3–12.

[29] N. W. Fisher, “The multiprocessor real-time scheduling of general
task systems,” Ph.D. dissertation, University of North Carolina at
Chapel Hill, 2007.

[30] M. Bertogna, M. Cirinei, and G. Lipari, “Schedulability analysis of
global scheduling algorithms on multiprocessor platforms,” IEEE
Trans. Parallel Distrib. Syst., vol. 20, no. 4, pp. 553–566, Apr. 2009.

[31] N. Balakrishnan and V. B. Nevzorov, A Primer on Statistical Distri-
butions, Hoboken, NJ, USA: Wiley, 2003.

[32] J. Anderson, V. Bud, and U. Devi, “An EDF-based scheduling
algorithm for multiprocessor soft real-time systems,” in Proc. 17th
Euromicro Conf. Real-Time Syst., 2005, pp. 199–208.

[33] B. Andersson, K. Bletsas, and S. Baruah, “Scheduling arbitrary-
deadline sporadic task systems on multiprocessors,” in Proc. 29th
Real-Time Syst. Symp., 2008, pp. 385–394.

[34] S. Kato and N. Yamasaki, “Portioned static-priority scheduling on
multiprocessors,” in Proc. 22nd Int. Symp. Parallel Distrib. Process.,
2008, pp. 1–12.

[35] S. Kato, N. Yamasaki, and Y. Ishikawa, “Semi-partitioned sched-
uling of sporadic task systems on multiprocessors,” in Proc. 21st
Euromicro Conf. Real-Time Syst., 2009, pp. 249–258.

[36] S. Kato and N. Yamasaki, “Semi-partitioned fixed-priority sched-
uling on multiprocessors,” in Proc. 15th Real-Time Embedded Tech-
nol. Appl. Symp., 2009, pp. 23–32.

[37] A. Bastoni, B. B. Brandenburg, and J. H. Anderson, “Is semi-
partitioned scheduling practical?” in Proc. 23rd Euromicro Conf.
Real-Time Syst., 2011, pp. 125–135.

[38] P. Souto, P. B. Sousa, R. I. Davis, K. Bletsas, and E. Tovar,
“Overhead-aware schedulability evaluation of semi-partitioned
real-time schedulers,” in Proc. 21st Int. Conf. Embedded Real-Time
Comput. Syst. Appl., 2015, pp. 110–121.

[39] C. Maia, P. M. Yomsi, L. Nogueira, and L. M. Pinho, “Real-time
semi-partitioned scheduling of fork-join tasks using work-
stealing,” EURASIP J. Embedded Syst., vol. 2017, no. 1, Sep. 2017,
Art. no. 31.

[40] L. George, P. Courbin, and Y. Sorel, “Job versus portioned parti-
tioning for the earliest deadline first semi-partitioned scheduling,”
J. Syst. Archit., vol. 57, no. 5, pp. 518–535, May 2011.

[41] C. Hobbs, Z. Tong, and J. Anderson, “Optimal soft real-time semi-
partitioned scheduling made simple (and dynamic),” in Proc. 27rd
Int. Conf. Real Time Netw. Syst., 2019, pp. 112–122.

[42] M. L. Dertouzos and A. K. Mok, “Multiprocessor on-line schedul-
ing of hard-real-time tasks,” IEEE Trans. Softw. Eng., vol. 15,
no. 12, pp. 1497–1506, Dec. 1989.

[43] N. Fisher, J. Goossens, and S. Baruah, “Optimal online multipro-
cessor scheduling of sporadic real-time tasks is impossible,” Real-
Time Syst., vol. 45, no. 1, pp. 26–71, Jun. 2010.

[44] A. Block and J. H. Anderson, “Accuracy versus migration over-
head in real-time multiprocessor reweighting algorithms,” in
Proc. 12th Int. Conf. Parallel Distrib. Syst., 2006, Art. no. 10.

[45] A. Block, J. H. Anderson, and G. Bishop, “Fine-grained task
reweighting on multiprocessors,” in Proc. 11th Int. Conf. Embedded
Real-Time Comput. Syst. Appl., 2005, pp. 429–435.

Daniel Casini (Member, IEEE) received the grad-
uate (cum laude) degree in embedded computing
systems engineering, the master degree jointly
offered by the Scuola Superiore Sant’Anna of
Pisa and the University of Pisa, and the PhD
degree in computer engineering from the Scuola
Superiore Sant’Anna of Pisa (with honors) work-
ing under the supervision of Prof. Alessandro
Biondi and Prof. Giorgio Buttazzo. He is a post-
doctoral researcher at the Real-Time Systems
(ReTiS) Laboratory of the Scuola Superiore

Sant’Anna of Pisa. In 2019, he was a visiting scholar at the Max Planck
Institute for Software Systems (Germany). His research interests include
software predictability in multi-processor systems, schedulability analy-
sis, synchronization protocols, and the design and implementation of
real-time operating systems and hypervisors.

Alessandro Biondi (Member, IEEE) received the
graduate (cum laude) degree in computer engi-
neering from the University of Pisa, Italy, within
the excellence program, and the PhD degree in
computer engineering from the Scuola Superiore
Sant’Anna under the supervision of prof. Giorgio
Buttazzo and prof. Marco Di Natale. He is an
assistant professor with the Real-Time Systems
(ReTiS) Laboratory of the Scuola Superiore
Sant’Anna. In 2016, he was a visiting scholar at
the Max Planck Institute for Software Systems

(Germany). His research interests include design and implementation of
real-time operating systems and hypervisors, schedulability analysis,
cyber-physical systems, synchronization protocols, and component-
based design for real-time multiprocessor systems. He was recipient of
six best paper awards, one Outstanding Paper Award, ACM SIGBED
Early Career Award 2019, and EDAA Dissertation Award 2017.

Giorgio Buttazzo (Fellow, IEEE) received the
graduate degree in electronic engineering from the
University of Pisa, in 1985, the MS degree in com-
puter science from the University of Pennsylvania,
in 1987, and the PhD degree in computer engi-
neering from the Scuola Superiore Sant’Anna of
Pisa, in 1991. He is full professor of computer engi-
neering at theScuola Superiore Sant’Anna of Pisa.
He is editor-in-chief of Real-Time Systems, asso-
ciate editor of the ACM Transactions on Cyber-
Physical Systems. He has authored seven books

on real-time systems and more than 200 papers in the field of real-time
systems, robotics, and neural networks.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

CASINI ETAL.: TASK SPLITTING AND LOAD BALANCING OF DYNAMIC REAL-TIME WORKLOADS FOR SEMI-PARTITIONED EDF 2181

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on May 31,2022 at 15:16:10 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


